

MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES

Journal homepage: https://mjas.analis.com.my/

Review Article

Sorbent based extraction for pre-concentration of antidepressant drugs: A review

Khirtana Raveendran¹, 'Aina Dayana Mohd Roslan¹, Hedy Ng Siew Mei¹, Nurul Syamimi Ahmad Sidi¹, Saw Hong Loh¹, and Wan Mohd Afiq Wan Mohd Khalik^{1,2*}

¹Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia ²Water Analysis Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

*Correspondence: wan.afiq@umt.edu.my

Received: 15 February 2025; Revised: 5 June 2025; Accepted: 18 June 2025; Published: 22 August 2025

Abstract

The detection and quantification of antidepressant drugs in biological and environmental samples are crucial for therapeutic drug monitoring, forensic analysis, and environmental safety. Sorbent-based extraction techniques have emerged as effective methods for the pre-concentration of these drugs, offering advantages such as high sensitivity, minimal solvent consumption, and improved selectivity. Over the decade (2015 to 2025), 92 publications have documented progress in the development and application of sorbent materials for the detection and quantification of antidepressants in various environmental and biological matrices. This review provides a comprehensive overview of various sorbent materials, including carbon-based, polymeric, and magnetic sorbents, emphasizing their extraction mechanisms, efficiency, and compatibility with different analytical techniques. Additionally, the integration of novel nanomaterials and functionalized sorbents has significantly enhanced extraction performance, enabling better analyte recovery and lower detection limits. The article also discusses recent advancements, optimization strategies, and the potential of sorbent-based techniques in pharmaceutical and environmental applications. Finally, current challenges, including sorbent stability, reusability, and matrix effects, are examined, along with future perspectives to further improve the efficiency and sustainability of these extraction methods.

Keywords: emerging contaminant, functionalise materials, microextraction, psychoactive drugs, solid-phase extraction

Introduction

Depression is a leading mental health disorder worldwide and cause of global disease burden, recognized as a severe and often chronic illness. Symptoms of depression include mood disturbances, persistent fatigue, sleep disruptions, loss of interest and motivation, impaired social and occupational functioning, and, in severe cases, suicidal thoughts or behaviours [1-3]. Treatment typically involves psychotherapy or pharmacotherapy, primarily using antidepressant drugs. Clinically, depression is diagnosed based on the presence of abnormal positive affect (anhedonia) and negative affect (low mood, feelings of helplessness, coping deficits, and fatigue). Physiological abnormalities associated depression include hyperactivity of the hypothalamicpituitary-adrenal (HPA) axis and dysregulation of the autonomic nervous system [4,5]. Historically, tricyclic antidepressants (TCAs) were the primary pharmacological treatment for depression; however, their use has declined due to significant cardiovascular side effects and the risk of overdose. Currently, second-generation antidepressants drugs, such as selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), and noradrenergic and specific serotonergic antidepressants (NaSSAs), are more commonly prescribed. These medications primarily target serotonin and norepinephrine neurotransmission to alleviate depressive symptoms [6, 7].

In pharmaceutical formulations, the active pharmaceutical ingredient (API) is a main substrate, and following drug administration, its analysis in complex matrices such as biological fluids or environmental samples is essential for both therapeutic drug monitoring and the detection of excreted metabolites. Antidepressant measurement in biofluids ensures drug quality, optimal therapy, and minimal overdose risk [8, 9]. However, these analyses often present challenges due to the complexity of the

sample matrix and the low concentration of target compounds, frequently falling below the detection limits of chromatographic systems. To address these limitations, the application of good sample separation and enrichment techniques utilizing an appropriate carrier system is preferred [10-13].

Conventional approaches such as liquid-liquid extraction (LLE) and solid-phase extraction (SPE) have been widely employed for this purpose. SPE is recognized for its efficient sample clean-up, and its final extracts are typically well-suited for various analytical techniques. Similarly, LLE is a relatively simple and cost-effective method that provides effective sample purification, particularly for plasma samples. However, achieving high analyte enrichment with LLE is often challenging due to limitations in sample volume and material availability. Formation of emulsion is a major drawback during LLE process [14, 15]. Despite their widespread application, LLE present notable drawbacks, including labour-intensive procedures, time-consuming workflows, and a high dependency on organic solvents, raising concerns regarding environmental sustainability. Additionally, these methods are predominantly manual, further limiting their efficiency in high-throughput analyses.

