Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1457

 

Review Article

 

Exploring synthesis of pyrrolidine-based iminosugars for antihypertensive therapy: A mini-review 

 

Nur Khairunsyahida Nazri1,2, Noor Hidayah Pungot1,2*, Agustono Wibowo1,3, and Mohd Fazli Mohammat1,2

 

1Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi Mara (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor.

2School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia

3Faculty of Applied Sciences, Universiti Teknologi Mara (UiTM), Pahang Branch, Jengka Campus, Pahang, Malaysia

 

*Corresponding author: noorhidayah977@uitm.edu.my

 

Received: 9 January 2025; Revised: 8 October 2025; Accepted: 10 October 2025; Published: 31 October 2025

 

Abstract

Hypertension remains one of the most prevalent and challenging cardiovascular disorders, necessitating innovative therapeutic strategies beyond conventional drug classes. Pyrrolidine-based iminosugars have gained increasing attention as promising candidates for antihypertensive therapy owing to their close structural resemblance to carbohydrates. Their potent glycosidase inhibitory activity enables modulation of key enzymatic pathways associated with vascular function and blood pressure regulation. This mini-review explores recent advances in the synthesis of pyrrolidine-based iminosugars, with particular emphasis on methodologies such as D-glycal derivatization, nucleophilic substitution, and targeted functional group transformations. Furthermore, the review highlights emerging preclinical findings that underscore their therapeutic potential in hypertension management. By bridging synthetic innovations with biological insights, this work provides a critical perspective on the translational potential of pyrrolidine-based iminosugars and outlines opportunities for their integration into future antihypertensive drug discovery pipelines.

 

Keywords: Pyrrolidine-based iminosugar, carbohydrate, glycosidase inhibitory, antihypertensive drug

 


References

1.        World Health Organization: WHO. (2021, August 25). More than 700 million people with untreated hypertension. World Health Organization and Imperial College London Joint Press Release. Access from https://www.who.int/news/ item/25-08-2021-more-than-700-million-people-with-untreated-hypertension

2.        Singh, S. D. (2024). Treating hypertension: Important for heart and kidney health. Journal of Family Medicine and Primary Care, 13(2): 101-105.

3.        Nugroho, P., Andrew, H., Kohar, K., Noor, C. A., and Sutranto, A. L. (2022). Comparison between the world health organization (WHO) and international society of hypertension (ISH) guidelines for hypertension. Annals of Medicine, 54(1): 837-845.

4.        Unger, T., Borghi, C., Charchar, F., Khan, N. A., Poulter, N. R., Prabhakaran, D., Ramirez, A., Schlaich, M., Stergiou, G. S., Tomaszewski, M., Wainford, R. D., Williams, B., Schutte, A. E., and on behalf of the International Society of Hypertension. (2020). 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension, 75(6): 1334-1357.

5.        Conforti, I., Ramos-Soriano, J., and Bernardes, G. J. L. (2021). Iminosugars as glycosyltransferase inhibitors: Recent advances and future perspectives. Organic & Biomolecular Chemistry, 19(36): 7939-7956.

6.        Ferjančič, Ž., Ilić, J., and Svete, J. (2023). Development of iminosugar-based glycosidase inhibitors: Current status and future directions. Drug Discovery Today, 28(7): 103536.

7.        Hunt-Painter, A. A., Chapman, M. S., and Fleet, G. W. J. (2022). An amination–cyclization cascade for the stereoselective synthesis of iminosugars. ACS Omega, 7(12): 10125-10136.

8.        Liotta, L. J., Jackson, D., and Chen, M. (2024). Efficient synthesis for each of the eight stereoisomers of pyrrolidine-containing iminosugars. Carbohydrate Research, 532: 108885.

9.        Wang, H., Zhou, J., and Zhang, Y. (2022). Design and synthesis of N-substituted iminosugar C-glycosides as potent α-glucosidase inhibitors. Molecules, 27(15): 4901.

