Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1563
Research
Article
Scavenging
aspirin using optimised date seeds based activated
carbon via response surface methodology: Batch isotherm and bed column analysis
Md
Mamoon Rashid, Erniza Mohd Johan Jaya, and Mohd Azmier Ahmad*
School of Chemical Engineering,
Engineering Campus, Universiti Sains Malaysia, 14300 Nibong
Tebal, Penang, Malaysia
*Corresponding
author: chazmier@usm.my
Received: 6 May 2025;
Revised: 4 August 2025; Accepted: 7 August 2025; Published: 31 October 2025
Abstract
Aspirin (ASP), which is commonly found in aquatic environments, presents
notable risks to both ecosystems and human health. This investigation focuses
on using an innovative adsorbent derived from date seeds, known as DSAC, to
efficiently eliminate ASP from water. The preparation process was refined
through response surface methodology (RSM), identifying ideal conditions at an
activation time of 2.29 min, an activation power of 489 W, and a potassium
hydroxide (KOH) impregnation ratio (IR) level of 1.63 g/g. Under these
conditions, ASP removal was predicted at 76.58%, closely matched by an
experimental value of 80.94%, with a minor deviation of 5.39%. The DSAC yield
forecast was 26.22%, while the actual value reached 24.34%, marking a 7.72%
difference. Analytical tests confirmed the suitability of DSAC, with a high BET
surface area (BET-SA) of 1163.44 m2/g, a mesoporous surface area
(MESO-SA) of 852.71 m2/g, a total pore volume (TPV) of 0.4899 cm3/g,
and an average pore diameter (APD) of 2.94 nm. Isotherm analysis revealed that
the adsorption system was best described by Langmuir, with a maximum uptake, Qm of 43.57 mg/g. In continuous column trials,
optimal performance was observed when using a flow rate of 10 mL/min, an ASP
concentration of 10 mg/L, and a column depth of 8 cm. These settings produced
the longest durations before breakthrough and complete saturation, indicating
superior adsorption performance. The findings highlight DSAC as a viable and
environmentally friendly solution for treating pharmaceutical contaminants in
water using fixed-bed systems.
Keywords:
Activated carbon,
adsorption, date seed, optimisation, isotherm, bed
column
References
1. Fernandes,
J. P., Almeida, C. M. R., Salgado, M. A., Carvalho, M. F., and Mucha, A. P.
(2021). Pharmaceutical compounds in aquatic
environments occurrence, fate and bioremediation prospective. Toxics, 9(10): 257.
2. Nordin, A. H., Ngadi, N., Nordin, M. L.,
Noralidin, N. A., Nabgan, W., Osman, A. Y., and Shaari, R. (2023). Spent tea
waste extract as a green modifying agent of chitosan for aspirin adsorption:
Fixed-bed column, modeling and toxicity studies. International Journal of Biological Macromolecules, 253: 126501.
3. Mohamad, F. M. Y., Abdullah, A. Z., and Ahmad, M. A. (2024). Amoxicillin adsorption from aqueous solution by Cu(II) modified lemon peel based activated carbon: Mass transfer simulation, surface area prediction and F-test on isotherm and kinetic models. Powder Technology, 438: 119589.
4. Moghiseh, Z., Rezaee, A., Ghanati, F., and
Esrafili, A. (2019). Metabolic activity and pathway study of aspirin
biodegradation using a microbial electrochemical system supplied by an
alternating current. Chemosphere, 232: 35-44.
5. Szabelak, A., and Bownik, A. (2021). Behavioral and physiological responses of Daphnia magna to salicylic acid. Chemosphere, 270: 128660.
6. Gunasekaran, S., Liu, A. J. X., and Ng, S.
L. (2024). Activated carbon/iron oxide composites with different weight ratios
for acid orange 7 removal. Malaysian
Journal of Analytical Sciences, 28(6):
1359-1373.
7. Firdaus, M. Y. M., Rashid, M. M., Alam, M. M., and Ahmad, M. A. (2025). Copper-modified surface of orange peel-derived activated carbon for amoxicillin removal: Mass transfer simulation, attraction mechanism, and regeneration studies. Arabian Journal for Science and Engineering, 2025: 1-23.
8. Ramlee, D. A., Nordin, N. A., Rahman, N. A.,
and Bahruji, H. (2024). Removal of acetaminophen by using electrospun pan/sago
lignin-based activated carbon nanofibers. Malaysian
Journal of Analytical Sciences, 28(6):
1442-1457.
9. Nur Syahirah Mohamed, H., Farihahusnah, H.,
Lai Ti, G., and Mohamed Kheireddine, A. (2024). Characterisation of egg
white-impregnated activated carbon for CO2 adsorption application. Malaysian Journal of Science, 43(Sp1): 20-25.
