Malays. J. Anal.
Sci. Volume 29 Number 5 (2025): 1509
Research Article
Phytochemical
profiling of the methanolic partition of endophytic Streptomyces sp.
SUK48 using LC-MS/MS and molecular networking
Nik Isma Nurain Nik Isham, and Jasnizat Saidin*
Faculty of Science and Marine Environment, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: ijaxzt@umt.edu.my
Received:
11 March 2025; Revised: 21 August 2025; Accepted: 25 August 2025; Published: 16
October 2025
Abstract
Antimicrobial
resistance has become a global challenge
due to the difficulty in controlling it
and the increasing need
for new drugs. Streptomyces species
are Gram-positive bacteria recognized
for producing a wide range of secondary metabolites with diverse biological functions. This study aimed to
profile and characterize the phytochemicals of
the methanolic partition of Streptomyces
sp. SUK48 using liquid chromatography quadrupole time-of-flight mass
spectrometry with tandem mass spectrometry (LC-QTOF-MS/MS) equipped with
electrospray ionization (ESI). The analysis was conducted
via the Global Natural Products Social Molecular Networking (GNPS) platform. Streptomyces sp. SUK48 was cultivated in
a rice-based yeast medium for 8 days (SRY48-8) and sequentially partitioned
into methanol and hexane fractions. The methanol fraction was analyzed using
LC-QTOF-MS/MS with ESI, and the resulting data were processed through GNPS.
Seventeen phytochemicals were identified, including polyketides, amino acids,
lipids, pyrimidine derivatives, and fatty acids. Some identified compounds,
such as tetracycline (2) and luvangetin (5), have been previously reported to
exhibit antibacterial and antifungal properties.
These findings emphasize the potential of Streptomyces sp. SUK48 is a promising candidate for
future drug discovery.
Keywords: Antimicrobial resistance, Drugs
discovery, Secondary Metabolites, Molecular Networking, Streptomyces sp.
References
1.
Murray, C. J. L., Ikuta, K. S., Sharara, F.,
Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao,
P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett,
S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal,
B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance
in 2019: A systematic analysis. The Lancet, 399(10325): 629-655.
2.
Centers for
Disease Control and Prevention (CDC). (2019). Antibiotic resistance threats
in the United States, 2019. U.S. Department of Health and Human Services.
3.
de Kraker, M. E.,
Stewardson, A. J., and Harbarth, S. (2016). Will 10 million people die a year
due to antimicrobial resistance by 2050? PLoS Medicine, 13(11):
e1002184.
4.
Boccolini, P. M.
M., and Boccolini, C. S. (2020). Prevalence of complementary and alternative
medicine (CAM) use in Brazil. BMC Complementary Medicine and Therapies, 20(1):
51.
5.
Kemung, H. M.,
Tan, L. T., Chan, K. G., Ser, H. L., Law, J. W., Lee, L. H., and Goh, B. H.
(2020). Antioxidant activities of Streptomyces sp. strain MUSC 14 from
mangrove forest soil in Malaysia. BioMed Research International, 2020:
6402607.
6.
Pansomsuay, R.,
Fukasem, P., Pittayakhajonwut, P., Intaraudom, C., Suriyachadkun, C., Yasawong,
M., He, Y.-W., Tanasupawat, S., Qian, Y., and Thawai, C. (2025). Discovery of Streptomyces
marinisediminis sp. nov., a new thiolutin-producing actinomycete isolated
from Thai marine sediment. Scientific Reports, 15(1): 29301.
7.
Barka, E. A.,
Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.-P.,
Clément, C., Ouhdouch, Y., and van Wezel, G. P. (2016). Taxonomy, physiology,
and natural products of Actinobacteria. Microbiology and Molecular Biology
Reviews, 80(1): 1-43.
8.
Lacey, H. J., and
Rutledge, P. J. (2022). Recently discovered secondary metabolites from Streptomyces
species. Molecules, 27(3): 887.
9.
Ahmad, S., Zin,
N., Mazlan, N. W., Baharum, S., Baba, M. S., and Lau, Y. (2021). Metabolite
profiling of endophytic Streptomyces spp. and its antiplasmodial
potential. PeerJ, 9, e10816.
10. Baba, M. S., Mohamad Zin, N., Ahmad, S. J., Mazlan, N.
W., Baharum, S. N., Ahmad, N., and Azmi, F. (2021). Antibiotic biosynthesis
pathways from endophytic Streptomyces SUK 48 through metabolomics and
genomics approaches. Antibiotics (Basel), 10(8).