10.     Lu, T. T., Yang, X., and Li, H. (2021). Synthesis and glycosidase inhibition of 5-C-alkyl and 6-C-alkyl deoxynojirimycin derivatives. European Journal of Medicinal Chemistry, 221: 113559.

11.     U.S. Food and Drug Administration. (2020). Zavesca (miglustat) prescribing information. FDA. Access from https://www.access data.fda.gov.

12.     European Medicines Agency. (2022). Zavesca: Summary of product characteristics. EMA. Access from https://www.ema.europa.eu.

13.     Mhaldar, S. N., Chavan, S. S., and More, S. N. (2022). Computational and experimental studies of pyrrolidine-based iminosugars as α-glucosidase inhibitors. Chemical Physics Letters, 799: 139638.

14.     Compain, P., Chagnault, V., and Martin, O. R. (2009). Tactics and strategies for the synthesis of iminosugar C-glycosides: A review. Tetrahedron: Asymmetry, 20(6-8): 672-711.

15.     Slivnick, J., and Lampert, B. C. (2019). Hypertension and Heart Failure. Heart Failure Clinics, 15(4): 531-541.

16.     Borges de Melo, E., da Silveira Gomes, A., & Carvalho, I. (2006). α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron, 62(44): 10277-10302.

17.     Smolobochkin, A. N. (2024). Structural and stereoelectronic properties of pyrrolidine: A five-membered saturated nitrogen heterocycle. Journal of Heterocyclic Chemistry, 61(4): 345-356.

18.     Sahu, R. (2024). Recent advancement in pyrrolidine moiety: Natural occurrence and medicinal importance. Journal of Natural Products Research, 8(3): 201-213.

19.     Jessen, S., Rauhut, T., and Bräse, S. (2020). Alkaloids containing pyrrolidine and piperidine frameworks: Natural products and synthetic advances. Chemical Reviews, 120(12): 10175-10221.

20.     Massiot, G., and Delaude, C. (1986). Pyrrolidine alkaloids. The Alkaloids: Chemistry and Pharmacology, 28: 151-238.

21.     Bailly, C., and Vergoten, G. (2025). Overview of the Ruspolia genus: Chemical diversity and bioactive potentials of isolated pyrrolidine alkaloids. Phytochemistry Reviews, 24(2): 233249.

22.     Barth, M., Seebeck, F. P., and Süssmuth, R. D. (2022). Proline and hydroxyproline derivatives in peptide natural products. Natural Product Reports, 39(8): 1445-1468.

23.     Kuwano, R., Kashiwabara, M., Ohsumi, M., and Kusano, H. (2008). Catalytic asymmetric hydrogenation of 2,3,5-trisubstituted pyrroles. Journal of the American Chemical Society, 130(3): 808-809.

24.     Greene, M. J., Patel, S., and Kappe, C. O. (2019). Continuous-flow hydrogenation of pyrroles to pyrrolidines: Advances and applications. Organic Process Research & Development, 23(11): 2401-2409.

25.     Back, T. G., Parvez, M., and Zhai, H. (2003). Stereospecific rearrangements during the synthesis of pyrrolidines and related heterocycles from cyclizations of amino alcohols with vinyl sulfones. Journal of Organic Chemistry, 68(24): 9389-9393.

26.     Liotta, L. J., Jackson, D., and Chen, M. (2024). Efficient synthesis for each of the eight stereoisomers of pyrrolidine-containing iminosugars. Carbohydrate Research, 532: 108885.

27.     Hayashi, Y. (2014). The asymmetric catalytic mannich reaction catalyzed by organocatalyst. Journal of Synthetic Organic Chemistry, Japan, 72(11): 1228-1238.

28.     Zhang, X., Chen, P., and Zhang, L. (2025). Recent synthetic methodologies for pyrrolidine derivatives via multicomponent reactions. Synthetic Communications, 55(4): 523-534.

29.     Rahman, A. (2025). A review on recent progress in synthesis and biological significance of pyrrolidine derivatives via multicomponent reactions. Journal of Heterocyclic Chemistry, 62(3): 455-472.

