Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1509

 

Research Article

 

Phytochemical profiling of the methanolic partition of endophytic Streptomyces sp. SUK48 using LC-MS/MS and molecular networking

 

Nik Isma Nurain Nik Isham, and Jasnizat Saidin*

 

Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: ijaxzt@umt.edu.my

 

Received: 11 March 2025; Revised: 21 August 2025; Accepted: 25 August 2025; Published: 16 October 2025

 

Abstract

Antimicrobial resistance has become a global challenge due to the difficulty in controlling it and the increasing need for new drugs. Streptomyces species are Gram-positive bacteria recognized for producing a wide range of secondary metabolites with diverse biological functions. This study aimed to profile and characterize the phytochemicals of the methanolic partition of Streptomyces sp. SUK48 using liquid chromatography quadrupole time-of-flight mass spectrometry with tandem mass spectrometry (LC-QTOF-MS/MS) equipped with electrospray ionization (ESI). The analysis was conducted via the Global Natural Products Social Molecular Networking (GNPS) platform. Streptomyces sp. SUK48 was cultivated in a rice-based yeast medium for 8 days (SRY48-8) and sequentially partitioned into methanol and hexane fractions. The methanol fraction was analyzed using LC-QTOF-MS/MS with ESI, and the resulting data were processed through GNPS. Seventeen phytochemicals were identified, including polyketides, amino acids, lipids, pyrimidine derivatives, and fatty acids. Some identified compounds, such as tetracycline (2) and luvangetin (5), have been previously reported to exhibit antibacterial and antifungal properties. These findings emphasize the potential of Streptomyces sp. SUK48 is a promising candidate for future drug discovery.

 

Keywords: Antimicrobial resistance, Drugs discovery, Secondary Metabolites, Molecular Networking, Streptomyces sp.



References

1.        Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325): 629-655.

2.        Centers for Disease Control and Prevention (CDC). (2019). Antibiotic resistance threats in the United States, 2019. U.S. Department of Health and Human Services.

3.        de Kraker, M. E., Stewardson, A. J., and Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Medicine, 13(11): e1002184.

4.        Boccolini, P. M. M., and Boccolini, C. S. (2020). Prevalence of complementary and alternative medicine (CAM) use in Brazil. BMC Complementary Medicine and Therapies, 20(1): 51.

5.        Kemung, H. M., Tan, L. T., Chan, K. G., Ser, H. L., Law, J. W., Lee, L. H., and Goh, B. H. (2020). Antioxidant activities of Streptomyces sp. strain MUSC 14 from mangrove forest soil in Malaysia. BioMed Research International, 2020: 6402607.

6.        Pansomsuay, R., Fukasem, P., Pittayakhajonwut, P., Intaraudom, C., Suriyachadkun, C., Yasawong, M., He, Y.-W., Tanasupawat, S., Qian, Y., and Thawai, C. (2025). Discovery of Streptomyces marinisediminis sp. nov., a new thiolutin-producing actinomycete isolated from Thai marine sediment. Scientific Reports, 15(1): 29301.

7.        Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.-P., Clément, C., Ouhdouch, Y., and van Wezel, G. P. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1): 1-43.

8.        Lacey, H. J., and Rutledge, P. J. (2022). Recently discovered secondary metabolites from Streptomyces species. Molecules, 27(3): 887.

9.        Ahmad, S., Zin, N., Mazlan, N. W., Baharum, S., Baba, M. S., and Lau, Y. (2021). Metabolite profiling of endophytic Streptomyces spp. and its antiplasmodial potential. PeerJ, 9, e10816.

10.     Baba, M. S., Mohamad Zin, N., Ahmad, S. J., Mazlan, N. W., Baharum, S. N., Ahmad, N., and Azmi, F. (2021). Antibiotic biosynthesis pathways from endophytic Streptomyces SUK 48 through metabolomics and genomics approaches. Antibiotics (Basel), 10(8).

11.     Bérdy, J. (2012). Thoughts and facts about antibiotics: Where we are now and where we are heading. The Journal of Antibiotics, 65(8): 385-395.

