Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1457
Review Article
Exploring synthesis of pyrrolidine-based
iminosugars for antihypertensive therapy: A mini-review
Nur Khairunsyahida Nazri1,2, Noor Hidayah Pungot1,2*,
Agustono Wibowo1,3, and Mohd Fazli Mohammat1,2
1Organic Synthesis Laboratory, Institute of Science,
Universiti Teknologi Mara (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam,
Selangor.
2School of Chemistry and Environment, Faculty of Applied
Sciences, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia
3Faculty of Applied Sciences, Universiti Teknologi Mara
(UiTM), Pahang Branch, Jengka Campus, Pahang, Malaysia
*Corresponding
author: noorhidayah977@uitm.edu.my
Received: 9 January 2025;
Revised: 8 October 2025; Accepted: 10 October 2025; Published: 31 October 2025
Abstract
Hypertension remains one of the most prevalent and challenging
cardiovascular disorders, necessitating innovative therapeutic strategies
beyond conventional drug classes. Pyrrolidine-based iminosugars have gained
increasing attention as promising candidates for antihypertensive therapy owing to their close structural resemblance to
carbohydrates. Their potent glycosidase inhibitory activity enables modulation
of key enzymatic pathways associated with vascular function and blood pressure
regulation. This mini-review explores recent advances in the synthesis of
pyrrolidine-based iminosugars, with particular emphasis on methodologies such
as D-glycal derivatization, nucleophilic substitution, and targeted functional
group transformations. Furthermore, the review highlights emerging preclinical
findings that underscore their therapeutic potential in hypertension
management. By bridging synthetic innovations with biological insights, this
work provides a critical perspective on the translational potential of pyrrolidine-based
iminosugars and outlines opportunities for their integration into future
antihypertensive drug discovery pipelines.
Keywords: Pyrrolidine-based
iminosugar, carbohydrate, glycosidase inhibitory, antihypertensive drug
References
1.
World
Health Organization: WHO. (2021, August 25). More than 700 million people with
untreated hypertension. World Health Organization and Imperial College
London Joint Press Release. Access from https://www.who.int/news/ item/25-08-2021-more-than-700-million-people-with-untreated-hypertension
2.
Singh,
S. D. (2024). Treating hypertension: Important for heart and kidney health. Journal
of Family Medicine and Primary Care, 13(2): 101-105.
3.
Nugroho,
P., Andrew, H., Kohar, K., Noor, C. A., and Sutranto, A. L. (2022). Comparison
between the world health organization (WHO) and international society of
hypertension (ISH) guidelines for hypertension. Annals of Medicine,
54(1): 837-845.
4.
Unger,
T., Borghi, C., Charchar, F., Khan, N. A., Poulter, N. R., Prabhakaran, D.,
Ramirez, A., Schlaich, M., Stergiou, G. S., Tomaszewski, M., Wainford, R. D.,
Williams, B., Schutte, A. E., and on behalf of the International Society of
Hypertension. (2020). 2020 International Society of Hypertension Global
Hypertension Practice Guidelines. Hypertension, 75(6): 1334-1357.
5.
Conforti,
I., Ramos-Soriano, J., and Bernardes, G. J. L. (2021). Iminosugars as
glycosyltransferase inhibitors: Recent advances and future perspectives. Organic
& Biomolecular Chemistry, 19(36): 7939-7956.
6.
Ferjančič,
Ž., Ilić, J., and Svete, J. (2023). Development of iminosugar-based
glycosidase inhibitors: Current status and future directions. Drug Discovery
Today, 28(7): 103536.
7.
Hunt-Painter,
A. A., Chapman, M. S., and Fleet, G. W. J. (2022). An amination–cyclization
cascade for the stereoselective synthesis of iminosugars. ACS Omega,
7(12): 10125-10136.
8.
Liotta,
L. J., Jackson, D., and Chen, M. (2024). Efficient synthesis for each of the
eight stereoisomers of pyrrolidine-containing iminosugars. Carbohydrate
Research, 532: 108885.
9.
Wang,
H., Zhou, J., and Zhang, Y. (2022). Design and synthesis of N-substituted
iminosugar C-glycosides as potent α-glucosidase inhibitors. Molecules,
27(15): 4901.
10.
