Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1519
Review Article
The role of deep eutectic solvents in advancing rubber science: A mini
review
Kyu
Kyu Tin1, Nor Munira Hashim2, Wirach Taweepreda3*,
Waleed Alahmad4*, Nur Nadhirah Mohamad Zain2*
1Environmental Management, Faculty of Environmental
Management, Prince of Songkla, University, Hat-Yai, Songkhla 90110, Thailand
2Department of Toxicology, Advanced Medical and Dental
Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200,
Malaysia
3Polymer Science Program, Division of Physical Science,
Faculty of Science, Prince of Songkla, University, Hat-Yai, Songkhla 90110,
Thailand
4Department of Chemistry, Faculty of Science,
Chulalongkorn University, Bangkok, 10330, Thailand
*Corresponding authors: wirach.t@psu.ac.th, waleed.al@chula.ac.th, nurnadhirah@usm.my
Received: 20 March 2025;
Revised: 4 July 2025; Accepted: 21 July 2025; Published: 28 October 2025
Abstract
Deep eutectic solvents (DESs) have
emerged as promising tools for advancing rubber research because of their
unique properties and eco-friendly nature. This mini review highlights the
different applications of DESs in rubber research, mentioning their role in the
devulcanisation of waste rubber, enhancement of mechanical properties, and the
mechanisms by which DESs interact with rubber compounds, basically their
ability to disrupt sulfur bonds and cross-linked structures, are discussed in
detail. Moreover, DES integrations, including Choline Chloride (ChCl): ethylene
glycol and ChCl: oxalic acid, yield high hemicellulose and cellulose
compositions, underscoring their efficacy. Furthermore, this review highlights
the chemical mechanisms by which DES compounds disrupt sulfur bonds and
cross-linked networks, as well as discusses the chemical mechanisms by which DESs
react with rubber compounds, disrupting sulfur bonds and cross-linked networks.
However, future research should explore optimizing DES formulations and seeking
broader applications in rubber science to fully harness their potential for
sustainable and innovative advancements in this field.
Keywords: solvents, plant-derived, sustainable
solvents, rubber production, eco-friendly
References
1.
Julshahril, N. H., Phuah, E. T., and Rambli, M. M.
(2025). Deep eutectic solvents in the extraction of bioactive compounds in
agri-food industry. Food and Humanity, 4: 100468.
2.
Sharma, A., Sharma, R., Thakur, R. C., and Singh, L.
(2023). An overview of deep eutectic solvents: Alternative for organic
electrolytes, aqueous systems & ionic liquids for electrochemical energy
storage. Journal of Energy Chemistry, 82: 592–626.
3.
Prabhune, A., and Dey, R. (2023). Green and sustainable
solvents of the future: Deep eutectic solvents. Journal of Molecular
Liquids, 379: 121676.
4.
Omar, K. A., and Sadeghi, R. (2023). Database of deep
eutectic solvents and their physical properties: A review. Journal of
Molecular Liquids, 384: 121899.
5.
Ferreira, C., and Sarraguça, M. (2024). A comprehensive
review on deep eutectic solvents and its use to extract bioactive compounds of
pharmaceutical interest. Pharmaceuticals, 17(1): 124.
6.
Hayyan, M., Aissaoui, T., Hashim, M. A., AlSaadi, M. A.
H., and Hayyan, A. (2015). Triethylene glycol based deep eutectic solvents and
their physical properties. Journal of the Taiwan Institute of Chemical
Engineers, 50: 24-30.
7.
Cichowska-Kopczyńska, I., Nowosielski, B., and
Warmińska, D. (2023). Deep eutectic solvents: Properties and applications
in CO2 separation. Molecules, 28(14): 5293.
8.
Panda, P., and Mishra, S. (2023). Deep eutectic
solvents: Physico-chemical properties and their use for recovery of metal
values from waste products. Journal of Molecular Liquids, 390: 123070.
9.
Shao, Z., and Ni, M. (2024). Fuel cells: Materials needs
and advances. MRS Bulletin, 49(5): 451–463.
10.
Schuh, L., Reginato, M., Florêncio, I., Falcao, L., Boron, L., Gris, E.
F., ... and Báo, S. N. (2023). From nature to innovation: The uncharted
potential of natural deep eutectic solvents. Molecules, 28(22):
7653.