12.     Ito, T., and Masubuchi, M. (2014). Dereplication of microbial extracts and related analytical technologies. The Journal of Antibiotics, 67(5): 353-360.

13.     Rajendra Bankar, V., and Chapadgaonkar, S. S. (2025). Harnessing endophytes for enhancing the production of valuable plant secondary metabolites. Natural Resources for Human Health, 5(4): 686-704.

14.     Bordbar, A., Yurkovich, J. T., Paglia, G., Rolfsson, O., Sigurjónsson, Ó., and Palsson, B. Ř. (2017). Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Scientific Reports, 7: 46249.

15.     Hajnajafi, K., and Iqbal, M. A. (2025). Mass spectrometry-based metabolomics: An overview of workflows, strategies, data analysis, and applications. Proteome Science, 23(1): 5.

16.     Hubert, J., Nuzillard, J.-M., and Renault, J.-H. (2017). Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochemistry Reviews, 16(1): 55-95.

17.     Xue, X., Jiao, Q., Jin, R., Wang, X., Li, P., Shi, S., Huang, Z., Dai, Y., and Chen, S. (2021). The combination of UHPLC-HRMS and molecular networking improving discovery efficiency of chemical components in Chinese classical formula. Chinese Medicine, 16(1): 50.

18.     Nothias, L.-F., Esposito, M., Silva, R., Wang, M., Protsyuk, I., Zhang, Z., Sarvepalli, A., Leyssen, P., Touboul, D., Costa, J., Paolini, J., Alexandrov, T., Litaudon, M., and Dorrestein, P. (2018). Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. Journal of Natural Products, 81(4): 758-767.

19.     Abdelrazig, S., McCabe, Á., Yasin, A., Chaudhary, R., Ochsenkühn, M. A., Scicchitano, D., and Amin, S. A. (2025). LC-MS Orbitrap-based metabolomics using a novel hybrid zwitterionic hydrophilic interaction liquid chromatography and rigorous metabolite identification reveals doxorubicin-induced metabolic perturbations in breast cancer cells. RSC Advances, 15(26): 20745-20759.

20.     Motamedifar, M., Bazargani, A., Sarai, E., and Sedigh, H. (2014). Antimicrobial activity of mandelic acid against methicillin-resistant Staphylococcus aureus: A novel finding with important practical implications. World Applied Sciences Journal, 31(5): 925-929.

21.     Rutz, A., and Wolfender, J.-L. (2023). Automated composition assessment of natural extracts: Untargeted mass spectrometry-based metabolite profiling integrating semiquantitative detection. Journal of Agricultural and Food Chemistry, 71(46): 18010-18023.

22.     Adra, C., Tran, T. D., Foster, K., Tomlin, R., and Kurtböke, D. İ. (2023). Untargeted MS-based metabolomic analysis of termite gut-associated Streptomycetes with antifungal activity against Pyrrhoderma noxium. Antibiotics, 12(9): 1373.

23.     Megawer, H. (2023). Exploring Streptomyces albidoflavus SAC61 strain as a source of novel antimicrobial agents to control multidrug-resistant bacteria: Metabolomics and molecular modelling insights.

24.     Risdian, C., Mozef, T., and Wink, J. (2019). Biosynthesis of polyketides in Streptomyces. Microorganisms, 7(5):124.

25.     Ibrahim, J. A. A., Botcha, S., and Prattipati, S. D. (2025). Marine actinomycetes: A promising source of novel therapeutics and pharmaceutical bioactive compounds – A review. The Microbe, 7: 100383.

26.     Wang, L., Lu, H., and Jiang, Y. (2023). Natural polyketides act as promising antifungal agents. Biomolecules, 3(11):1572.

27.     Ramachanderan, R., and Schaefer, B. (2021). Tetracycline antibiotics. ChemTexts, 7(3): 18.

28.     Kounatidis, D., Dalamaga, M., Grivakou, E., Karampela, I., Koufopoulos, P., Dalopoulos, V., Adamidis, N., Mylona, E., Kaziani, A., and Vallianou, N. G. (2024). Third-generation tetracyclines: Current knowledge and therapeutic potential. Biomolecules, 14(7): 783.

