Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1519

 

Review Article

 

The role of deep eutectic solvents in advancing rubber science: A mini review

 

Kyu Kyu Tin1, Nor Munira Hashim2, Wirach Taweepreda3*, Waleed Alahmad4*, Nur Nadhirah Mohamad Zain2*

 

1Environmental Management, Faculty of Environmental Management, Prince of Songkla, University, Hat-Yai, Songkhla 90110, Thailand

2Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia

3Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla, University, Hat-Yai, Songkhla 90110, Thailand

4Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

 

*Corresponding authors: wirach.t@psu.ac.th, waleed.al@chula.ac.th, nurnadhirah@usm.my

 

Received: 20 March 2025; Revised: 4 July 2025; Accepted: 21 July 2025; Published: 28 October 2025

 

Abstract

Deep eutectic solvents (DESs) have emerged as promising tools for advancing rubber research because of their unique properties and eco-friendly nature. This mini review highlights the different applications of DESs in rubber research, mentioning their role in the devulcanisation of waste rubber, enhancement of mechanical properties, and the mechanisms by which DESs interact with rubber compounds, basically their ability to disrupt sulfur bonds and cross-linked structures, are discussed in detail. Moreover, DES integrations, including Choline Chloride (ChCl): ethylene glycol and ChCl: oxalic acid, yield high hemicellulose and cellulose compositions, underscoring their efficacy. Furthermore, this review highlights the chemical mechanisms by which DES compounds disrupt sulfur bonds and cross-linked networks, as well as discusses the chemical mechanisms by which DESs react with rubber compounds, disrupting sulfur bonds and cross-linked networks. However, future research should explore optimizing DES formulations and seeking broader applications in rubber science to fully harness their potential for sustainable and innovative advancements in this field.

 

Keywords: solvents, plant-derived, sustainable solvents, rubber production, eco-friendly



References

1.      Julshahril, N. H., Phuah, E. T., and Rambli, M. M. (2025). Deep eutectic solvents in the extraction of bioactive compounds in agri-food industry. Food and Humanity, 4: 100468.

2.      Sharma, A., Sharma, R., Thakur, R. C., and Singh, L. (2023). An overview of deep eutectic solvents: Alternative for organic electrolytes, aqueous systems & ionic liquids for electrochemical energy storage. Journal of Energy Chemistry, 82: 592–626.

3.      Prabhune, A., and Dey, R. (2023). Green and sustainable solvents of the future: Deep eutectic solvents. Journal of Molecular Liquids, 379: 121676.

4.      Omar, K. A., and Sadeghi, R. (2023). Database of deep eutectic solvents and their physical properties: A review. Journal of Molecular Liquids, 384: 121899.

5.      Ferreira, C., and Sarraguça, M. (2024). A comprehensive review on deep eutectic solvents and its use to extract bioactive compounds of pharmaceutical interest. Pharmaceuticals, 17(1): 124.

6.      Hayyan, M., Aissaoui, T., Hashim, M. A., AlSaadi, M. A. H., and Hayyan, A. (2015). Triethylene glycol based deep eutectic solvents and their physical properties. Journal of the Taiwan Institute of Chemical Engineers, 50: 24-30.

7.      Cichowska-Kopczyńska, I., Nowosielski, B., and Warmińska, D. (2023). Deep eutectic solvents: Properties and applications in CO2 separation. Molecules, 28(14): 5293.

8.      Panda, P., and Mishra, S. (2023). Deep eutectic solvents: Physico-chemical properties and their use for recovery of metal values from waste products. Journal of Molecular Liquids, 390: 123070.

9.      Shao, Z., and Ni, M. (2024). Fuel cells: Materials needs and advances. MRS Bulletin, 49(5): 451–463.

10.   Schuh, L., Reginato, M., Florêncio, I., Falcao, L., Boron, L., Gris, E. F., ... and Báo, S. N. (2023). From nature to innovation: The uncharted potential of natural deep eutectic solvents. Molecules, 28(22): 7653.