11. Bérdy, J. (2012). Thoughts and facts about
antibiotics: Where we are now and where we are heading. The Journal of
Antibiotics, 65(8): 385-395.
12. Ito, T., and Masubuchi, M. (2014). Dereplication of
microbial extracts and related analytical technologies. The Journal of
Antibiotics, 67(5): 353-360.
13. Rajendra Bankar, V., and Chapadgaonkar, S. S. (2025).
Harnessing endophytes for enhancing the production of valuable plant secondary
metabolites. Natural Resources for Human Health, 5(4): 686-704.
14. Bordbar, A., Yurkovich, J. T., Paglia, G., Rolfsson,
O., Sigurjónsson, Ó., and Palsson, B. Ř. (2017). Elucidating dynamic metabolic
physiology through network integration of quantitative time-course
metabolomics. Scientific Reports, 7: 46249.
15. Hajnajafi, K., and Iqbal, M. A. (2025). Mass
spectrometry-based metabolomics: An overview of workflows, strategies, data
analysis, and applications. Proteome Science, 23(1): 5.
16. Hubert, J., Nuzillard, J.-M., and Renault, J.-H.
(2017). Dereplication strategies in natural product research: How many tools
and methodologies behind the same concept? Phytochemistry Reviews, 16(1):
55-95.
17. Xue, X., Jiao, Q., Jin, R., Wang, X., Li, P., Shi, S.,
Huang, Z., Dai, Y., and Chen, S. (2021). The combination of UHPLC-HRMS and
molecular networking improving discovery efficiency of chemical components in
Chinese classical formula. Chinese Medicine, 16(1): 50.
18. Nothias, L.-F., Esposito, M., Silva, R., Wang, M.,
Protsyuk, I., Zhang, Z., Sarvepalli, A., Leyssen, P., Touboul, D., Costa, J.,
Paolini, J., Alexandrov, T., Litaudon, M., and Dorrestein, P. (2018).
Bioactivity-based molecular networking for the discovery of drug leads in
natural product bioassay-guided fractionation. Journal of Natural Products, 81(4):
758-767.
19. Abdelrazig, S., McCabe, Á., Yasin, A., Chaudhary, R.,
Ochsenkühn, M. A., Scicchitano, D., and Amin, S. A. (2025). LC-MS
Orbitrap-based metabolomics using a novel hybrid zwitterionic hydrophilic
interaction liquid chromatography and rigorous metabolite identification
reveals doxorubicin-induced metabolic perturbations in breast cancer cells. RSC
Advances, 15(26): 20745-20759.
20. Motamedifar, M., Bazargani, A., Sarai, E., and Sedigh,
H. (2014). Antimicrobial activity of mandelic acid against
methicillin-resistant Staphylococcus aureus: A novel finding with
important practical implications. World Applied Sciences Journal, 31(5):
925-929.
21. Rutz, A., and Wolfender, J.-L. (2023). Automated
composition assessment of natural extracts: Untargeted mass spectrometry-based
metabolite profiling integrating semiquantitative detection. Journal of
Agricultural and Food Chemistry, 71(46): 18010-18023.
22. Adra, C., Tran, T. D., Foster, K., Tomlin, R., and
Kurtböke, D. İ. (2023). Untargeted MS-based metabolomic analysis of
termite gut-associated Streptomycetes with antifungal activity against Pyrrhoderma
noxium. Antibiotics, 12(9): 1373.
23. Megawer, H. (2023). Exploring Streptomyces
albidoflavus SAC61 strain as a source of novel antimicrobial agents to
control multidrug-resistant bacteria: Metabolomics and molecular modelling
insights.
24. Risdian, C., Mozef, T., and Wink, J. (2019).
Biosynthesis of polyketides in Streptomyces. Microorganisms, 7(5):124.
25. Ibrahim, J. A. A., Botcha, S., and Prattipati, S. D.
(2025). Marine actinomycetes: A promising source of novel therapeutics and
pharmaceutical bioactive compounds – A review. The Microbe, 7: 100383.
26. Wang, L., Lu, H., and Jiang, Y. (2023). Natural
polyketides act as promising antifungal agents. Biomolecules, 3(11):1572.
27. Ramachanderan, R., and Schaefer, B. (2021).
Tetracycline antibiotics. ChemTexts, 7(3): 18.
28. Kounatidis, D., Dalamaga, M., Grivakou, E., Karampela,
I., Koufopoulos, P., Dalopoulos, V., Adamidis, N., Mylona, E., Kaziani, A., and
Vallianou, N. G. (2024). Third-generation tetracyclines: Current knowledge and
therapeutic potential. Biomolecules, 14(7): 783.