11.
Ling, J. K. U., and Hadinoto, K. (2022). Deep eutectic
solvent as green solvent in extraction of biological macromolecules: A review.
International Journal of Molecular Sciences, 23(6): 3381.
12.
Ijardar, S. P., Singh, V., and Gardas, R. L. (2022).
Revisiting the physicochemical properties and applications of deep eutectic
solvents. Molecules, 27(4): 1368.
13.
Kim, D. Y., Park, J. W., Lee, D. Y., and Seo, K. H.
(2020). Correlation between the crosslink characteristics and mechanical
properties of natural rubber compound via accelerators and reinforcement. Polymers,
12(9): 1-14.
14.
Chung, E. N. M., Kittur, M. I., Andriyana, A., and
Ganesan, P. (2024). On the thermo-oxidative aging of elastomers: A
comprehensive review. Polymer, 304: 127109.
15.
Jowat. (2025). Solvent-based adhesives. Retrieved from https://www.jowat.com/en/adhe sives/solvent-based-adhesives
[March 7, 2025]
16.
Jagadale, S. C., Rajkumar, K., Chavan, R. P., Shinde, D.
N., and Patil, C. L. (2025). Indian Rubber Manufacturers Research Association,
Plot No.254/1B, Road No.16V, Wagle Industrial Estate, Thane (W)-400604.
17.
Winterton, N. (2021). The green solvent: A critical
perspective. Clean Technologies and Environmental Policy, 23(6): 3381.
18.
Wagare, D. S., Shirsath, S. E., Shaikh, M., and
Netankar, P. (2021). Sustainable solvents in chemical synthesis: A review. Environmental
Chemistry Letters, 19(4): 3263-3282.
19.
Zhao, Q., Niu, F., Liu, J., and Yin, H. (2024). Research
progress of natural rubber wet mixing technology. Polymers, 16(13):
1899.
20.
Song, Y., Wu, G., Peng, J., Zhang, C., Wang, D., and
Zheng, Q. (2022). Vulcanisation kinetics of natural rubber and strain softening
behaviors of gum vulcanizates tailored by deep eutectic solvents. Polymer,
263: 125504.
21.
Marques, A. C., Mocanu, A., Tomić, N. Z., Balos, S., Stammen, E.,
Lundevall, A., ... and Teixeira de Freitas, S. (2020). Review on adhesives and
surface treatments for structural applications: Recent developments on
sustainability and implementation for metal and composite substrates. Materials, 13(24):
5590.
22.
Hajare, B., and Shuib, R. K. (2025). A comprehensive
review on rubber-based adhesives. Journal of Adhesion Science and Technology,
24: 47456.
23.
Levy, S. G. (1970). U.S. Patent No. 3,541,042. Washington, DC:
U.S. Patent and Trademark Office.
24.
Liu, Y., Kim, H., Pan, Q., and Rempel, G. L. (2013). Hydrogenation of
acrylonitrile–butadiene copolymer latex using water-soluble rhodium
catalysts. Catalysis Science & Technology, 3(10):
2689-2698.
25.
Radabutra, S., Thanawan, S., and Amornsakchai, T.
(2009). Chlorination and characterization of natural rubber and its adhesion to
nitrile rubber. European Polymer Journal, 45(7): 2017–2022.
26.
Unknown Author. (2025). Solvent borne vulcanizable
natural rubber adhesive A. Retrieved from https://adhesives.specialchem.com [March 7,
2025]
27.
Tang, S., Baker, G. A., and Zhao, H. (2012). Ether- and
alcohol-functionalized task-specific ionic liquids: Attractive properties and
applications. Chemical Society Reviews, 41(10): 4030–4066.
28.
Zhao, F., Bi, W., and Zhao, S. (2011). Influence of
crosslink density on mechanical properties of natural rubber vulcanizates. Journal
of Macromolecular Science, Part B: Physics, 50(7): 1460-1469.
29.
Sukhareva, K. V., Sukharev, N. R., Levina, I. I., Offor,
P. O., and Popov, A. A. (2023). Solvent swelling-induced halogenation of butyl
rubber using polychlorinated n-alkanes: Structure and properties. Polymers,
15(20): 4137.
30.