30.     Coldham, I., and Hufton, R. (2005). Intramolecular dipolar cycloaddition reactions of azomethineylides. Chemical Reviews, 105(7): 2765-2809.

31.     Najera, C., and Sansano, J. M. (2007). 1,3‐Dipolar cycloaddition of azomethine ylides: An entry to enantiopure pyrrolidines. Angewandte Chemie International Edition, 46(32): 6276-6287.

32.     Cozzi, P. G. (2006). Metal–Salen Schiff base complexes in catalysis: Practical aspects. Chemical Society Reviews, 33(7): 410-421.

33.     Prier, C. K., Rankic, D. A., and MacMillan, D. W. C. (2013). Visible light photo-redox catalysis with transition metal complexes: Applications in organic synthesis. Chemical Reviews, 113(7): 5322-5363.

34.     Choi, G. J., Knowles, R. R. (2015). Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer. Journal of the American Chemical Society, 137(29): 9226-9229.

35.     List, B. (2002). Proline-catalyzed asymmetric reactions. Tetrahedron, 58(28): 5573-5590.

36.     Melchiorre, P., Marigo, M., Carlone, A., and Bartoli, G. (2008). Asymmetric aminocatalysis-gold rush in organic chemistry. Angewandte Chemie International Edition, 47(33): 6138-6171.

37.     Labinger, J. A., and Bercaw, J. E. (2002). Understanding and exploiting C–H bond activation. Nature, 417(6888): 507-514.

38.     Chen, X., Engle, K. M., Wang, D. H., and Yu, J. Q. (2009). Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: Versatility and practicality. Angewandte Chemie International Edition, 48(28): 5094-5115.

39.     Bornscheuer, U. T., and Kazlauskas, R. J. (2006). Catalytic promiscuity in biocatalysis: Using old enzymes to form new bonds and follow new pathways. Angewandte Chemie International Edition, 45(41): 6156-6165.

40.     Schrittwieser, J. H., Velikogne, S., Hall, M., and Kroutil, W. (2018). Artificial biocatalytic linear cascades for preparation of organic molecules. Chemical Reviews, 118(1): 270-348.

41.     Smiljanic, K., van der Walt, J., and van Zyl, R. L. (2022). Polyhydroxylated alkaloids: Novel scaffolds for drug discovery. Molecules, 27(18): 5903.

42.     Muraoka, T., Kameda, Y., & Nishimura, S. (2020). Fagomine: Biosynthesis and therapeutic applications of a piperidine alkaloid. Phytochemistry, 170: 112215.

43.     Wang, G., Chen, M., Wang, J., Peng, Y., Li, L, Xie, Z. Z., et al. (2017). Synthesis, biological evaluation and molecular docking studies of chromone hydrazone derivatives as a-glucosidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 27(13): 2957-2961.

44.     Song, Y. Y, Kinami, K, Kato, A., Jia, Y. M., Li, Y. X., Fleet, G. W.J., and Yu, C.Y.(2016). First total synthesis of (+)-broussonetine W: Glycosidase inhibition of natural product & analogs. Organic and Biomolecular Chemistry, 14(22), 5157-5174.

45.     Gavale, K. S., Chavan, S. R., Kumbhar, N., Kawade, S., Doshi, P., Khan, A., and Dhavale, D. D. (2017). α-Geminal disubstituted pyrrolidine iminosugars and their C-4-fluoro analogues: Synthesis, glycosidase inhibition and molecular docking studies. Bioorganic and Medicinal Chemistry, 25(19): 5148-5159.

46.     Li, Y.X, Shimada, Y., Sato, K., Kato, A., Zhang, W., Jia, Y.M., et al. (2015). Synthesis and glycosidase inhibition of Australine and its fluorinated derivatives. Organic Letters, 17(3): 716-719.

47.     Poyraz, S. (2023). Recent insights about pyrrolidine core skeletons in pharmacology. Frontiers in Pharmacology, 14: 1239658.