Lu,
T. T., Yang, X., and Li, H. (2021). Synthesis and glycosidase inhibition of
5-C-alkyl and 6-C-alkyl deoxynojirimycin derivatives. European Journal of
Medicinal Chemistry, 221: 113559.
11.
U.S.
Food and Drug Administration. (2020). Zavesca (miglustat) prescribing
information. FDA. Access from https://www.access data.fda.gov.
12.
European
Medicines Agency. (2022). Zavesca: Summary of product characteristics. EMA. Access
from https://www.ema.europa.eu.
13.
Mhaldar,
S. N., Chavan, S. S., and More, S. N. (2022). Computational and experimental
studies of pyrrolidine-based iminosugars as α-glucosidase inhibitors. Chemical
Physics Letters, 799: 139638.
14.
Compain, P., Chagnault, V., and Martin,
O. R. (2009). Tactics and strategies for the synthesis of iminosugar
C-glycosides: A review. Tetrahedron:
Asymmetry, 20(6-8): 672-711.
15.
Slivnick,
J., and Lampert, B. C. (2019). Hypertension and Heart Failure. Heart Failure
Clinics, 15(4): 531-541.
16.
Borges
de Melo, E., da Silveira Gomes, A., & Carvalho, I. (2006). α- and
β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron,
62(44): 10277-10302.
17.
Smolobochkin,
A. N. (2024). Structural and stereoelectronic properties of pyrrolidine: A
five-membered saturated nitrogen heterocycle. Journal of Heterocyclic
Chemistry, 61(4): 345-356.
18.
Sahu,
R. (2024). Recent advancement in pyrrolidine moiety: Natural occurrence and
medicinal importance. Journal of Natural Products Research, 8(3):
201-213.
19.
Jessen,
S., Rauhut, T., and Bräse, S. (2020). Alkaloids containing pyrrolidine and
piperidine frameworks: Natural products and synthetic advances. Chemical
Reviews, 120(12): 10175-10221.
20.
Massiot,
G., and Delaude, C. (1986). Pyrrolidine alkaloids. The Alkaloids: Chemistry
and Pharmacology, 28: 151-238.
21.
Bailly,
C., and Vergoten, G. (2025). Overview of the Ruspolia genus: Chemical diversity
and bioactive potentials of isolated pyrrolidine alkaloids. Phytochemistry
Reviews, 24(2): 233249.
22.
Barth,
M., Seebeck, F. P., and Süssmuth, R. D. (2022). Proline and hydroxyproline
derivatives in peptide natural products. Natural Product Reports, 39(8):
1445-1468.
23.
Kuwano, R., Kashiwabara, M., Ohsumi, M.,
and Kusano, H. (2008). Catalytic asymmetric hydrogenation of
2,3,5-trisubstituted pyrroles. Journal of the American Chemical Society,
130(3): 808-809.
24.
Greene,
M. J., Patel, S., and Kappe, C. O. (2019). Continuous-flow hydrogenation of
pyrroles to pyrrolidines: Advances and applications. Organic Process
Research & Development, 23(11): 2401-2409.
25.
Back,
T. G., Parvez, M., and Zhai, H. (2003). Stereospecific rearrangements during
the synthesis of pyrrolidines and related heterocycles from cyclizations of
amino alcohols with vinyl sulfones. Journal of Organic Chemistry,
68(24): 9389-9393.
26.
Liotta,
L. J., Jackson, D., and Chen, M. (2024). Efficient synthesis for each of the
eight stereoisomers of pyrrolidine-containing iminosugars. Carbohydrate
Research, 532: 108885.
27.
Hayashi,
Y. (2014). The asymmetric catalytic mannich reaction catalyzed by
organocatalyst. Journal of Synthetic Organic Chemistry, Japan, 72(11):
1228-1238.
28.
Zhang,
X., Chen, P., and Zhang, L. (2025). Recent synthetic methodologies for
pyrrolidine derivatives via multicomponent reactions. Synthetic
Communications, 55(4): 523-534.
29.
Rahman,
A. (2025). A review on recent progress in synthesis and biological significance
of pyrrolidine derivatives via multicomponent reactions. Journal of
Heterocyclic Chemistry, 62(3): 455-472.
30.
Coldham,
I., and Hufton, R. (2005). Intramolecular dipolar cycloaddition reactions of
azomethineylides. Chemical Reviews, 105(7): 2765-2809.