Unknown Author. (1967). Solvent compositions for natural
and synthetic rubber base adhesives. U.S. Patent No. 3,541,042. Washington, DC: U.S. Patent and
Trademark Office.
31.
Mungwari, C. P., King’ondu, C. K., Sigauke, P., and
Obadele, B. A. (2025). Conventional and modern techniques for bioactive
compounds recovery from plants: Review. Scientific African, 27: e02509.
32.
Virmani, T., Chhabra, V., Kumar, G., Sharma, A., and
Pathak, K. (2023). Impact of nonconventional solvents on environment. In
Organic synthesis, natural products isolation, drug design, industry and the
environment (pp. 265–284).
33.
Wagare, D. S., Shirsath, S. E., Shaikh, M., and
Netankar, P. (2021). Sustainable solvents in chemical synthesis: A review. Environmental
Chemistry Letters, 19(4): 3263-3282.
34.
Clarke, C. J., Tu, W.-C., Levers, O., Brö, A., and
Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical
Reviews, 7: 571.
35.
Seyler, C., Capello, C., Hellweg, S., Bruder, C., Bayne, D., Huwiler, A., and
Hungerbühler, K. (2006). Waste-solvent management as an element of green
chemistry: a comprehensive study on the Swiss chemical industry. Industrial
& Engineering Chemistry Research, 45(22): 7700-7709.
36.
David, E., and Niculescu, V. C. (2021). Volatile organic
compounds (VOCs) as environmental pollutants: Occurrence and mitigation using
nanomaterials. International Journal of Environmental Research and Public
Health, 18(24): 13147.
37.
Li, Z., Smith, K. H., and Stevens, G. W. (2016). The use
of environmentally sustainable bio-derived solvents in solvent extraction
applications - A review. Chinese Journal of Chemical Engineering, 24(2):
215-220.
38.
Asif, Z., Chen, Z., Haghighat, F., Nasiri, F., and Dong,
J. (2023). Estimation of anthropogenic VOCs emission based on volatile chemical
products: A Canadian perspective. Environmental Management, 71(4): 685-703.
39.
Cao, L., Men, Q., Zhang, Z., Yue, H., Cui, S., Huang, X., ... and Li, H.
(2024). Significance of volatile organic compounds to secondary pollution
formation and health risks observed during a summer campaign in an industrial
urban area. Toxics, 12(1): 34.
40.
Wang, D., Li, X., Zhang, X., Zhao, W., Zhang, W., Wu, S., ... and Nie, L.
(2021). Spatial distribution of health risks for residents located close to
solvent-consuming industrial VOC emission sources. Journal of
Environmental Sciences, 107: 38-48.
41.
Baskaran, D., Dhamodharan, D., Behera, U. S., and Byun,
H. S. (2024). A comprehensive review and perspective research in technology
integration for the treatment of gaseous volatile organic compounds. Environmental
Research, 251: 118472.
42.
Claux, O., Santerre, C., Abert-Vian, M., Touboul, D.,
Vallet, N., and Chemat, F. (2021). Alternative and sustainable solvents for
green analytical chemistry. Current Opinion in Green and Sustainable
Chemistry, 31: 100510.
43.
Smith, E. L., Abbott, A. P., and Ryder, K. S. (2014).
Deep eutectic solvents (DESs) and their applications. Chemical Reviews,
114(21): 11060-11082.
44.
Mori, R. (2023). Replacing all petroleum-based chemical
products with natural biomass-based chemical products: A tutorial review. RSC
Sustainability, 1(2): 179-212.
45.
Zaratti, C., Marinelli, L., Colasanti, I. A., Barbaccia, F. I., Aureli,
H., Prestileo, F., ... and Macchia, A. (2024). Evaluation of fatty acid methyl
esters (FAME) as a green alternative to common solvents in conservation
treatments. Applied Sciences, 14(5): 1970.
46.
Welton, T. (2015). Solvents and sustainable chemistry. Proceedings.
Mathematical, Physical, and Engineering Sciences, 471(2183): 20150502.
47.
Aparicio, S., and Alcalde, R. (2009). The green solvent
ethyl lactate: An experimental and theoretical characterization. Green
Chemistry, 11(1): 65-78.
48.
