Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1554

 

Research Article

 

Magnetic iron oxide for the removal of Allura red and Erioglaucine A dyes: Synthesis and adsorption optimization

 

Nurul Yani Rahim1, Siti Hajar Abdullah1, Nurina Izzah Mohd Husani2, Nor Munira Hashim2, Nur Hidayah Sazali3, and Nur Nadhirah Mohamad Zain2*

 

1School of Chemical Science, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

2Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia

3Institute of Sustainable Energy & Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

 

*Corresponding author: nurnadhirah@usm.my

 

Received: 25 April 2025; Revised: 29 September 2025; Accepted: 6 October 2025; Published: 26 October 2025

 

Abstract

The environmental hazards associated with the introduction of synthetic colorants into aquatic systems are substantial, as they can be detrimental to both aquatic organisms and humans, as a result of inadequate disposal management. The co-precipitation method was employed to synthesize Fe₃O₄ magnetic nanoparticles, with ferrous chloride tetrahydrate (FeCl₂·4H₂O) and ferric chloride hexahydrate (FeCl₃·6H₂O) serving as the starting materials. The nanoparticles that were synthesized underwent a thorough characterization. X-ray Diffraction (XRD) analysis revealed distinct diffraction peaks at 2θ = 30.20°, 35.55°, 43.35°, 57.20°, and 63.10°, which are associated with the cubic spinel structure of Fe₃O₄, thus confirming the material's crystallinity. Ultra-High-Resolution Scanning Electron Microscopy (UHR-SEM) micrographs displayed spherical, agglomerated morphologies within the 300–500 nm range. Brunauer-Emmett-Teller (BET) analysis indicated a mesoporous structure characterized by a specific surface area of 58.62 m˛/g. Concurrently, Vibrating Sample Magnetometry (VSM) measurements exhibited pronounced magnetic behavior, with a saturation magnetization (Ms) of 86.83 emu/g, confirming the presence of superparamagnetism. The adsorption performance of Fe₃O₄ nanoparticles for Allura Red and Erioglaucine A was systematically evaluated using the Taguchi design approach. This evaluation was carried out under varying pH, adsorbent mass, and sample volume conditions, while parameters including temperature, contact time, and initial concentration were analyzed independently. The results indicated a monolayer adsorption process driven by chemisorption, with kinetics conforming to a pseudo-second-order model, and equilibrium data aligning with the Langmuir isotherm (R˛ = 1). The thermodynamic analysis confirmed that the adsorption process is exothermic. In practical applications, when using Fe₃O₄ nanoparticles on real wastewater samples, a high removal efficiency for Allura Red was observed, ranging from 94.57% to 100.13%, with a relative standard deviation (%RSD) of less than 1.40%. The removal efficiency for Erioglaucine A exhibited significant variability, ranging from 1.19% to 100.08%, with a %RSD of less than 20.00%. This variability likely arises from limitations in equilibrium diffusion at higher dye concentrations and differences in dye molecule structures. Overall, the results indicated that Fe₃O₄ nanoparticles demonstrated significant efficacy in the magnetic separation and elimination of Allura Red. However, optimization strategies may be necessary to improve the removal of Erioglaucine A in complex wastewater matrices.

 

Keywords: Magnetic nanoparticles, Allura red, Erioglaucine A, Taguchi design method, adsorption



References

1.        Tan, K. B., Vakili, M., Horri, B. A., Poh, P. E., Abdullah, A. Z. and Salamatinia, B. (2015). Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Separation Purification. Technology, 150:  229-242.

2.        Jusoh, N., Othman, N., and Bukhari Rosly, M. (2020). Extraction and recovery of organic compounds from aqueous solution using emulsion liquid membrane process. Material Today Proceedings, 47: 1301-1306.

3.        Panda, S.K., Aggarwal, I., Kumar, H., Prasad, L., Kumar, A., Sharma, A., Vo, D.N., Thuan, D.V., and Mishra, V. (2021). Magnetite nanoparticles as sorbents for dye removal: a review. Springer International Publishing, 19(3): 2487-2525.

4.        Załuski, D., Stolarski, J. M., and Krzyżaniak, M. (2022). Validation of the Taguchi method on the example of evaluation of willow biomass production factors under environmental stress. Industrial Crops and Products,185: 115170.

5.        Husin, N. A., Hashim, N. M., Yahaya, N., Miskam, M., Raoov,  M., and Zain, N. N. M. (2021). Exploring magnetic particle surface embedded with imidazole-based deep eutectic solvent for diclofenac removal from pharmaceutical wastewater samples. Journal of Molecular Liquids, 332: 115809.