11.   Ling, J. K. U., and Hadinoto, K. (2022). Deep eutectic solvent as green solvent in extraction of biological macromolecules: A review. International Journal of Molecular Sciences, 23(6): 3381.

12.   Ijardar, S. P., Singh, V., and Gardas, R. L. (2022). Revisiting the physicochemical properties and applications of deep eutectic solvents. Molecules, 27(4): 1368.

13.   Kim, D. Y., Park, J. W., Lee, D. Y., and Seo, K. H. (2020). Correlation between the crosslink characteristics and mechanical properties of natural rubber compound via accelerators and reinforcement. Polymers, 12(9): 1-14.

14.   Chung, E. N. M., Kittur, M. I., Andriyana, A., and Ganesan, P. (2024). On the thermo-oxidative aging of elastomers: A comprehensive review. Polymer, 304: 127109.

15.   Jowat. (2025). Solvent-based adhesives. Retrieved from https://www.jowat.com/en/adhe sives/solvent-based-adhesives [March 7, 2025]

16.   Jagadale, S. C., Rajkumar, K., Chavan, R. P., Shinde, D. N., and Patil, C. L. (2025). Indian Rubber Manufacturers Research Association, Plot No.254/1B, Road No.16V, Wagle Industrial Estate, Thane (W)-400604.

17.   Winterton, N. (2021). The green solvent: A critical perspective. Clean Technologies and Environmental Policy, 23(6): 3381.

18.   Wagare, D. S., Shirsath, S. E., Shaikh, M., and Netankar, P. (2021). Sustainable solvents in chemical synthesis: A review. Environmental Chemistry Letters, 19(4): 3263-3282.

19.   Zhao, Q., Niu, F., Liu, J., and Yin, H. (2024). Research progress of natural rubber wet mixing technology. Polymers, 16(13): 1899.

20.   Song, Y., Wu, G., Peng, J., Zhang, C., Wang, D., and Zheng, Q. (2022). Vulcanisation kinetics of natural rubber and strain softening behaviors of gum vulcanizates tailored by deep eutectic solvents. Polymer, 263: 125504.

21.   Marques, A. C., Mocanu, A., Tomić, N. Z., Balos, S., Stammen, E., Lundevall, A., ... and Teixeira de Freitas, S. (2020). Review on adhesives and surface treatments for structural applications: Recent developments on sustainability and implementation for metal and composite substrates. Materials, 13(24): 5590.

22.   Hajare, B., and Shuib, R. K. (2025). A comprehensive review on rubber-based adhesives. Journal of Adhesion Science and Technology, 24: 47456.

23.   Levy, S. G. (1970). U.S. Patent No. 3,541,042. Washington, DC: U.S. Patent and Trademark Office.

24.   Liu, Y., Kim, H., Pan, Q., and Rempel, G. L. (2013). Hydrogenation of acrylonitrile–butadiene copolymer latex using water-soluble rhodium catalysts. Catalysis Science & Technology, 3(10): 2689-2698.

25.   Radabutra, S., Thanawan, S., and Amornsakchai, T. (2009). Chlorination and characterization of natural rubber and its adhesion to nitrile rubber. European Polymer Journal, 45(7): 2017–2022.

26.   Unknown Author. (2025). Solvent borne vulcanizable natural rubber adhesive A. Retrieved from https://adhesives.specialchem.com [March 7, 2025]

27.   Tang, S., Baker, G. A., and Zhao, H. (2012). Ether- and alcohol-functionalized task-specific ionic liquids: Attractive properties and applications. Chemical Society Reviews, 41(10): 4030–4066.

28.   Zhao, F., Bi, W., and Zhao, S. (2011). Influence of crosslink density on mechanical properties of natural rubber vulcanizates. Journal of Macromolecular Science, Part B: Physics, 50(7): 1460-1469.

29.   Sukhareva, K. V., Sukharev, N. R., Levina, I. I., Offor, P. O., and Popov, A. A. (2023). Solvent swelling-induced halogenation of butyl rubber using polychlorinated n-alkanes: Structure and properties. Polymers, 15(20): 4137.