10. Khir, N. H. M., Salleh, N. F. M., Ghafar, N. A., Shukri, N. M., and Jusoh, R. (2025). Preparation and characterization of modified rambutan peels for the removal of chromium(VI) and nickel(II) from aqueous solution: Environmental impact and optimization Malaysian Journal of Analytical Sciences, 29(1): 1292.
11. Yusop, M. F. M., Ahmad, M. A., Rosli, N. A., Gonawan, F. N., and Abdullah, S. J. (2021). Scavenging malachite green dye from aqueous solution using durian peel based activated carbon. Malaysian Journal of Fundamental and Applied Sciences, 17(1): 95-103.
12. Mohamad, F. M. Y., Rashid, M. M., Alam, M. M., and Ahmad, M. A. (2025). Copper metal-functionalized carbon from rattan waste via microwave pyrolysis for enhanced chloramphenicol removal: Optimization and F-test study. Particuology, 100: 196-213.
13. Ahmad, M. A., Yusop, M. F. M., Awang, S., Yahaya, N. K. E. M., Rasyid, M. A. and Hassan, H. (2021). Carbonization of sludge biomass of water treatment plant using continuous screw type conveyer pyrolyzer for methylene blue removal. IOP Conference Series: Earth and Environmental Science, 765: 012112.
15. Ramli, F. F., Johar, A. N. M., Zabi, N., Mohamad, M., Hadzir, N. M., and Ibrahim, W. N. W. (2024). Sustainable sorbents: Oil palm empty fruit bunch-derived activated carbon-alginate beads for organochlorine pesticides extraction in water samples. Malaysian Journal of Chemistry, 26(5): 583-597.
16. Nasran, N. K. M., Firdaus, M. Y. M., Faizal,
P. M. L. M., and Azmier, A. M. (2023). Alteration of Tecoma chip wood waste
into microwave-irradiated activated carbon for amoxicillin removal:
Optimization and batch studies. Arabian
Journal of Chemistry, 16(10):
105110.
17. Wong, S. L., Mohamed Noor, M. H., Ngadi, N.,
Mohammed Inuwa, I., Mat, R., and Saidina Amin, N. A. (2021). Aspirin adsorption
onto activated carbon derived from spent tea leaves: statistical optimization
and regeneration study. International
Journal of Environmental Research, 15(2):
413-426.
18. Nordin, A. H., Ngadi, N., Ilyas, R. A., Abd Latif, N. A. F., Nordin, M. L., Mohd Syukri, M. S., and Paiman, S. H. (2023). Green surface functionalization of chitosan with spent tea waste extract for the development of an efficient adsorbent for aspirin removal. Environmental Science and Pollution Research, 30(60): 125048-125065.
19. Boushara, R. S., Ngadi, N., Wong, S., and Mohamud, M. Y. (2022). Removal of aspirin from aqueous solution using phosphoric acid modified coffee waste adsorbent. Materials Today: Proceedings, 65: 2960-2969.
20. Daouda, M. M. A., Akowanou, A. V. O., Mahunon,
S. E. R., Adjinda, C. K., Aina, M. P., and Drogui, P. (2021). Optimal removal
of diclofenac and amoxicillin by activated carbon prepared from coconut shell
through response surface methodology. South
African Journal of Chemical Engineering, 38(1): 78-89.
21. Yusop, M. F. M., Baharudin, M. H., Rashid, M.
M., Alam, M. M., and Ahmad, M. A. (2025). Amoxicillin adsorption onto oil palm
trunk-derived activated carbon: synthesis optimization, modelling of mass
transfer and ultrasonic regeneration. Journal
of Chemical Technology & Biotechnology, 100(6): 1310-1327.
22. Abdelaal, A., Benedetti, V., Villot, A., Patuzzi, F., Gerente, C., and Baratieri, M. (2023). Innovative pathways for the valorization of biomass gasification char: A systematic review. Energies, 16(10): 4175.
23. Firdaus, M. Y. M., Rashid, M. M., Alam, M. M.,
and Ahmad, M. A. (2025). Enhanced Cd2+ removal via
deprotonated-mango trunk functionalized carbon: Optimization and F-test for
linear and non-linear isotherm and kinetic models. Chemical Engineering Research and Design, 220: 96-116.
24. Langmuir, I. (1918). The adsorption of gases
on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9): 1361-1403.
25. Freundlich, H. (1906). Over the adsorption in
solution. Journal of Physical Chemistry, 57(385471): 1100-1107.
26. Tempkin, M., and Pyzhev, V. (1940). Kinetics
of ammonia synthesis on promoted iron catalyst. Acta Physicochimica URSS, 12(1):
327.