6.        Dutta, S., Gupta,  B., Srivastava, S. K., and Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14): 4497-4531.

7.        Mohammad Razi, M. A., Mohd Hishammudin, M. N. A., and Hamdan, R. (2017). Factor affecting textile dye removal using adsorbent from activated carbon: a review. MATEC Web Conference, 103: 1-17.

8.        Rashid, H., Mansoor, M. A., Haider, B., Nasir, R., Abd Hamid, S. B., and Abdulrahman, A. (2020). Synthesis and characterization of magnetite nano particles with high selectivity using in-situ precipitation method. Separation Science and Technology, 55(6): 1207-1215.

9.        Queiros Campos, J., Checa-Fernandez, B.L., Marins, J. A., Lomenech, C., Hurel, Ch., Godeau, G., Raboisson-Michel, M., Verger-Dubois, G., Bee, A., and Talbot, D., and Kuzhir, P.J. (2021). Adsorption of organic dyes on magnetic iron oxide nanoparticles. part II: field-induced nanoparticle agglomeration and magnetic separation. Langmuir, 37(35): 10612-10623.

10.     Jokić, A., Petković, B., Jevtić, S., Vasić, V., and Laban, B. (2019). Characterization of new synthesized Fe2O3 nanoparticles and their application as detection signal amplifiers in herbicide bentazone electroanalytical determination. University Thought - Publication in Natural Sciences, 9(1): 27-31.

11.     Korake, R., and Jadhao, P. D. (2021). Investigation of Taguchi optimization, equilibrium isotherms, and kinetic modeling for cadmium adsorption onto deposited silt. Heliyon, 7: e05755.

12.     Pundir, R., Chary, G. H. V. C., and Dastidar, M. G. (2018). Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp.. Water Resources and Industry, 20: 83-92.

13.     Essa, W. K., Yasin, S. A., Abdullah, A. H., Thalji, M. R., Saeed, I. A., Assiri, M. A., Chong, K. F., and Ali, G. A. M. (2022). Taguchi L25 (54) approach for methylene blue removal by polyethylene terephthalate nanofiber-multi-walled carbon nanotube composite. Water, 14 (8): 1242.

14.     Sumanjit, Rani, S., and Mahajan, R. K. (2016). Equilibrium, kinetics and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia. Arabian Journal of Chemistry, 9: S1464–S1477.

15.     Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A. R., Ali, J. S., and Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9(4): 49-67.

16.     Mosoarca, G., Popa, S., Vancea, C., and Boran, S. (2021). Optimization, equilibrium and kinetic modeling of methylene blue removal from aqueous solutions using dry bean pods husks powder. Materials, 14(19): 5673.

17.     Khan, A., Begum, S., Ali, N., Khan, S., Hussain, S., and Sotomayor., M. D. P. T. (2017). Preparation of crosslinked chitosan magnetic membrane for cations sorption from aqueous solution. Water Scienc & Technology, 75(9): 2034-2046.

18.     Bıyıkoğlu, M. (2025). Innovative approaches in wastewater treatment: kinetic and isotherm investigation of dye adsorption on sulfur-modified PET fibers. Research on Chemical Intermediates, 51(6): 3281-3299.

19.     Giri, S. K., Das, N. N., and Pradhan, G. C. (2011). Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389: 4908.

20.     Abebe, B., Murthy, H. C. A., and Amare, E. (2018). Summary on adsorption and photocatalysis for pollutant remediation: mini review. Journal of Encapsulation and Adsorption Sciences, 8(4): 225-255.

21.     Sotomayor, F., Quantatec, A. P., Sotomayor, F. J., Cychosz, K. A., and Thommes, M. (2018). Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Accounts of Materials and Surface Research, 3(2): 34-50.

22.     Waheed, A., Mansha, M., Kazi, I. W., and Ullah, N. (2019). Synthesis of a novel 3,5-diacrylamidobenzoic acid based hyper-cross-linked resin for the efficient adsorption of Congo Red and Rhodamine B. Journal of Hazardous Materials, 369(2): 528-538.

23.     Masuku, M., Ouma, L., and Pholosi, A. (2021). Microwave assisted synthesis of oleic acid modified magnetite nanoparticles for benzene adsorption. Environmental Nanotechnology, Monitoring and Management, 15(9): 100429.

24.     Fan, L., Luo, C., Li, X., Lu, F., Qiu, H., and Sun, M. (2012). Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. Journal of Hazardous Materials, 215-216: 272-279.

25.     Mohamed, A., Atta, R. R., Kotp, A. A., Abo El-Ela, F. I., Abd El-Raheem, H., Farghali, A., Alkhalifah, D. H. M., Hozzein, W. N., and Mahmoud, R. (2023). Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd2+ and Ni2+) from aqueous solutions with Antimicrobial Investigation. Scientific Reports, 13(1): 1-30.

