Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1350

 

Research Article

 

Tailoring nanocellulose properties from spent coffee grounds via controlled sulphuric acid hydrolysis

 

Sabiha Hanim Saleh,1,2 Nur Risha Umaira Shaiful Bahri,1 Norizan Ahmat,3 Shariff Ibrahim,1,2 and Noraini Hamzah,1,2*

 

1School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Industrial Waste Conversion Technology Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia

 

*Corresponding author: pnoraini@uitm.edu.my

 

Received: 19 September 2024; Revised: 22 August 2025; Accepted: 25 August 2025; Published: 16 October 2025

 

Abstract

Spent coffee grounds (SCG) are an abundant agricultural residue rich in cellulose, which can be converted into nanocellulose (NC), a renewable, biodegradable material with high crystallinity and strength. However, extracting NC requires careful control of process conditions to maximise yield while preserving structural integrity. In this study, the effect of sulphuric acid (H₂SO₄) concentration on NC production from SCG cellulose was systematically investigated. Cellulose was first obtained via alkaline treatment and delignification, followed by acid hydrolysis at four H₂SO₄ concentrations (45, 50, 55, and 60 wt%) under controlled temperature, reaction time, and fibre-to-acid ratio. The yield of NC increased from 66.69 ± 0.81% at 45 wt% to 78.58 ± 1.90% at 60 wt%, with the crystallinity index rising from 54% in cellulose to above 90% at 50–55 wt%. The optimal condition was identified at 55 wt% H₂SO₄, achieving 77.24 ± 2.03% yield and 93% crystallinity while maintaining the NC structure. Thermal analysis showed reduced stability in NC compared to cellulose due to sulphate group incorporation. These results demonstrate that precise control of acid concentration is essential for producing high-quality NC from SCG for sustainable material applications.

 

Keywords: cellulose, nanocellulose, spent coffee grounds, sulphuric acid

 


References

1.      An, B. H., Jeong, H., Kim, J.-H., Park, S., Jeong, J.-H., Kim, M. J. and Chang, M. (2019). Estrogen receptor-mediated transcriptional activities of spent coffee grounds and spent coffee grounds compost, and their phenolic acid constituents. Journal of Agricultural and Food Chemistry, 67 (31): 8649-8659.

2.      McNutt, J. and He, Q. (2019). Spent coffee grounds: A review on current utilization. Journal of Industrial and Engineering Chemistry, 71: 78-88.

3.      Sallam, R. M. A. (2020). Landfill emissions and their impact on the environment. International Journal of Chemical Studies, 8 (2): 1567-1574.

4.      Vardon, D.R., Moser, B.R., Zheng, W., Witkin, K., Evangelista, R.L., Strathmann, T.J., Rajagopalan, K. and Sharma, B.K. (2013). Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustainable Chemistry & Engineering, 1: 1286–1294.

5.     Shi, C., Chen, Y., Yu, Z., Li, S., Chan, H., Sun, S., Chen, G., He, M. and Tian, J, (2021). Sustainable and superhydrophobic spent coffee ground-derived holocellulose nanofibers foam for continuous oil/water separation. Sustainable Materials and Technologies, 28: e00277

6.      Luo, X., Zhou, L., Wang, Y., Xiang, J., Zhang, H., Tao, R., Li, J., Wang, B. and Chen, R. (2024). Spent coffee ground-based cellulose nanofiber/reduced graphene oxide aerogel for efficient solar-driven interfacial evaporation via directional freezing technology. Industrial Crops & Products, 214: 118528.

7.      Choe, U. (2025). Valorization of spent coffee grounds and their applications in food science. Current Research in Food Science, 10: 101010.

8.      Gupta, P. K., Raghunath, S. S., Prasanna, D. V., Venkat, P., Shree, V., Chithananthan, C., Choudhary, S., Surender, K. and Geetha, K. (2019). An update on overview of cellulose, its structure and applications. In Cellulose. IntechOpen, UK: pp. 1-21.

9.      Megashah, L. N., Ariffin, H., Zakaria, M. R. and Hassan, M. A. (2018). Properties of cellulose extract from different types of oil palm biomass. IOP Conference Series: Materials Science and Engineering, 368 (1): 012049.

10.   Collazo-Bigliardi, S., Ortega-Toro, R. and Chiralt Boix, A. (2018). Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191: 205-215.

11.   Shen, R., Xue, S., Xu, Y., Liu, Q., Feng, Z., Ren, H., Zhai, H. and Kong, F. (2020). Research progress and development demand of nanocellulose reinforced polymer composites. Polymers, 12(9): 2113.