27. Mohamad, F. M. Y., Abdullah, A. Z., and Ahmad,
M. A. (2023). Adsorption of remazol brilliant blue R dye onto jackfruit peel
based activated carbon: Optimization and simulation for mass transfer and
surface area prediction. Inorganic
Chemistry Communications, 158:
111721.
28. Beyan, S. M., Prabhu, S. V., Sissay, T. T.,
and Getahun, A. A. (2021). Sugarcane bagasse based activated carbon preparation
and its adsorption efficacy on removal of BOD and COD from textile effluents:
RSM based modeling, optimization and kinetic aspects. Bioresource Technology Reports, 14: 100664.
29. Sopandi, T. P., Sulianto, A. A., Anugroho, F.,
Yusoff, M. Z. M., Mohamed, M. S., Farid, M. A. A., and Setyawan, H. Y. (2025).
RSM-optimized biochar production from young coconut waste (Cocos nucifera):
Multivariate analysis of non-linear interactions between temperature, time, and
activator concentration. Industrial Crops
and Products, 223: 120157.
30. Yu, H., Mikšík, F., Thu, K., and Miyazaki, T.
(2024). Characterization and optimization of pore structure and water
adsorption capacity in pinecone-derived activated carbon by steam activation. Powder Technology, 431: 119084.
31. Weldekidan, H., Patel, H., Mohanty, A., and Misra, M. (2024). Synthesis of porous and activated carbon from lemon peel waste for CO2 adsorption. Carbon Capture Science & Technology, 10: 100149.
32. Firdaus, M. Y. M., Nasran, M. N. K., Ridzuan,
Z., Zuhairi, A. A., and Azmier, M. A. (2023). Mass transfer simulation on
remazol brilliant blue R dye adsorption by optimized teak wood Based activated
carbon. Arabian Journal of Chemistry, 16(6): 104780.
33. Yusop, M. F. M., Mohd Johan Jaya, E., Mohd
Din, A. T., Bello, O. S., and Ahmad, M. A. (2022). Single-stage optimized
microwave-induced activated carbon from coconut shell for cadmium adsorption. Chemical Engineering & Technology, 45(11): 1943-1951.
34. Wei, X., Huang, S., Yang, J., Liu, P., Li, X.,
Wu, Y., and Wu, S. (2023). Adsorption of phenol from aqueous solution on
activated carbons prepared from antibiotic mycelial residues and traditional
biomass. Fuel Processing Technology, 242: 107663.
35. Aziz, A., Mohamad Yusop, M. F., and Ahmad, M.
A. (2024). Harnessing microwave energy to transform Nephelium lappaceum
L. peel into activated carbon for chloramphenicol eradication in aqueous
solutions. Materials Chemistry and
Physics, 318: 129311.
36. Patel, H. (2019). Fixed-bed column adsorption
study: A comprehensive review. Applied
Water Science, 9(3): 45.
37. Gupta, A., and Garg, A. (2019). Adsorption and
oxidation of ciprofloxacin in a fixed bed column using activated sludge derived
activated carbon. Journal of
Environmental Management, 250:
109474.
38. Zhang, X., Han, X., Liu, Y., Han, R., Wang,
R., and Qu, L. (2023). Remediation of water tainted with noxious aspirin and
fluoride ion using UiO-66-NH2 loaded peanut shell. Environmental Science and Pollution
Research, 30(41): 93877-93891.
39. Sajid, M., Bari, S., Saif Ur Rehman, M., Ashfaq, M., Guoliang, Y., and Mustafa, G. (2022). Adsorption characteristics of paracetamol removal onto activated carbon prepared from Cannabis sativum Hemp. Alexandria Engineering Journal, 61(9): 7203-7212.
40. Silveira Neto, A. L., Pimentel-Almeida, W.,
Niero, G., Wanderlind, E. H., Radetski, C. M., and Almerindo, G. I. (2023).
Application of a biochar produced from malt bagasse as a residue of brewery
industry in fixed-bed column adsorption of paracetamol. Chemical Engineering Research and Design, 194: 779-786.
41. Thabede, P. M. (2024). The adsorption of
Ibuprofen from aqueous solution using acid treated maize cob. Case Studies in Chemical and Environmental
Engineering, 9: 100718.
42. Alvear-Daza, J. J., Cánneva, A., Donadelli, J.
A., Manrique-Holguín, M., Rengifo-Herrera, J. A., and Pizzio, L. R. (2023).
Removal of diclofenac and ibuprofen on mesoporous activated carbon from
agro-industrial wastes prepared by optimized synthesis employing a central
composite design. Biomass Conversion and
Biorefinery, 13(14): 13197-13219.