Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1522
Research
Article
Preliminary
study on the rapid detection of eugenol in selected
plants using thin layer chromatography
Wan Ahmad
Kamil Wan Mustapha Albakri1, Nik Nor Izah
Nik Ibrahim2 and Ruzilawati Abu Bakar2*
1Faculty of Science, Universiti Teknologi
Malaysia, Skudai, Johor, Malaysia
2Department of Pharmacology, School of Medical
Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
*Corresponding author: ruzila@usm.my
Received: 24 March 2025; Revised: 19 August 2025;
Accepted: 21 August 2025; Published: 16 October 2025
Abstract
Eugenol, a
naturally occurring phenolic compound with significant pharmacological
properties, is found in various aromatic plants. This study aims to develop and
optimise a thin-layer chromatography (TLC) method for qualitative detection of eugenol in selected plant species. Samples were
collected from Piper betle,
Syzygium aromaticum, Cinnamomum zeylanicum, Zingiber
officinale, Mitragyna speciosa, and Cymbopogon citratus. The plant extracts
were prepared using a Soxhlet apparatus with 95% methanol as extraction solvent
and subjected to TLC analysis. Silica gel plates were employed as the
stationary phase, and a solvent system of dichloromethane: methanol (99:1) was
optimised for the mobile phase. The detection of eugenol was carried out using
ultraviolet (UV) light and fast blue BB spray for visualisation. The Rf values
obtained were consistent with the standard eugenol reference, confirming the
presence of eugenol in the selected plants. This TLC method offers a simple,
cost-effective, and efficient approach for the rapid screening of eugenol in
various plant materials.
Keywords: eugenol, plants, thin-layer chromatography, rapid
detection
1.
Bisergaeva,
R. A., Takaeva, M. A., and Sirieva, Y. N. (2021). Extraction of eugenol, a
natural product, and the preparation of eugenol benzoate. Journal of
Physics: Conference Series, 1889(2): 022085.
2.
Nisar, M. F., Khadim, M., Rafiq, M., Chen,
J., Yang, Y., and Wan, C. C. (2021). Pharmacological properties and health
benefits of eugenol: A comprehensive review. Oxidative Medicine and Cellular
Longevity, 2021: 1-14.
3.
Jaganathan, S. K.,
and Supriyanto, E. (2012). Antiproliferative and molecular mechanism of
eugenol-induced apoptosis in cancer cells. Molecules, 17(6): 6290-6304.
4.
Janssen, A. M., Scheffer, J. J. C., and Svendsen,
A. B. (1987). Antimicrobial activities of essential oils. Pharmaceutical
Weekblad, 9(4): 193-197.
5.
Kerosenewala, J., Vaidya, P., Ozarkar, V.,
Shirapure, Y., and More, A. P. (2023). Eugenol: Extraction, properties and its
applications on incorporation with polymers and resins - A review. Polymer
Bulletin, 80(14): 7047-7099.
6.
Elbestawy, M. K. M., El-Sherbiny, G. M., and
Moghannem, S. A. (2023). Antibacterial, antibiofilm and anti-inflammatory
activities of eugenol clove essential oil against resistant Helicobacter
pylori. Molecules, 28(6): 2448.
7.
Marchese, A., Barbieri, R., Coppo, E.,
Orhan, I. E., Daglia, M., Nabavi, S. F., Izadi, M., Abdollahi, M., Nabavi, S.
M., and Ajami, M. (2017). Antimicrobial activity of eugenol and essential oils
containing eugenol: A mechanistic viewpoint. Critical Reviews in
Microbiology, 43(6): 668-689.
8.
Devi, K. P., Nisha, S. A., Sakthivel, R., and
Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an
antibacterial agent against Salmonella Typhi by disrupting the cellular
membrane. Journal of Ethnopharmacology, 130(1): 107-115.
9.
Begum, S. N., Ray, A. S., and Rahaman, C.
H. (2022). A comprehensive and systematic review on potential anticancer
activities of eugenol: From pre-clinical evidence to molecular mechanisms of
action. Phytomedicine, 107: 154456.
10. National
Center for Biotechnology Information. (2024). PubChem compound summary for
CID 3314, Eugenol. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Eugenol
11. Aburel,
O. M., Pavel, I. Z., Dănilă, M. D., Lelcu, T., Roi, A., Lighezan, R.,
Muntean, D. M., and Rusu, L. C. (2021). Pleiotropic effects of eugenol: The
good, the bad, and the unknown. Oxidative Medicine and Cellular Longevity, 2021:
3165159.
12. Catherine,
A. A., Deepika, H., and Negi, P. S. (2012). Antibacterial activity of eugenol
and peppermint oil in model food systems. Journal of Essential Oil Research,
24(5): 481-486.
