Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1350
Research Article
Tailoring nanocellulose properties
from spent coffee grounds via controlled sulphuric acid hydrolysis
Sabiha Hanim Saleh,1,2 Nur
Risha Umaira Shaiful Bahri,1 Norizan Ahmat,3 Shariff
Ibrahim,1,2 and Noraini Hamzah,1,2*
1School of Chemistry and
Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
2Industrial Waste Conversion
Technology Research Group, Faculty of Applied Sciences, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
3Centre of Foundation Studies,
Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil,
Selangor, Malaysia
*Corresponding author: pnoraini@uitm.edu.my
Received: 19 September 2024; Revised: 22 August 2025;
Accepted: 25 August 2025; Published: 16 October 2025
References
1.
An, B. H., Jeong, H., Kim,
J.-H., Park, S., Jeong, J.-H., Kim, M. J. and Chang, M. (2019). Estrogen
receptor-mediated transcriptional activities of spent coffee grounds and spent
coffee grounds compost, and their phenolic acid constituents. Journal of
Agricultural and Food Chemistry, 67 (31): 8649-8659.
2.
McNutt, J. and He, Q. (2019). Spent coffee grounds: A review on current
utilization. Journal of Industrial and Engineering Chemistry, 71: 78-88.
3.
Sallam,
R. M. A. (2020). Landfill emissions and their impact on the environment. International
Journal of Chemical Studies, 8 (2): 1567-1574.
4.
Vardon, D.R., Moser, B.R., Zheng, W.,
Witkin, K., Evangelista, R.L., Strathmann, T.J., Rajagopalan, K. and Sharma,
B.K. (2013). Complete utilization of spent coffee grounds to produce biodiesel,
bio-oil, and biochar. ACS Sustainable Chemistry & Engineering, 1:
1286–1294.
5.
Shi, C., Chen, Y., Yu, Z., Li, S.,
Chan, H., Sun, S., Chen, G., He, M. and Tian, J, (2021). Sustainable and
superhydrophobic spent coffee ground-derived holocellulose nanofibers foam for
continuous oil/water separation. Sustainable Materials and Technologies,
28: e00277
6. Luo,
X., Zhou, L., Wang, Y., Xiang, J., Zhang, H., Tao, R., Li, J., Wang, B. and
Chen, R. (2024). Spent coffee ground-based cellulose nanofiber/reduced graphene
oxide aerogel for efficient solar-driven interfacial evaporation via
directional freezing technology. Industrial Crops & Products, 214:
118528.
7. Choe,
U. (2025). Valorization of spent coffee grounds and their applications in food
science. Current Research in Food Science, 10: 101010.
8.
Gupta,
P. K., Raghunath, S. S., Prasanna, D. V., Venkat, P., Shree, V., Chithananthan,
C., Choudhary, S., Surender, K. and Geetha, K. (2019). An update on overview of
cellulose, its structure and applications. In Cellulose. IntechOpen, UK: pp.
1-21.
9.
Megashah,
L. N., Ariffin, H., Zakaria, M. R. and Hassan, M. A. (2018). Properties of
cellulose extract from different types of oil palm biomass. IOP Conference
Series: Materials Science and Engineering, 368 (1): 012049.
10. Collazo-Bigliardi,
S., Ortega-Toro, R. and Chiralt Boix, A. (2018). Isolation and characterisation
of microcrystalline cellulose and cellulose nanocrystals from coffee husk and
comparative study with rice husk. Carbohydrate Polymers, 191: 205-215.
11. Shen, R.,
Xue, S., Xu, Y., Liu, Q., Feng, Z., Ren, H., Zhai, H. and Kong, F. (2020).
Research progress and development demand of nanocellulose reinforced polymer
composites. Polymers, 12(9): 2113.
12. Phanthong,
P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A. and Guan, G. (2018).
Nanocellulose: Extraction and application. Carbon Resources Conversion,
1 (1): 32–43.
13. Trache, D.,
Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N. and
Hussin, M. H. (2020). Nanocellulose: From fundamentals to advanced applications.
Frontiers in Chemistry, 6(8):392.
14. Aspler, J., Bouchard, J., Hamad, W.,
Berry, R., Beck, S., Drolet, F. and Zou, X. (2013). Review of nanocellulosic
products and their applications. Biopolymer Nanocomposites, 461-508.