31.
Najera,
C., and Sansano, J. M. (2007). 1,3‐Dipolar cycloaddition of azomethine
ylides: An entry to enantiopure pyrrolidines. Angewandte Chemie
International Edition, 46(32): 6276-6287.
32.
Cozzi,
P. G. (2006). Metal–Salen Schiff base complexes in catalysis: Practical
aspects. Chemical Society Reviews, 33(7): 410-421.
33.
Prier,
C. K., Rankic, D. A., and MacMillan, D. W. C. (2013). Visible light photo-redox
catalysis with transition metal complexes: Applications in organic synthesis. Chemical
Reviews, 113(7): 5322-5363.
34.
Choi,
G. J., Knowles, R. R. (2015). Catalytic alkylation of remote C-H bonds enabled
by proton-coupled electron transfer. Journal of the American Chemical
Society, 137(29): 9226-9229.
35.
List,
B. (2002). Proline-catalyzed asymmetric reactions. Tetrahedron, 58(28):
5573-5590.
36.
Melchiorre,
P., Marigo, M., Carlone, A., and Bartoli, G. (2008). Asymmetric
aminocatalysis-gold rush in organic chemistry. Angewandte Chemie
International Edition, 47(33): 6138-6171.
37.
Labinger,
J. A., and Bercaw, J. E. (2002). Understanding and exploiting C–H bond
activation. Nature, 417(6888): 507-514.
38.
Chen,
X., Engle, K. M., Wang, D. H., and Yu, J. Q. (2009). Palladium(II)-catalyzed
C–H activation/C–C cross-coupling reactions: Versatility and practicality. Angewandte
Chemie International Edition, 48(28): 5094-5115.
39.
Bornscheuer,
U. T., and Kazlauskas, R. J. (2006). Catalytic promiscuity in biocatalysis:
Using old enzymes to form new bonds and follow new pathways. Angewandte
Chemie International Edition, 45(41): 6156-6165.
40.
Schrittwieser,
J. H., Velikogne, S., Hall, M., and Kroutil, W. (2018). Artificial biocatalytic
linear cascades for preparation of organic molecules. Chemical Reviews,
118(1): 270-348.
41.
Smiljanic,
K., van der Walt, J., and van Zyl, R. L. (2022). Polyhydroxylated alkaloids:
Novel scaffolds for drug discovery. Molecules, 27(18): 5903.
42.
Muraoka,
T., Kameda, Y., & Nishimura, S. (2020). Fagomine: Biosynthesis and
therapeutic applications of a piperidine alkaloid. Phytochemistry, 170:
112215.
43.
Wang,
G., Chen, M., Wang, J., Peng, Y., Li, L, Xie, Z. Z., et al. (2017). Synthesis,
biological evaluation and molecular docking studies of chromone hydrazone
derivatives as a-glucosidase inhibitors. Bioorganic and Medicinal Chemistry
Letters, 27(13): 2957-2961.
44.
Song,
Y. Y, Kinami, K, Kato, A., Jia, Y. M., Li, Y. X., Fleet, G. W.J., and Yu,
C.Y.(2016). First total synthesis of (+)-broussonetine W: Glycosidase
inhibition of natural product & analogs. Organic and Biomolecular
Chemistry, 14(22), 5157-5174.
45.
Gavale,
K. S., Chavan, S. R., Kumbhar, N., Kawade, S., Doshi, P., Khan, A., and
Dhavale, D. D. (2017). α-Geminal disubstituted pyrrolidine iminosugars and
their C-4-fluoro analogues: Synthesis, glycosidase inhibition and molecular
docking studies. Bioorganic and Medicinal Chemistry, 25(19): 5148-5159.
46.
Li,
Y.X, Shimada, Y., Sato, K., Kato, A., Zhang, W., Jia, Y.M., et al. (2015).
Synthesis and glycosidase inhibition of Australine and its fluorinated
derivatives. Organic Letters, 17(3): 716-719.
47.
Poyraz,
S. (2023). Recent insights about pyrrolidine core skeletons in pharmacology. Frontiers
in Pharmacology, 14: 1239658.
48.
Machan,
T., Davis, A. S., Liawruangrath, B, and Pyne, S. G. (2008). Synthesis of
castanospermine. Tetrahedron, 64(12): 2725-2732.