48.     Machan, T., Davis, A. S., Liawruangrath, B, and Pyne, S. G. (2008). Synthesis of castanospermine. Tetrahedron, 64(12): 2725-2732.

49.     Garcia-Moreno, M. I., Benito, J. M., Ortiz Mellet, C., and García Fernández, J. M. (2001). Synthesis and evaluation of calystegine B2 analogues as glycosidase inhibitors. Journal of Organic Chemistry, 66(23): 7604-14.

50.     EMA. (2022). Zavesca (miglustat): Summary of product characteristics. European Medicines Agency. Access https://www.ema.europa.eu

51.     Alonzi, D. S., Scott, K. A., Dwek, R. A., and Zitzmann, N. (2018). Iminosugar antivirals: The therapeutic potential of glycosidase inhibitors for hepatitis and other viruses. Antiviral Research, 158: 79-94.

52.     Nash, R.J., Kato, A., Yu, C.Y., and Fleet, G. W. (2011). Iminosugars as therapeutic agents: recent advances and promising trends. Future Medicine Chemistry, 3(12): 1513-21.

53.     Terry D. Butters, Raymond A. Dwek, Frances M. Platt (2005). Iminosugar inhibitors for treating the lysosomal glycosphingolipido ses, Glycobiology, 15(10): 43R-52R.

54.     Alonzi DS, Scott KA, Dwek RA, Zitzmann N (2017). Iminosugar antivirals: the therapeutic sweet spot. Biochemistry Society Trans, 45(2): 571-582.

55.     Singh, S. D. (2024). Treating hypertension: Important for heart and kidney health. Journal of Family Medicine and Primary Care, 13(2): 101-105.

56.     Kato, A., Nakagome, I., Sato, K., Yamamoto, A., Adachi, I., Nash, R. J., and Hirono, S. (2016). Docking study and biological evaluation of pyrrolidine-based iminosugars as pharmacological chaperones for Gaucher disease. Organic & Biomolecular Chemistry, 14(3): 1039-1048.

57.     Pastores, G. M., Hughes, D. A., and Grabowski, G. A. (2020). Gaucher disease: Pathophysiology, clinical presentation, and therapy. American Journal of Hematology, 95(1): 43-45.

58.     Nair, A. K. N., Rankin, C., and Butters, T. D. (2019). Structural insights into iminosugar interactions with glycosidases. Glycobiology, 29(11): 785-797.

59.     Wang, H., Zhou, J., and Zhang, Y. (2021). Design and synthesis of monovalent α-L-fucosidase inhibitors via amide coupling. Molecules, 26(22): 6945.

60.     Bekri, S., Ouzzine, M., and Netter, P. (2022). α-L-Fucosidase: Biochemical function and therapeutic potential. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1868(12): 166543.

61.     Wu, L., Pan, Q., and Li, X. (2021). Targeting α-L-fucosidase in cancer progression: Emerging strategies. Frontiers in Oncology, 11: 789654.

62.     Durantie, E., Werz, D. B., and Seeberger, P. H. (2019). Chemoenzymatic synthesis of carbohydrates and glycomimetics. Chemical Reviews, 119(7): 3883-3962.

63.     McEachern, K. A., Fung, J., and Valenzano, K. J. (2020). Industrial development of iminosugar therapeutics: Miglustat as a case study. Trends in Biotechnology, 38(12): 1357-1369.

64.     Butters, T. D., and Dwek, R. A. (2021). Glycomimetics in clinical use: The story of miglustat. Drug Discovery Today, 26(9): 2115-2124.

65.     Esposito, A., D’Alonzo, D., De Fenza, M., De Gregorio, E., Tamanini, A., Lippi, G., ... and Guaragna, A. (2020). Synthesis and therapeutic applications of iminosugars in cystic fibrosis. International Journal of Molecular Sciences, 21(9): 3353.

66.     Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F., and Tifft, C. J. (2019). Lysosomal storage diseases. Nature Reviews Disease Primers, 5(1): 1-21.