30.   Unknown Author. (1967). Solvent compositions for natural and synthetic rubber base adhesives. U.S. Patent No. 3,541,042. Washington, DC: U.S. Patent and Trademark Office.

31.   Mungwari, C. P., King’ondu, C. K., Sigauke, P., and Obadele, B. A. (2025). Conventional and modern techniques for bioactive compounds recovery from plants: Review. Scientific African, 27: e02509.

32.   Virmani, T., Chhabra, V., Kumar, G., Sharma, A., and Pathak, K. (2023). Impact of nonconventional solvents on environment. In Organic synthesis, natural products isolation, drug design, industry and the environment (pp. 265–284).

33.   Wagare, D. S., Shirsath, S. E., Shaikh, M., and Netankar, P. (2021). Sustainable solvents in chemical synthesis: A review. Environmental Chemistry Letters, 19(4): 3263-3282.

34.   Clarke, C. J., Tu, W.-C., Levers, O., Brö, A., and Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical Reviews, 7: 571.

35.   Seyler, C., Capello, C., Hellweg, S., Bruder, C., Bayne, D., Huwiler, A., and Hungerbühler, K. (2006). Waste-solvent management as an element of green chemistry: a comprehensive study on the Swiss chemical industry. Industrial & Engineering Chemistry Research, 45(22): 7700-7709.

36.   David, E., and Niculescu, V. C. (2021). Volatile organic compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials. International Journal of Environmental Research and Public Health, 18(24): 13147.

37.   Li, Z., Smith, K. H., and Stevens, G. W. (2016). The use of environmentally sustainable bio-derived solvents in solvent extraction applications - A review. Chinese Journal of Chemical Engineering, 24(2): 215-220.

38.   Asif, Z., Chen, Z., Haghighat, F., Nasiri, F., and Dong, J. (2023). Estimation of anthropogenic VOCs emission based on volatile chemical products: A Canadian perspective. Environmental Management, 71(4): 685-703.

39.   Cao, L., Men, Q., Zhang, Z., Yue, H., Cui, S., Huang, X., ... and Li, H. (2024). Significance of volatile organic compounds to secondary pollution formation and health risks observed during a summer campaign in an industrial urban area. Toxics, 12(1): 34.

40.   Wang, D., Li, X., Zhang, X., Zhao, W., Zhang, W., Wu, S., ... and Nie, L. (2021). Spatial distribution of health risks for residents located close to solvent-consuming industrial VOC emission sources. Journal of Environmental Sciences, 107: 38-48.

41.   Baskaran, D., Dhamodharan, D., Behera, U. S., and Byun, H. S. (2024). A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. Environmental Research, 251: 118472.

42.   Claux, O., Santerre, C., Abert-Vian, M., Touboul, D., Vallet, N., and Chemat, F. (2021). Alternative and sustainable solvents for green analytical chemistry. Current Opinion in Green and Sustainable Chemistry, 31: 100510.

43.   Smith, E. L., Abbott, A. P., and Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114(21): 11060-11082.

44.   Mori, R. (2023). Replacing all petroleum-based chemical products with natural biomass-based chemical products: A tutorial review. RSC Sustainability, 1(2): 179-212.

45.   Zaratti, C., Marinelli, L., Colasanti, I. A., Barbaccia, F. I., Aureli, H., Prestileo, F., ... and Macchia, A. (2024). Evaluation of fatty acid methyl esters (FAME) as a green alternative to common solvents in conservation treatments. Applied Sciences, 14(5): 1970.

46.   Welton, T. (2015). Solvents and sustainable chemistry. Proceedings. Mathematical, Physical, and Engineering Sciences, 471(2183): 20150502.

47.   Aparicio, S., and Alcalde, R. (2009). The green solvent ethyl lactate: An experimental and theoretical characterization. Green Chemistry, 11(1): 65-78.

48.   Hussain, M., Yasin, S., Adnan Akram, M., Xu, H., Song, Y., and Zheng, Q. (2019). Influence of ionic liquids on structure and rheological behaviors of silica-filled butadiene rubber. Industrial & Engineering Chemistry Research, 58(39): 18205-18212.