26.     Damasceno, B. S., da Silva, A. F. V., and de Araújo, A. C. V. (2020). Dye adsorption onto magnetic and superparamagnetic Fe3O4 nanoparticles: A detailed comparative study. Journal of Environmental Chemical Engineering, 8: 103994.

27.     Hadadian, Y., Masoomi, H., Dinari, A., Ryu, C., Hwang, S., Kim, S., Cho, B. K., Lee, J. Y., and Yoon, J. (2022). From low to high saturation magnetization in magnetite nanoparticles: the crucial role of the molar ratios between the chemicals. ACS Omega, 7: 15996.

28.     Saif, S., Tahir, A., and Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(11): 1-26.

29.     Şen, N. E., and Şenol, Z. M. (2023). Effective removal of Allura red food dye from water using cross-linked chitosan-diatomite composite beads. International Journal of Biological Macromolecules, 253(5): 126632.

30.     Başar, C. A., Korkmaz, A. A., Önal, Y., and Utku, T. (2022). Evaluation of optimum carbonization conditions of the blended domestic polymeric waste, biomass and lignite in the presence of catalyst by Taguchi and ANOVA optimization analysis. Journal of Hazardous Materials Advances, 8: 100164.

31.     Liu, X., Tian, J., Li, Y., Sun, N., Mi, S., Xie, Y., and Chen, Z. (2019). Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. Journal of Hazardous Materials, 373(2): 397-407.

32.     Yu, D., Hu, Z. H., Wang, Y. G., Liang, X. X., Ouyang, X. K., and Omer, A. M. (2019). Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan. Chemosphere, 217: 270-278.

33.     Rouhani, M., Ashrafi, S. D., Taghavi, K., Joubani, M. N., and Jaafari, J. (2022). Evaluation of tetracycline removal by adsorption method using magnetic iron oxide nanoparticles (Fe3O4) and clinoptilolite from aqueous solutions. Journal of Molecular Liquids, 356: 119040.

34.     Badruddoza, A. Z. M., Tay, A. S. H., Tan, P. Y., Hidajat, K., and Uddin, M. S. (2011). Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. Journal of Hazardous Materials, 185(2–3): 1177-1186

35.     Behnajady, M. A., Bimeghdar, S., and Eskandarloo, H. (2018). Photocatalytic activity of Ag/TiO2–P25 modified cement: Optimization using Taguchi approach. Environmental Engineering and Management Journal, 17(5): 1131-1138.

36.     Dandil, S. (2024). Design of decolorization of methylene blue mixed synthetic wastewater via modified vermiculite using Taguchi method. Adsorption Science and Technology, 42.

37.     Islam, M. A., Ahmed, M. J., Khanday, W. A., Asif, M., and Hameed, B. H. (2017). Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. Journal of Environmental Management, 203: 237-244.

38.     Eleryan, A., Aigbe, U. O., Ukhurebor, K. E., Onyancha, R. B., Hassaan, M. A., Elkatory, M. R., Ragab, S., Osibote, O. A., Kusuma, H. S., and El Nemr, A. (2023). Adsorption of direct blue 106 dye using zinc oxide nanoparticles prepared via green synthesis technique. Environmental Science and Pollution Research, 30(26): 69666-69682.

39.     Nassar, N. N., Marei, N. N., Vitale, G., and Arar, L. A. (2015). Adsorptive removal of dyes from synthetic and real textile wastewater using magnetic iron oxide nanoparticles: Thermodynamic and mechanistic insights. Canadian Journal of Chemical Engineering, 93(11): 1965-1974

40.     Yang, G., Gao, Q., Yang, S., Yin, S., Cai, X., Yu, X., Zhang, S., and Fang, Y. (2020). Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles. Chemosphere, 239.

41.     Yang, J., and Han, S. (2018). Kinetics and equilibrium study for the adsorption of lysine on activated carbon derived from coconut shell. Desalination and Water Treatment, 120: 261-271.

42.     Osagie, C., Othmani, A., Ghosh, S., Malloum, A., Kashitarash Esfahani, Z., and Ahmadi, S. (2021). Dyes adsorption from aqueous media through the nanotechnology: A review. Journal of Materials Research and Technology, 14: 2195-2218.

43.     Özgen, A., Dalmaz, A., and Sivrikaya Özak, S. (2025). A new method for the determination of Brilliant Blue FCF in energy drinks: Smartphone digital imaging colorimetry (SDIC) and green deep eutectic solvent-based dispersive microextraction procedure. Microchemical Journal, 216: 114776.