49.
Garcia-Moreno,
M. I., Benito, J. M., Ortiz Mellet, C., and García Fernández, J. M. (2001).
Synthesis and evaluation of calystegine B2 analogues as glycosidase inhibitors.
Journal of Organic Chemistry, 66(23): 7604-14.
50.
EMA.
(2022). Zavesca (miglustat): Summary of product characteristics. European
Medicines Agency. Access https://www.ema.europa.eu
51.
Alonzi,
D. S., Scott, K. A., Dwek, R. A., and Zitzmann, N. (2018). Iminosugar
antivirals: The therapeutic potential of glycosidase inhibitors for hepatitis
and other viruses. Antiviral Research, 158: 79-94.
52.
Nash,
R.J., Kato, A., Yu, C.Y., and Fleet, G. W. (2011). Iminosugars as therapeutic
agents: recent advances and promising trends. Future Medicine Chemistry,
3(12): 1513-21.
53.
Terry
D. Butters, Raymond A. Dwek, Frances M. Platt (2005). Iminosugar inhibitors for
treating the lysosomal glycosphingolipido ses, Glycobiology,
15(10): 43R-52R.
54.
Alonzi
DS, Scott KA, Dwek RA, Zitzmann N (2017). Iminosugar antivirals: the
therapeutic sweet spot. Biochemistry Society Trans, 45(2): 571-582.
55.
Singh,
S. D. (2024). Treating hypertension: Important for heart and kidney health. Journal
of Family Medicine and Primary Care, 13(2): 101-105.
56.
Kato,
A., Nakagome, I., Sato, K., Yamamoto, A., Adachi, I., Nash, R. J., and Hirono,
S. (2016). Docking study and biological evaluation of pyrrolidine-based
iminosugars as pharmacological chaperones for Gaucher disease. Organic
& Biomolecular Chemistry, 14(3): 1039-1048.
57.
Pastores,
G. M., Hughes, D. A., and Grabowski, G. A. (2020). Gaucher disease:
Pathophysiology, clinical presentation, and therapy. American Journal of
Hematology, 95(1): 43-45.
58.
Nair,
A. K. N., Rankin, C., and Butters, T. D. (2019). Structural insights into
iminosugar interactions with glycosidases. Glycobiology, 29(11):
785-797.
59.
Wang,
H., Zhou, J., and Zhang, Y. (2021). Design and synthesis of monovalent
α-L-fucosidase inhibitors via amide coupling. Molecules, 26(22):
6945.
60.
Bekri,
S., Ouzzine, M., and Netter, P. (2022). α-L-Fucosidase: Biochemical
function and therapeutic potential. Biochimica et Biophysica Acta (BBA) -
Molecular Basis of Disease, 1868(12): 166543.
61.
Wu,
L., Pan, Q., and Li, X. (2021). Targeting α-L-fucosidase in cancer
progression: Emerging strategies. Frontiers in Oncology, 11: 789654.
62.
Durantie,
E., Werz, D. B., and Seeberger, P. H. (2019). Chemoenzymatic synthesis of
carbohydrates and glycomimetics. Chemical Reviews, 119(7): 3883-3962.
63.
McEachern,
K. A., Fung, J., and Valenzano, K. J. (2020). Industrial development of
iminosugar therapeutics: Miglustat as a case study. Trends in Biotechnology,
38(12): 1357-1369.
64.
Butters,
T. D., and Dwek, R. A. (2021). Glycomimetics in clinical use: The story of
miglustat. Drug Discovery Today, 26(9): 2115-2124.
65.
Esposito,
A., D’Alonzo, D., De Fenza, M., De Gregorio, E., Tamanini, A., Lippi, G., ...
and Guaragna, A. (2020). Synthesis and therapeutic applications of iminosugars
in cystic fibrosis. International Journal of Molecular Sciences, 21(9):
3353.
66.
Platt,
F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F., and Tifft, C. J. (2019).
Lysosomal storage diseases. Nature Reviews Disease Primers, 5(1): 1-21.
67.
Mikhailov,
A., Jensen, K., and Platt, F. M. (2021). Expanding therapeutic applications of
iminosugars: From lysosomal storage disorders to oncology. Nature Reviews
Drug Discovery, 20(11): 841-860.
68.