29. Chen, J., Zhou, Y., Liu, D., Lu, X., Chen, H., Huang,
M., Mao, Z., Zhang, T., He, Z., Zou, Z., and Zhang, K. (2024). Discovery and
development of luvangetin from Zanthoxylum avicennae as a new fungicide
candidate for Fusarium verticillioides. Journal of Agricultural and
Food Chemistry, 72: 8550-8568.
30. Kitagawa, K., Shigemura, K., Ishii, A., Nakashima, T.,
Matsuo, H., Takahashi, Y., Omura, S., Nakanishi, J., and Fujisawa, M. (2021).
Nanaomycin K inhibited epithelial–mesenchymal transition and tumor growth in
bladder cancer cells in vitro and in vivo. Scientific Reports,
11(1): 9217.
31. Matsui, Y., Takemura, N., Shirasaki, Y., Takahama, M.,
Noguchi, Y., Ikoma, K., Pan, Y., Nishida, S., Taura, M., Nakayama, A., Funatsu,
T., Misawa, T., Harada, Y., Sunazuka, T., and Saitoh, T. (2022). Nanaomycin E
inhibits NLRP3 inflammasome activation by preventing mitochondrial dysfunction.
International Immunology, 34(10): 505-518.
32. Liu, C., Jiang, Y., Lei, H., Chen, X., Ma, Q., Han,
L., and Huang, X. (2017). Four new nanaomycins produced by Streptomyces
hebeiensis derived from lichen. Chemistry & Biodiversity, 14: 7.
33. Desbois, A. P., and Smith, V. J. (2010). Antibacterial
free fatty acids: Activities, mechanisms of action and biotechnological
potential. Applied Microbiology and Biotechnology, 85(6): 1629-1642.
34. Schneider, O., Ilić-Tomić, T., Rückert, C.,
Kalinowski, J., Genčić, M. S., Živković, M. Z., Stanković,
N., Radulović, N. S., Vasiljević, B., Nikodinović-Runic, J., and
Zotchev, S. B. (2018). Genomics-based insights into the biosynthesis and
unusually high accumulation of free fatty acids by Streptomyces sp.
NP10. Frontiers in Microbiology, 9: 1320.
35. Dong, M., Oda, Y., & Hirota, M. (2000).
(10E,12Z,15Z)-9-Hydroxy-10,12,15-octadecatri enoic acid methyl ester as an
anti-inflammatory compound from Ehretia dicksonii. Bioscience,
Biotechnology, and Biochemistry, 64(4): 882-886.
36. Okuno, T., Iizuka, Y., Okazaki, H., Yokomizo, T.,
Taguchi, R., and Shimizu, T. (2008). 12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic
acid is a natural ligand for leukotriene B4 receptor 2. Journal of
Experimental Medicine, 205(4): 759-766.
37. Lee, J.-W., Ryu, H.-C., Ng, Y. C., Kim, C., Wei,
J.-D., Sabaratnam, V., and Kim, J.-H. (2012).
12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6
synthesis in keratinocytes, exerting an anti-inflammatory activity. Experimental
& Molecular Medicine, 44(6): 378-386.
38. Matejczyk, M., Ofman, P., Juszczuk-Kubiak, E.,
Świsłocka, R., Shing, W. L., Kesari, K. K., Prakash, B., and
Lewandowski, W. (2024). Biological effects of vanillic acid, iso-vanillic acid,
and ortho-vanillic acid as environmental pollutants. Ecotoxicology and
Environmental Safety, 277: 116383.
39. Egner, P., Pavlačková, J., Sedlaříková, J.,
Pleva, P., Mokrejš, P., and Janalíková, M. (2023). Non-alcohol hand sanitiser
gels with mandelic acid and essential oils. International Journal of
Molecular Sciences, 24(4): 3855.
40. Peters, L., Drechsler, M., Herrera, M. A., Liu, J.,
Pees, B., Jarstorff, J., Czerwinski, A., Lubbock, F., Angelidou, G., Salzer,
L., Moors, K. A., Paczia, N., Shi, Y.-M., Schulenburg, H., Kaleta, C., Witting,
M., Liebeke, M., Campopiano, D. J., Bode, H. B., and Dierking, K. (2025).
Polyketide synthase-derived sphingolipids mediate microbiota protection against
a bacterial pathogen in C. elegans. Nature Communications, 16(1):
51.