Hussain, M., Yasin, S., Adnan Akram, M., Xu, H., Song,
Y., and Zheng, Q. (2019). Influence of ionic liquids on structure and
rheological behaviors of silica-filled butadiene rubber. Industrial &
Engineering Chemistry Research, 58(39): 18205-18212.
49.
Hussain, M., Yasin, S., Memon, H., Li, Z., Fan, X., Akram, M. A., ... and
Zheng, Q. (2020). Rheological and mechanical properties of silica/nitrile
butadiene rubber vulcanizates with eco-friendly ionic liquid. Polymers, 12(11):
2763.
50.
Dorigato, A., Rigotti, D., and Fredi, G. (2023). Recent
advances in the devulcanisation technologies of industrially relevant
sulfur-vulcanized elastomers. Advanced Industrial and Engineering Polymer
Research, 6(3): 288-309.
51.
Hirayama, D., and Saron, C. (2012). Chemical
modifications in styrene-butadiene rubber after microwave devulcanisation. Industrial
& Engineering Chemistry Research, 51(10): 3975-3980.
52.
Salas, R., Villa, R., Velasco, F., Cirujano, F. G., Nieto, S., Martin, N.,
... and Lozano, P. (2025). Ionic liquids in polymer technology. Green
Chemistry, 27(6): 1620-1651.
53.
Khan, A. S. (2020). Conversion of biomass to chemicals
using ionic liquids. Asiri, A. M., and Kanchi, S. (Eds.). (2019). Green Sustainable
Process for Chemical and Environmental Engineering and Science: Ionic Liquids
as Green Solvents. Elsevier.
54.
Watanabe, M., Thomas, M. L., Zhang, S., Ueno, K.,
Yasuda, T., and Dokko, K. (2017). Application of ionic liquids to energy
storage and conversion materials and devices. Chemical Reviews, 117(10):
7190-7239.
55.
Chabib, C. M., Ali, J. K., Jaoude, M. A., Alhseinat, E.,
Adeyemi, I. A., and Al Nashef, I. M. (2022). Application of deep eutectic
solvents in water treatment processes: A review. Journal of Water Process
Engineering, 47: 102663.
56.
Ma, Y., Yang, Y., Li, T., Hussain, S., and Zhu, M.
(2024). Deep eutectic solvents as an emerging green platform for the synthesis
of functional materials. Green Chemistry, 26(7): 3627-3669.
57.
Gao, L., Li, L., He, R., Zheng, X., and Qin, R. (2024).
Effect of deep eutectic solvent pretreatment on devulcanisation of waste rubber
powder. Rubber Chemistry and Technology, 97(2), 190-203.
58.
Kruželák, J., Sýkora, R., and Hudec, I. (2016). Sulphur
and peroxide vulcanisation of rubber compounds-overview. Chemical Papers,
70(12): 1533–1555.
59.
Fang, H., He, Y., Li, Y., and Du, J. (2024). A study on
the preparation of a vulcanizing mixture and its application in natural rubber
latex. Polymers, 16(9): 1256.
60.
Yang, L., Sun, S., Yu, X., Xu, Z., Lu, Y., Shi, X., ... and Zheng, Q.
(2025). Effect of deep eutectic solvents on vulcanization kinetics and
strain-softening behavior of natural rubber/styrene-butadiene rubber. Polymer, 316:
127871.
61.
Sripornsawat, B., Thitithammawong, A., Tulaphol, S.,
Johns, J., and Nakaramontri, Y. (2021). Positive synergistic effects on vulcanisation,
mechanical and electrical properties of using deep eutectic solvent in natural
rubber vulcanizates. Polymer Testing, 96: 107071.
62.
Liu, B., Hu, Z., Zhong, X., Yang, L., Jiang, X., Zuo, M., ... and Wang, D.
(2023). Effect of deep eutectic solvents on vulcanization and rheological
behaviors of rubber vulcanizates. Journal of Cleaner Production, 429:139426.
63.
Yang, H., Yang, L., Guo, H., Hu, W., and Du, A. (2022).
The effect of silica modified by deep eutectic solvents on the properties of
natural rubber/silica composites. Journal of Elastomers and Plastics,
54(1): 111-122.
64.
Liu, B., Hu, Z., Zhong, X., Yang, L., Jiang, X., Zuo, M., ... and Wang, D.