13. Balkrishna,
A., Sharma, P., Joshi, M., Srivastava, J., and Varshney, A. (2021). Development
and validation of a rapid high‐performance thin‐layer
chromatographic method for quantification of gallic acid, cinnamic acid,
piperine, eugenol, and glycyrrhizin in Divya‐Swasari‐Vati, an
ayurvedic medicine for respiratory ailments. Journal of Separation Science, 44(17):
3146-3157.
14. Murugananthan,
Y., Razali, N. F. B., and Mansur, S. A. B. (2022). Comparison between eugenol
in essential oil from cinnamon leaves (Cinnamomum verum) and clove (Eugenia
caryophyllata) extracted by Soxhlet extraction. Progress in Engineering
and Applied Technology, 3(1): 118-128.
15. Kowalska,
T., and Sajewicz, M. (2022). Thin-layer chromatography (TLC) in the screening
of botanicals: Its versatile potential and selected applications. Molecules,
27(19): 6607.
16. Sigma-Aldrich.
Fast Blue BB salt hemi(zinc chloride) salt. Merck. https://www.sigma aldrich.com/MY/en/product/sigma/f3378
17. Zollinger,
H. (1952). The kinetics of the diazo coupling reaction. Chemical Reviews, 51(3):
347-361.
18. dos
Santos, N. A., Souza, L. M., Domingos, E., França, H. S., Lacerda, V., Beatriz,
A., Vaz, B. G., Rodrigues, R. R. T., Carvalho, V. V., Merlo, B. B., Kuster, R.
M., and Romão, W. (2016). Evaluating the selectivity of colorimetric test (Fast
Blue BB salt) for the cannabinoids identification in marijuana street samples
by UV–Vis, TLC, ESI(+)FT-ICR MS and ESI(+)MS/MS. Forensic Chemistry, 1:
13-21.
19. Wiley.
winCATS software.
https://pro-4-pro.com/en/product/3761-camag-tlc-scanner-3-with-wincats-software-a-class-of-its-own.html
20. Khalil,
A. A., ur Rahman, U., Khan, M. R., Sahar, A., Mehmood, T., and Khan, M. (2017).
Essential oil eugenol: Sources, extraction techniques and nutraceutical
perspectives. RSC Advances, 7(52): 32669-32681.
21. Zhou,
L., Zheng, H., Tang, Y., Yu, W., and Gong, Q. (2013). Eugenol inhibits quorum
sensing at sub-inhibitory concentrations. Biotechnology Letters, 35(4):
631-637.
22. Cortés-Rojas,
D. F., de Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium
aromaticum): A precious spice. Asian Pacific Journal of Tropical
Biomedicine, 4(2): 90-96.
23. Kramer,
R. E. (1985). Antioxidants in clove. Journal of the American Oil Chemists’
Society, 62(1): 111-113.
24. Fazal,
F., Mane, P. P., Rai, M. P., Thilakchand, K. R., Bhat, H. P., Kamble, P. S.,
Palatty, P. L., and Baliga, M. S. (2014). The phytochemistry, traditional uses
and pharmacology of Piper betel Linn. (betel leaf): A pan-asiatic
medicinal plant. Chinese Journal of Integrative Medicine, 20(9): 707-720.
25. Raja,
M. C., Srinivasan, V., Selvaraj, S., and Mahapatra, S. (2015). Versatile and
synergistic potential of eugenol: A review. Pharmaceutica Analytica Acta, 6(4):
1-6.
26. Ulanowska, M., and Olas, B. (2021). Biological
properties and prospects for the application of eugenol—A review. International
Journal of Molecular Sciences, 22(7): 3671.
27. Vangalapati,
M., Satya, N. S., Prakash, D. S., & Avanigadda, S. S. (2012). A review on
pharmacological activities and clinical effects of cinnamon species. CAB
Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural
Resources, 7(31): 1-11.
28. Li,
H., Liu, Y., Luo, D., Ma, Y., Zhang, J., Li, M., Yao, L., Shi, X., Liu, X., and
Yang, K. (2019). Ginger for health care: An overview of systematic reviews. Complementary
Therapies in Medicine, 45: 114-123.
29. Adkins,
J. E., Boyer, E. W., and McCurdy, C. R. (2011). Mitragyna speciosa, a
psychoactive tree from Southeast Asia with opioid activity. Current Topics
in Medicinal Chemistry, 11(9): 1165-1175.
30. Shah,
G., Shri, R., Panchal, V., Sharma, N., Singh, B., and Mann, A. S. (2011).
Scientific basis for the therapeutic use of Cymbopogon citratus Stapf
(lemon grass). Journal of Advanced Pharmaceutical Technology & Research,
2(1): 3-8.