15. Vijayanand, C., Kamaraj,
S., Karthikeyan, S. and Sriramajayam, S. (2016). Characterization of indigenous
biomass. International Journal of Agriculture Sciences, 8(50): 2124-2127.
16. Bacha, E. G., Demsash, H. D. (2021).
Extraction and characterisation of nanocellulose from eragrostis teff straw. Research
square, 1-26.
17. Wang, Q. and Sarkar, J. (2018).
Pyrolysis behaviors of waste coconut shell and husk biomasses. International
Journal of Energy Production and Management, 3(1): 34-43.
18. Rashid, E. S. A., Gul, A., Yehya, W.
A. H. and Julkapli, N. M. (2021). Physico-chemical characteristics of
nanocellulose at the variation of catalytic hydrolysis process. Heliyon, 7(1):
e07267.
19. Zergane, H., Abdi, S., Xu, H.,
Hemming, J., Wang, X., Willför, S. and Habibi, Y. (2020). Ampelodesmos
mauritanicus a new sustainable source for nanocellulose substrates. Industrial
Crops and Products, 144: 112044.
20. Maciel, M. M. Á. D., de Carvalho
Benini, K. C. C., Voorwald, H. J. C. and Cioffi, M. O. H. (2019). Obtainment
and characterisation of nanocellulose from an unwoven industrial textile cotton
waste: Effect of acid hydrolysis conditions. International journal of
biological macromolecules, 126: 496-506.
21. Zuluaga, R., Hoyos, C. G.,
Velásquez-Cock, J., Vélez-Acosta, L., Palacio Valencia, I., Rodríguez Torres,
J. A. and Gañán Rojo, P. (2024). Exploring spent coffee grounds: Comprehensive
morphological analysis and chemical characterization for potential uses. Molecules,
29 (24): 5866.
22. Singh, T. A., N. Pal · P.
Sharma, and Passari, A. K. (2023). Spent coffee ground: Transformation from
environmental burden into valuable bioactive metabolites. Reviews in
Environmental Science and Biotechnology, 22: 887-898.
23. Dhali, K., Ghasemlou, M., Daver, F.,
Cass, P. and Adhikari, B. (2021). A review of nanocellulose as a new material
towards environmental sustainability. Science of the Total Environment,
775: 145871.
24. Tesfaye,
A., Workie, F. and Kumar, V. S. (2022). Production and characterization of
coffee husk fuel briquettes as an alternative energy source. Advances in
Materials Science and Engineering, 2022: 1-13.
25. Tolessa, B. and Tibba, G. S. (2022). Utilization
of Coffee Husk as an Alternative Source: A Current Trend. 42(1): 18-30.
26. Jiang, F. and Hsieh, Y. Lo. (2015).
Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate
Polymers, 122: 60-68.
27. Somphol, W., Prapainainar, P.,
Sae-Oui, P., Loykulnant, S. and Dittanet, P. (2018). Extraction of
nanocellulose from dried rubber tree leaves by acid hydrolysis. Materials
Science Forum, 936: 37-41.
28. Gonçalves, B. M. M., Camillo, M. de
O., Oliveira, M. P., Carreira, L. G., Moulin, J. C., Neto, H. F., de Oliveira,
B. F., Pereira, A. C. and Monteiro, S. N. (2021). Surface treatments of coffee
husk fiber waste for effective incorporation into polymer biocomposites. Polymers,
13 (3428): 1-22.
29. Kusmono,
Listyanda, R. F., Wildan, M. W. and Ilman, M. N. (2020). Preparation and
characterization of cellulose nanocrystal extracted from ramie fibers by acid
hydrolysis. Heliyon, 6(11): e05486.
30. Mamat Razali, N. A.,
Ismail, M. F. and Abdul Aziz, F. (2021). Characterization of nanocellulose from
Indica rice straw as reinforcing agent in epoxy-based nanocomposites. Polymer
Engineering and Science, 61(5): 1594-1606.
31. Dominic, M., Joseph, R., Begum, P.
S., Kanoth, B. P., Chandra, J. and Thomas, S. (2020). Green tire technology:
Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB)
in natural rubber (NR) compounding. Carbohydrate polymers, 230(41):
115620.
32. Rashid, S. and Dutta, H. (2020).
Characterisation of nanocellulose extracted from short, medium, and long grain
rice husks. Industrial Crops and Products, 154: 112627.