(2023). Effect of deep eutectic solvents on vulcanization and rheological
behaviors of rubber vulcanizates. Journal of Cleaner Production, 429:
139426.
65.
Li, Q., Liu, B., Hu, Z., Jiang, X., Yang, L., Meng, H., ... and Zheng, Q.
(2024). Preparation of deep eutectic solvents based on metal ions and their
influences on reinforcement and strain softening behaviors of silica filled
natural rubber nanocomposites. Composites Part A: Applied Science and
Manufacturing, 181: 108119.
66.
Qi, Y., Peng, J., Zhang, C., Wang, D., Song, Y., and
Zheng, Q. (2024). Impact of an oligomer deep eutectic solvent on structure and
properties of natural rubber vulcanizates and their nanocomposites. Journal
of Applied Polymer Science, 141(39): 56006.
67.
Li, Q., Meng, H., Song, Y., and Zheng, Q. (2024).
Performance enhancement of silica filled natural rubber nanocomposites using
organic deep eutectic solvent. Composite Science and Technology, 256: 110744.
68.
Xu, H., Yang, S., Xue, J., Li, S., Bian, H., and Wang,
C. (2024). Quantitative construction of variable modulus interfacial layer
between aramid fibers and rubber composites utilizing polymerizable deep
eutectic solvents for enhancing interfacial and mechanical properties. Applied
Surface Science, 660: 159955.
69.
Zakaria, N. Z. I., Afendi, N., Gunny, A. A. N., Younesi,
H., and Ismail, K. S. K. (2023). Deep eutectic solvent pretreatment of rubber
seed shells for cellulose and hemicellulose production. Green Energy and
Technology, 2023: 81-95.
70.
Lim, F. Y., Yu, L. J., Natarajan, E., Chiong, M. C.,
Chen, R. S., and Lai, N. Y. G. (2024). Devulcanizing recycled rubber by
thermochemical method. In Lecture Notes in Networks and Systems, 845: pp. 303-315.
71.
Diaz, R., Colomines, G., Peuvrel-Disdier, E., and
Deterre, R. (2018). Thermo-mechanical recycling of rubber: Relationship between
material properties and specific mechanical energy. Journal of Materials
Processing Technology, 252: 454-468.
72.
Rooj, S., Basak, G. C., Maji, P. K., and Bhowmick, A. K.
(2011). New route for devulcanisation of natural rubber and the properties of
devulcanized rubber. Journal of Polymer and Environment, 19(2): 382-390.
73.
Formela, K., Cysewska, M., and Haponiuk, J. T. (2016).
Thermomechanical reclaiming of ground tire rubber via extrusion at low
temperature: Efficiency and limits. Journal of Vinyl and Additive
Technology, 22(3): 213-221.
74.
Affat, S. (2024). A review of deep eutectic solvents (DESs):
Preparation, classification, physicochemical properties, advantages, and
disadvantages. University of Thi-Qar Journal of Science, 11(1): 167-175.
75.
Xu, H., Fan, T., Ye, N., Wu, W., Huang, D., Wang, D., ... and Zhang, L.
(2020). Plasticization effect of bio-based plasticizers from soybean oil for
tire tread rubber. Polymers, 12(3): 623.
76.
Putra, N. R., Abdul Aziz, A. H., Rizkiyah, D. N., Che
Yunus, M. A., Alwi, R. S., and Qomariyah, L. (2023). Green extraction of
valuable compounds from rubber seed trees: A path to sustainability. Applied
Sciences, 13(24): 13102.
77.
Forest Stewardship Council. (2025). The Global Platform
for Sustainable Natural Rubber joins the Risk Information Alliance. Retrieved
from https://fsc.org/en/newscentre/general-news/the-global-platform-for-sustainable-natural-rubber-joins-the-risk [March 8,
2025]
78.
Rainforest Alliance (2025). Project profile: Global
Platform for Sustainable Natural Rubber (GPSNR). Retrieved from https://www.rainforest -alliance.org/in-the-field/gpsnr-project/[March
8, 2025]
79.
Curran, M. A. (2013). Life cycle assessment: A review of
the methodology and its application to sustainability. Current Opinion in
Chemical Engineering, 2(3): 273-277.
80.