49.   Hussain, M., Yasin, S., Memon, H., Li, Z., Fan, X., Akram, M. A., ... and Zheng, Q. (2020). Rheological and mechanical properties of silica/nitrile butadiene rubber vulcanizates with eco-friendly ionic liquid. Polymers, 12(11): 2763.

50.   Dorigato, A., Rigotti, D., and Fredi, G. (2023). Recent advances in the devulcanisation technologies of industrially relevant sulfur-vulcanized elastomers. Advanced Industrial and Engineering Polymer Research, 6(3): 288-309.

51.   Hirayama, D., and Saron, C. (2012). Chemical modifications in styrene-butadiene rubber after microwave devulcanisation. Industrial & Engineering Chemistry Research, 51(10): 3975-3980.

52.   Salas, R., Villa, R., Velasco, F., Cirujano, F. G., Nieto, S., Martin, N., ... and Lozano, P. (2025). Ionic liquids in polymer technology. Green Chemistry27(6): 1620-1651.

53.   Khan, A. S. (2020). Conversion of biomass to chemicals using ionic liquids. Asiri, A. M., and Kanchi, S. (Eds.). (2019). Green Sustainable Process for Chemical and Environmental Engineering and Science: Ionic Liquids as Green Solvents. Elsevier.

54.   Watanabe, M., Thomas, M. L., Zhang, S., Ueno, K., Yasuda, T., and Dokko, K. (2017). Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews, 117(10): 7190-7239.

55.   Chabib, C. M., Ali, J. K., Jaoude, M. A., Alhseinat, E., Adeyemi, I. A., and Al Nashef, I. M. (2022). Application of deep eutectic solvents in water treatment processes: A review. Journal of Water Process Engineering, 47: 102663.

56.   Ma, Y., Yang, Y., Li, T., Hussain, S., and Zhu, M. (2024). Deep eutectic solvents as an emerging green platform for the synthesis of functional materials. Green Chemistry, 26(7): 3627-3669.

57.   Gao, L., Li, L., He, R., Zheng, X., and Qin, R. (2024). Effect of deep eutectic solvent pretreatment on devulcanisation of waste rubber powder. Rubber Chemistry and Technology, 97(2), 190-203.

58.   Kruželák, J., Sýkora, R., and Hudec, I. (2016). Sulphur and peroxide vulcanisation of rubber compounds-overview. Chemical Papers, 70(12): 1533–1555.

59.   Fang, H., He, Y., Li, Y., and Du, J. (2024). A study on the preparation of a vulcanizing mixture and its application in natural rubber latex. Polymers, 16(9): 1256.

60.   Yang, L., Sun, S., Yu, X., Xu, Z., Lu, Y., Shi, X., ... and Zheng, Q. (2025). Effect of deep eutectic solvents on vulcanization kinetics and strain-softening behavior of natural rubber/styrene-butadiene rubber. Polymer, 316: 127871.

61.   Sripornsawat, B., Thitithammawong, A., Tulaphol, S., Johns, J., and Nakaramontri, Y. (2021). Positive synergistic effects on vulcanisation, mechanical and electrical properties of using deep eutectic solvent in natural rubber vulcanizates. Polymer Testing, 96: 107071.

62.   Liu, B., Hu, Z., Zhong, X., Yang, L., Jiang, X., Zuo, M., ... and Wang, D. (2023). Effect of deep eutectic solvents on vulcanization and rheological behaviors of rubber vulcanizates. Journal of Cleaner Production, 429:139426.

63.   Yang, H., Yang, L., Guo, H., Hu, W., and Du, A. (2022). The effect of silica modified by deep eutectic solvents on the properties of natural rubber/silica composites. Journal of Elastomers and Plastics, 54(1): 111-122.

64.   Liu, B., Hu, Z., Zhong, X., Yang, L., Jiang, X., Zuo, M., ... and Wang, D. (2023). Effect of deep eutectic solvents on vulcanization and rheological behaviors of rubber vulcanizates. Journal of Cleaner Production, 429: 139426.