67.     Mikhailov, A., Jensen, K., and Platt, F. M. (2021). Expanding therapeutic applications of iminosugars: From lysosomal storage disorders to oncology. Nature Reviews Drug Discovery, 20(11): 841-860.

68.     Gutiérrez, M. C., and Fernández, M. J. (2023). Biocatalysis in iminosugar synthesis: Advances in enzymatic oxidation and reductive transformations. ACS Catalysis, 13(5): 3221-3235.

69.     Dzau, V. J., and Antman, E. M. (2021). The cardiovascular continuum and renin-angiotensin–aldosterone system blockade. Journal of the American College of Cardiology, 78(9): 941-954.

70.     Fyhrquist, F., and Saijonmaa, O. (2020). Renin–angiotensin system revisited. Journal of Internal Medicine, 288(2): 161-175.

71.     Cao, D. Y., Spivia, W. R., Veiras, L. C., Khan, Z., Peng, Z., Jones, A. E., Bernstein, E. A., Saito, S., Okwan-Duodu, D., Parker, S. J., Giani, J. F., Divakaruni, A. S., Van Eyk, J. E., and Bernstein, K. E. (2020). ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. Journal of Biological Chemistry, 295(5): 1369-1384.

72.     Shirbhate, E., Pandey, J., Patel, V. K., Kamal, M., Jawaid, T., Gorain, B., Kesharwani, P., and Rajak, H. (2021). Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: a potential approach for therapeutic intervention. Pharmacology Reports, 73(6): 1539-1550.

73.     Bernstein, K. E., Ong, F. S., Blackwell, W.-L. B., Shah, K. H., Giani, J. F., Gonzalez-Villalobos, R. A., Shen, X. Z., and Fuchs, S. (2013). A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacological Reviews, 65(1): 1-46.

74.     Brown, N. J., and Vaughan, D. E. (2020). Angiotensin-converting enzyme inhibitors. Circulation Research, 126(12): 1682-1700.

75.     Patel, R., Shahane, S., and Singh, R. (2019). Rational design of ACE inhibitors: Role of proline and its analogs. Bioorganic & Medicinal Chemistry Letters, 29(14): 1711-1719.

76.     Ferrario, C. M., and Strawn, W. B. (2019). Role of the renin-angiotensin-aldosterone system and proline-derived drugs in cardiovascular disease. American Journal of Medicine, 132(2): 123-134.

77.     Kokkinos, P., Faselis, C., and Myers, J. (2022). ACE inhibitors and their pleiotropic effects in hypertension and beyond. Current Hypertension Reports, 24(5): 145-156.

78.     He, Y., Zhao, J., Xu, X., and Ma, Y. (2021). Structural diversity of ACE inhibitors: Advances in design and therapeutic perspectives. European Journal of Medicinal Chemistry, 225: 113803.

79.     Watanabe, Y., and Yasuda, S. (2020). Captopril: Revisiting the first ACE inhibitor in cardiovascular therapy. Hypertension Research, 43(6): 563-573.

80.     Messerli, F. H., Bangalore, S., & Bavishi, C. (2018). Angiotensin-converting enzyme inhibitors in hypertension: To use or not to use? Journal of the American College of Cardiology, 71(13): 1474-1482.

81.     Mahmood, S. S., and Levy, D. (2020). Lisinopril in heart failure management: Past, present, and future. European Heart Journal Supplements, 22: 112-118.

82.     Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R., and Dagenais, G. (2000). Effects of an angiotensin-converting–enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The New England Journal of Medicine, 342(3): 145-153.

83.     Bakris, G. L., Sica, D., Weber, M., White, W. B., Roberts, A., Perez, A., Cao, C., Kupfer, S., and Cao, C. (2019). The comparative effects of benazepril and amlodipine in hypertensive patients: Long-term outcomes. Journal of Clinical Hypertension, 21(9): 1342-1350.

84.     Nair, A. K. N., Rankin, C., and Butters, T. D. (2019). Structural insights into iminosugar interactions with glycosidases. Glycobiology, 29(11): 785-797.