Gutiérrez,
M. C., and Fernández, M. J. (2023). Biocatalysis in iminosugar synthesis:
Advances in enzymatic oxidation and reductive transformations. ACS Catalysis,
13(5): 3221-3235.
69.
Dzau,
V. J., and Antman, E. M. (2021). The cardiovascular continuum and
renin-angiotensin–aldosterone system blockade. Journal of the American
College of Cardiology, 78(9): 941-954.
70.
Fyhrquist,
F., and Saijonmaa, O. (2020). Renin–angiotensin system revisited. Journal of
Internal Medicine, 288(2): 161-175.
71.
Cao,
D. Y., Spivia, W. R., Veiras, L. C., Khan, Z., Peng, Z., Jones, A. E.,
Bernstein, E. A., Saito, S., Okwan-Duodu, D., Parker, S. J., Giani, J. F.,
Divakaruni, A. S., Van Eyk, J. E., and Bernstein, K. E. (2020). ACE
overexpression in myeloid cells increases oxidative metabolism and cellular
ATP. Journal of Biological Chemistry, 295(5): 1369-1384.
72.
Shirbhate,
E., Pandey, J., Patel, V. K., Kamal, M., Jawaid, T., Gorain, B., Kesharwani,
P., and Rajak, H. (2021). Understanding the role of ACE-2 receptor in
pathogenesis of COVID-19 disease: a potential approach for therapeutic
intervention. Pharmacology Reports, 73(6): 1539-1550.
73.
Bernstein,
K. E., Ong, F. S., Blackwell, W.-L. B., Shah, K. H., Giani, J. F.,
Gonzalez-Villalobos, R. A., Shen, X. Z., and Fuchs, S. (2013). A modern
understanding of the traditional and nontraditional biological functions of
angiotensin-converting enzyme. Pharmacological
Reviews, 65(1): 1-46.
74.
Brown,
N. J., and Vaughan, D. E. (2020). Angiotensin-converting enzyme inhibitors. Circulation
Research, 126(12): 1682-1700.
75.
Patel,
R., Shahane, S., and Singh, R. (2019). Rational design of ACE inhibitors: Role
of proline and its analogs. Bioorganic & Medicinal Chemistry Letters,
29(14): 1711-1719.
76.
Ferrario,
C. M., and Strawn, W. B. (2019). Role of the renin-angiotensin-aldosterone
system and proline-derived drugs in cardiovascular disease. American Journal
of Medicine, 132(2): 123-134.
77.
Kokkinos,
P., Faselis, C., and Myers, J. (2022). ACE inhibitors and their pleiotropic
effects in hypertension and beyond. Current Hypertension Reports, 24(5):
145-156.
78.
He,
Y., Zhao, J., Xu, X., and Ma, Y. (2021). Structural diversity of ACE
inhibitors: Advances in design and therapeutic perspectives. European
Journal of Medicinal Chemistry, 225: 113803.
79.
Watanabe,
Y., and Yasuda, S. (2020). Captopril: Revisiting the first ACE inhibitor in
cardiovascular therapy. Hypertension Research, 43(6): 563-573.
80.
Messerli,
F. H., Bangalore, S., & Bavishi, C. (2018). Angiotensin-converting enzyme
inhibitors in hypertension: To use or not to use? Journal of the American
College of Cardiology, 71(13): 1474-1482.
81.
Mahmood,
S. S., and Levy, D. (2020). Lisinopril in heart failure management: Past,
present, and future. European Heart Journal Supplements, 22: 112-118.
82.
Yusuf,
S., Sleight, P., Pogue, J., Bosch, J., Davies, R., and Dagenais, G. (2000).
Effects of an angiotensin-converting–enzyme inhibitor, ramipril, on
cardiovascular events in high-risk patients. The New England Journal of
Medicine, 342(3): 145-153.
83.
Bakris,
G. L., Sica, D., Weber, M., White, W. B., Roberts, A., Perez, A., Cao, C.,
Kupfer, S., and Cao, C. (2019). The comparative effects of benazepril and
amlodipine in hypertensive patients: Long-term outcomes. Journal of Clinical
Hypertension, 21(9): 1342-1350.
84.
Nair,
A. K. N., Rankin, C., and Butters, T. D. (2019). Structural insights into
iminosugar interactions with glycosidases. Glycobiology, 29(11):
785-797.