65.   Li, Q., Liu, B., Hu, Z., Jiang, X., Yang, L., Meng, H., ... and Zheng, Q. (2024). Preparation of deep eutectic solvents based on metal ions and their influences on reinforcement and strain softening behaviors of silica filled natural rubber nanocomposites. Composites Part A: Applied Science and Manufacturing, 181: 108119.

66.   Qi, Y., Peng, J., Zhang, C., Wang, D., Song, Y., and Zheng, Q. (2024). Impact of an oligomer deep eutectic solvent on structure and properties of natural rubber vulcanizates and their nanocomposites. Journal of Applied Polymer Science, 141(39): 56006.

67.   Li, Q., Meng, H., Song, Y., and Zheng, Q. (2024). Performance enhancement of silica filled natural rubber nanocomposites using organic deep eutectic solvent. Composite Science and Technology, 256: 110744.

68.   Xu, H., Yang, S., Xue, J., Li, S., Bian, H., and Wang, C. (2024). Quantitative construction of variable modulus interfacial layer between aramid fibers and rubber composites utilizing polymerizable deep eutectic solvents for enhancing interfacial and mechanical properties. Applied Surface Science, 660: 159955.

69.   Zakaria, N. Z. I., Afendi, N., Gunny, A. A. N., Younesi, H., and Ismail, K. S. K. (2023). Deep eutectic solvent pretreatment of rubber seed shells for cellulose and hemicellulose production. Green Energy and Technology, 2023: 81-95.

70.   Lim, F. Y., Yu, L. J., Natarajan, E., Chiong, M. C., Chen, R. S., and Lai, N. Y. G. (2024). Devulcanizing recycled rubber by thermochemical method. In Lecture Notes in Networks and Systems, 845: pp. 303-315.

71.   Diaz, R., Colomines, G., Peuvrel-Disdier, E., and Deterre, R. (2018). Thermo-mechanical recycling of rubber: Relationship between material properties and specific mechanical energy. Journal of Materials Processing Technology, 252: 454-468.

72.   Rooj, S., Basak, G. C., Maji, P. K., and Bhowmick, A. K. (2011). New route for devulcanisation of natural rubber and the properties of devulcanized rubber. Journal of Polymer and Environment, 19(2): 382-390.

73.   Formela, K., Cysewska, M., and Haponiuk, J. T. (2016). Thermomechanical reclaiming of ground tire rubber via extrusion at low temperature: Efficiency and limits. Journal of Vinyl and Additive Technology, 22(3): 213-221.

74.   Affat, S. (2024). A review of deep eutectic solvents (DESs): Preparation, classification, physicochemical properties, advantages, and disadvantages. University of Thi-Qar Journal of Science, 11(1): 167-175.

75.   Xu, H., Fan, T., Ye, N., Wu, W., Huang, D., Wang, D., ... and Zhang, L. (2020). Plasticization effect of bio-based plasticizers from soybean oil for tire tread rubber. Polymers, 12(3): 623.

76.   Putra, N. R., Abdul Aziz, A. H., Rizkiyah, D. N., Che Yunus, M. A., Alwi, R. S., and Qomariyah, L. (2023). Green extraction of valuable compounds from rubber seed trees: A path to sustainability. Applied Sciences, 13(24): 13102.

77.   Forest Stewardship Council. (2025). The Global Platform for Sustainable Natural Rubber joins the Risk Information Alliance. Retrieved from https://fsc.org/en/newscentre/general-news/the-global-platform-for-sustainable-natural-rubber-joins-the-risk [March 8, 2025]

78.   Rainforest Alliance (2025). Project profile: Global Platform for Sustainable Natural Rubber (GPSNR). Retrieved from https://www.rainforest -alliance.org/in-the-field/gpsnr-project/[March 8, 2025]

79.   Curran, M. A. (2013). Life cycle assessment: A review of the methodology and its application to sustainability. Current Opinion in Chemical Engineering, 2(3): 273-277.