Nunes, F. M., Silva, A. L. E., May, J., da Silva Szarblewski, M.,
Flemming, L., Assmann, E. E., ... and Machado, Ê. L. (2025). Environmental
impacts associated with the life cycle of natural rubbers: A review and
scientometric analysis. Industrial Crops and Products, 224:
120350.
81.
Suhariyanto, T. T., Wahab, D. A., and Rahman, M. N. A.
(2018). Product design evaluation using life cycle assessment and design for
assembly: A case study of a water leakage alarm. Sustainability, 10(8):
2821.
82.
Shukla, A., Kumar, D., Girdhar, M., Kumar, A., Goyal, A., Malik, T., and
Mohan, A. (2023). Strategies of pretreatment of feedstocks for optimized
bioethanol production: distinct and integrated approaches. Biotechnology
for biofuels and bioproducts, 16(1): 44.
83.
Sakthivel, R., Hari, S. D. S., Dutt, R., Sujay, S.,
Shree, R. M., and Alamelu, R. M. (2024). Introduction to waste to bioenergy. In
Waste Valorization for bioenergy and bioproducts: biofuels, biogas, and
value-added products: pp. 1-21.
84.
Zheng, Q., Li, J., and Duan, X. (2023). The impact of
environmental tax and R&D tax incentives on green innovation. Sustainability,
15(9): 7303.
85.
U.S. Environmental Protection Agency. (2025). Document
display | NEPIS. Retrieved from https://nepis.epa.gov/Exe/ZyNET.exe/P100TATU
[March 8,
2025]
86.
OECD. (2024). Economic instruments for the circular
economy in Italy: Opportunities for reform.
87.
Nguyen, T. D., and Pishdad-Bozorgi, P. (2023). A review
of life cycle assessment tools for measuring the environmental impact of
building and a decision support framework for choosing among them. International
Journal of Architecture and Engineering, 4: 816-806.
88.
Global Platform for Sustainable Natural Rubber. (2025).
The start of change in the natural rubber supply chain. Retrieved from https://sustain
ablenaturalrubber.org/the-start-of-change-in-the-natural-rubber-supply-chain/
[March 8, 2025]
89.
Adjedje, V. K. B., Schell, E., Wolf, Y. L., Laub, A.,
Weissenborn, M. J., and Binder, W. H. (2021). Enzymatic degradation of
synthetic polyisoprenes via surfactant-free polymer emulsification. Green
Chemistry, 23(23): 9433-9438.
90.
Hessel, V., Tran, N. N., Asrami, M. R., Tran, Q. D., Long, N. V. D.,
Escribà-Gelonch, M., ... and Sundmacher, K. (2022). Sustainability of green
solvents–review and perspective. Green Chemistry, 24(2):
410-437.
91.
United Nations Department of Economic and Social
Affairs. (2022). The sustainable development goals report 2022. Retrieved from https://digitallibrary.un.org/record/3980029 [March 8,
2025]
92.
United Nations Statistics Division. (2022). SDG
indicators. Retrieved from https://unstats. un.org/sdgs/report/2022/
[March 8, 2025]
93.
Byrne, F. P., Jin, S., Paggiola, G., Petchey, T. H., Clark, J. H., Farmer,
T. J., ... and Sherwood, J. (2016). Tools and techniques for solvent selection:
Green solvent selection guides. Sustainable Chemical Processes, 4(1):
7.
94.
Zapata-Boada, S., Gonzalez-Miquel, M., Jobson, M., and
Cuéllar-Franca, R. M. (2023). Life cycle environmental evaluation of
alternative solvents used in lipid extraction: The case of algae biodiesel. ACS
Sustainable Chemistry & Engineering, 11(32): 11934-11946.
95.
Outili, N., and Meniai, A. H. (2020). Green chemistry
metrics for environmentally friendly processes: Application to biodiesel
production using cooking oil. In Nanotechnology in the Life Sciences: pp. 63-95.
96.
Dahinine, B., Laghouag, A., Bensahel, W., Alsolamy, M., and Guendouz, T.
(2024). Evaluating performance measurement metrics for lean and agile supply
chain strategies in large enterprises. Sustainability, 16(6):
2586.
97.
Topi, C. (2017). Sustainable solvents: Perspectives from
research, business, and international policy. SEI York. Sweden.