12.   Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A. and Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1 (1): 32–43.

13.   Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N. and Hussin, M. H. (2020). Nanocellulose: From fundamentals to advanced applications. Frontiers in Chemistry, 6(8):392.

14.   Aspler, J., Bouchard, J., Hamad, W., Berry, R., Beck, S., Drolet, F. and Zou, X. (2013). Review of nanocellulosic products and their applications. Biopolymer Nanocomposites, 461-508.

15.   Vijayanand, C., Kamaraj, S., Karthikeyan, S. and Sriramajayam, S. (2016). Characterization of indigenous biomass. International Journal of Agriculture Sciences, 8(50): 2124-2127.

16.   Bacha, E. G., Demsash, H. D. (2021). Extraction and characterisation of nanocellulose from eragrostis teff straw. Research square, 1-26.

17.   Wang, Q. and Sarkar, J. (2018). Pyrolysis behaviors of waste coconut shell and husk biomasses. International Journal of Energy Production and Management, 3(1): 34-43.

18.   Rashid, E. S. A., Gul, A., Yehya, W. A. H. and Julkapli, N. M. (2021). Physico-chemical characteristics of nanocellulose at the variation of catalytic hydrolysis process. Heliyon, 7(1): e07267.

19.   Zergane, H., Abdi, S., Xu, H., Hemming, J., Wang, X., Willför, S. and Habibi, Y. (2020). Ampelodesmos mauritanicus a new sustainable source for nanocellulose substrates. Industrial Crops and Products, 144: 112044.

20.   Maciel, M. M. Á. D., de Carvalho Benini, K. C. C., Voorwald, H. J. C. and Cioffi, M. O. H. (2019). Obtainment and characterisation of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions. International journal of biological macromolecules, 126: 496-506.

21.   Zuluaga, R., Hoyos, C. G., Velásquez-Cock, J., Vélez-Acosta, L., Palacio Valencia, I., Rodríguez Torres, J. A. and Gañán Rojo, P. (2024). Exploring spent coffee grounds: Comprehensive morphological analysis and chemical characterization for potential uses. Molecules, 29 (24): 5866.

22.   Singh, T. A., N. Pal · P. Sharma, and Passari, A. K. (2023). Spent coffee ground: Transformation from environmental burden into valuable bioactive metabolites. Reviews in Environmental Science and Biotechnology, 22: 887-898.

23.   Dhali, K., Ghasemlou, M., Daver, F., Cass, P. and Adhikari, B. (2021). A review of nanocellulose as a new material towards environmental sustainability. Science of the Total Environment, 775: 145871.

24.   Tesfaye, A., Workie, F. and Kumar, V. S. (2022). Production and characterization of coffee husk fuel briquettes as an alternative energy source. Advances in Materials Science and Engineering, 2022: 1-13.

25.   Tolessa, B. and Tibba, G. S. (2022). Utilization of Coffee Husk as an Alternative Source: A Current Trend. 42(1): 18-30.

26.   Jiang, F. and Hsieh, Y. Lo. (2015). Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers, 122: 60-68.

27.   Somphol, W., Prapainainar, P., Sae-Oui, P., Loykulnant, S. and Dittanet, P. (2018). Extraction of nanocellulose from dried rubber tree leaves by acid hydrolysis. Materials Science Forum, 936: 37-41.

28.   Gonçalves, B. M. M., Camillo, M. de O., Oliveira, M. P., Carreira, L. G., Moulin, J. C., Neto, H. F., de Oliveira, B. F., Pereira, A. C. and Monteiro, S. N. (2021). Surface treatments of coffee husk fiber waste for effective incorporation into polymer biocomposites. Polymers, 13 (3428): 1-22.

29.   Kusmono, Listyanda, R. F., Wildan, M. W. and Ilman, M. N. (2020). Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by acid hydrolysis. Heliyon, 6(11): e05486.

30.   Mamat Razali, N. A., Ismail, M. F. and Abdul Aziz, F. (2021). Characterization of nanocellulose from Indica rice straw as reinforcing agent in epoxy-based nanocomposites. Polymer Engineering and Science, 61(5): 1594-1606.

31.   Dominic, M., Joseph, R., Begum, P. S., Kanoth, B. P., Chandra, J. and Thomas, S. (2020). Green tire technology: Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding. Carbohydrate polymers, 230(41): 115620.

32.   Rashid, S. and Dutta, H. (2020). Characterisation of nanocellulose extracted from short, medium, and long grain rice husks. Industrial Crops and Products, 154: 112627.