80.   Nunes, F. M., Silva, A. L. E., May, J., da Silva Szarblewski, M., Flemming, L., Assmann, E. E., ... and Machado, Ê. L. (2025). Environmental impacts associated with the life cycle of natural rubbers: A review and scientometric analysis. Industrial Crops and Products, 224: 120350.

81.   Suhariyanto, T. T., Wahab, D. A., and Rahman, M. N. A. (2018). Product design evaluation using life cycle assessment and design for assembly: A case study of a water leakage alarm. Sustainability, 10(8): 2821.

82.   Shukla, A., Kumar, D., Girdhar, M., Kumar, A., Goyal, A., Malik, T., and Mohan, A. (2023). Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. Biotechnology for biofuels and bioproducts, 16(1): 44.

83.   Sakthivel, R., Hari, S. D. S., Dutt, R., Sujay, S., Shree, R. M., and Alamelu, R. M. (2024). Introduction to waste to bioenergy. In Waste Valorization for bioenergy and bioproducts: biofuels, biogas, and value-added products: pp. 1-21.

84.   Zheng, Q., Li, J., and Duan, X. (2023). The impact of environmental tax and R&D tax incentives on green innovation. Sustainability, 15(9): 7303.

85.   U.S. Environmental Protection Agency. (2025). Document display | NEPIS. Retrieved from https://nepis.epa.gov/Exe/ZyNET.exe/P100TATU [March 8, 2025]

86.   OECD. (2024). Economic instruments for the circular economy in Italy: Opportunities for reform.

87.   Nguyen, T. D., and Pishdad-Bozorgi, P. (2023). A review of life cycle assessment tools for measuring the environmental impact of building and a decision support framework for choosing among them. International Journal of Architecture and Engineering, 4: 816-806.

88.   Global Platform for Sustainable Natural Rubber. (2025). The start of change in the natural rubber supply chain. Retrieved from https://sustain ablenaturalrubber.org/the-start-of-change-in-the-natural-rubber-supply-chain/ [March 8, 2025]

89.   Adjedje, V. K. B., Schell, E., Wolf, Y. L., Laub, A., Weissenborn, M. J., and Binder, W. H. (2021). Enzymatic degradation of synthetic polyisoprenes via surfactant-free polymer emulsification. Green Chemistry, 23(23): 9433-9438.

90.   Hessel, V., Tran, N. N., Asrami, M. R., Tran, Q. D., Long, N. V. D., Escribà-Gelonch, M., ... and Sundmacher, K. (2022). Sustainability of green solvents–review and perspective. Green Chemistry, 24(2): 410-437.

91.   United Nations Department of Economic and Social Affairs. (2022). The sustainable development goals report 2022. Retrieved from https://digitallibrary.un.org/record/3980029 [March 8, 2025]

92.   United Nations Statistics Division. (2022). SDG indicators. Retrieved from https://unstats. un.org/sdgs/report/2022/ [March 8, 2025]

93.   Byrne, F. P., Jin, S., Paggiola, G., Petchey, T. H., Clark, J. H., Farmer, T. J., ... and Sherwood, J. (2016). Tools and techniques for solvent selection: Green solvent selection guides. Sustainable Chemical Processes, 4(1): 7.

94.   Zapata-Boada, S., Gonzalez-Miquel, M., Jobson, M., and Cuéllar-Franca, R. M. (2023). Life cycle environmental evaluation of alternative solvents used in lipid extraction: The case of algae biodiesel. ACS Sustainable Chemistry & Engineering, 11(32): 11934-11946.

95.   Outili, N., and Meniai, A. H. (2020). Green chemistry metrics for environmentally friendly processes: Application to biodiesel production using cooking oil. In Nanotechnology in the Life Sciences: pp. 63-95.

96.   Dahinine, B., Laghouag, A., Bensahel, W., Alsolamy, M., and Guendouz, T. (2024). Evaluating performance measurement metrics for lean and agile supply chain strategies in large enterprises. Sustainability, 16(6): 2586.

97.   Topi, C. (2017). Sustainable solvents: Perspectives from research, business, and international policy.  SEI York. Sweden.