29.     Chen, J., Zhou, Y., Liu, D., Lu, X., Chen, H., Huang, M., Mao, Z., Zhang, T., He, Z., Zou, Z., and Zhang, K. (2024). Discovery and development of luvangetin from Zanthoxylum avicennae as a new fungicide candidate for Fusarium verticillioides. Journal of Agricultural and Food Chemistry, 72: 8550-8568.

30.     Kitagawa, K., Shigemura, K., Ishii, A., Nakashima, T., Matsuo, H., Takahashi, Y., Omura, S., Nakanishi, J., and Fujisawa, M. (2021). Nanaomycin K inhibited epithelial–mesenchymal transition and tumor growth in bladder cancer cells in vitro and in vivo. Scientific Reports, 11(1): 9217.

31.     Matsui, Y., Takemura, N., Shirasaki, Y., Takahama, M., Noguchi, Y., Ikoma, K., Pan, Y., Nishida, S., Taura, M., Nakayama, A., Funatsu, T., Misawa, T., Harada, Y., Sunazuka, T., and Saitoh, T. (2022). Nanaomycin E inhibits NLRP3 inflammasome activation by preventing mitochondrial dysfunction. International Immunology, 34(10): 505-518.

32.     Liu, C., Jiang, Y., Lei, H., Chen, X., Ma, Q., Han, L., and Huang, X. (2017). Four new nanaomycins produced by Streptomyces hebeiensis derived from lichen. Chemistry & Biodiversity, 14: 7.

33.     Desbois, A. P., and Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6): 1629-1642.

34.     Schneider, O., Ilić-Tomić, T., Rückert, C., Kalinowski, J., Genčić, M. S., Živković, M. Z., Stanković, N., Radulović, N. S., Vasiljević, B., Nikodinović-Runic, J., and Zotchev, S. B. (2018). Genomics-based insights into the biosynthesis and unusually high accumulation of free fatty acids by Streptomyces sp. NP10. Frontiers in Microbiology, 9: 1320.

35.     Dong, M., Oda, Y., & Hirota, M. (2000). (10E,12Z,15Z)-9-Hydroxy-10,12,15-octadecatri enoic acid methyl ester as an anti-inflammatory compound from Ehretia dicksonii. Bioscience, Biotechnology, and Biochemistry, 64(4): 882-886.

36.     Okuno, T., Iizuka, Y., Okazaki, H., Yokomizo, T., Taguchi, R., and Shimizu, T. (2008). 12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid is a natural ligand for leukotriene B4 receptor 2. Journal of Experimental Medicine, 205(4): 759-766.

37.     Lee, J.-W., Ryu, H.-C., Ng, Y. C., Kim, C., Wei, J.-D., Sabaratnam, V., and Kim, J.-H. (2012). 12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6 synthesis in keratinocytes, exerting an anti-inflammatory activity. Experimental & Molecular Medicine, 44(6): 378-386.

38.     Matejczyk, M., Ofman, P., Juszczuk-Kubiak, E., Świsłocka, R., Shing, W. L., Kesari, K. K., Prakash, B., and Lewandowski, W. (2024). Biological effects of vanillic acid, iso-vanillic acid, and ortho-vanillic acid as environmental pollutants. Ecotoxicology and Environmental Safety, 277: 116383.

39.     Egner, P., Pavlačková, J., Sedlaříková, J., Pleva, P., Mokrejš, P., and Janalíková, M. (2023). Non-alcohol hand sanitiser gels with mandelic acid and essential oils. International Journal of Molecular Sciences, 24(4): 3855.

40.     Peters, L., Drechsler, M., Herrera, M. A., Liu, J., Pees, B., Jarstorff, J., Czerwinski, A., Lubbock, F., Angelidou, G., Salzer, L., Moors, K. A., Paczia, N., Shi, Y.-M., Schulenburg, H., Kaleta, C., Witting, M., Liebeke, M., Campopiano, D. J., Bode, H. B., and Dierking, K. (2025). Polyketide synthase-derived sphingolipids mediate microbiota protection against a bacterial pathogen in C. elegans. Nature Communications, 16(1): 51.