Among the various techniques available for sample preparation, sorbent-based extraction methods have gained significant attention due to their ability to selectively isolate and concentrate target analytes from complex sample matrices. These methods rely on the interactions between the analytes and specially designed sorbent materials, enhancing both sensitivity and selectivity in the extraction process. The growing interest in sorbent-based techniques is driven by the need for more efficient, environmentally friendly, and high-throughput approaches for detecting trace-level antidepressants in biological and environmental samples [16]. Sorbent-based extraction techniques encompass a range of methods, including Solid-Phase Extraction (SPE), Solid-Phase Microextraction (SPME), and emerging microextraction strategies such as Microextraction by Packed Sorbent (MEPS) and Dispersive Solid-Phase Extraction (d-SPE), as illustrated in Figure 1.

SPE, a well-established technique, involves passing a liquid sample through a sorbent-packed column to retain the target analytes, followed by their elution using a suitable solvent. SPE offers multiple advantages, including high selectivity, cleaner extracts, prevention of emulsion formation, reduced solvent consumption, and increased efficiency through automation. Furthermore, the availability of a

wide range of sorbents such as polar, nonpolar, mixedmode, ion-exchange, and polymeric sorbents or their combinations [17]. In contrast, SPME utilizes a coated fibre to adsorb analytes directly from the sample, eliminating the need for large solvent volumes while maintaining high sensitivity. One of the key advantages of sorbent-based approaches is their ability to minimize sample and solvent requirements while achieving high enrichment factors and improved analyte recovery. These methods also offer enhanced selectivity using tailored sorbents, which can be functionalized to target specific antidepressant compounds [18, 19]. As research continues to refine these approaches, the development of novel sorbent materials, such as magnetic and nanostructured sorbents, holds great promise for further improving the efficiency and sustainability of antidepressant analysis in biological and environmental applications.

This review aims to provide a comprehensive overview of the advancements in sorbent-based extraction techniques for the pre-concentration of antidepressant drugs. It will explore various types of sorbents, their properties, and the factors influencing their performance, such as extraction conditions, selection. and matrix interferences. sorbent Additionally, the review also discussed the application of these techniques in both clinical and environmental analysis, highlighting their potential to improve the detection and quantification of antidepressants in complex samples. Ultimately, this article seeks to provide valuable insights into the current state of sorbent-based extraction for antidepressant drug analysis, identifying challenges and opportunities for further development.

Classification of antidepressant drugs

Antidepressant drugs are classified based on their chemical structure, mechanism of action, and specific target pathways in the brain. These medications primarily regulate neurotransmitters serotonin, norepinephrine, and dopamine, which play crucial roles in mood regulation. The major classes of antidepressants include tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs), selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and atypical antidepressants [20, 21]. TCAs are among the oldest classes of antidepressants and function by inhibiting the reuptake of serotonin (e.g., amitriptyline, imipramine, clomipramine, doxepin - tertiary amines) and norepinephrine (e.g., desipramine, nortriptyline, and protriptyline secondary amines), thereby increasing availability in the synaptic cleft [22, 23]. These

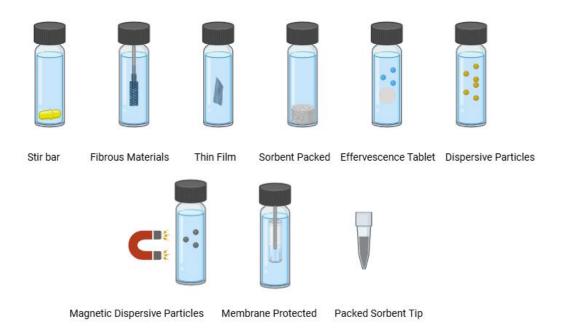


Figure 1. Variations in extraction types using sorbent materials for analytical method development

compounds share a common three-ring chemical structure, with the central ring containing seven or eight carbon atoms, along with a side chain and a terminal amine group [24]. In some cases, amitriptyline and imipramine, widely used in psychiatry, are primarily metabolized in the liver into nortriptyline and desipramine, also have an antidepressant activity [25].

TCAs have a narrow therapeutic index (50.0 to 300.0 µg L⁻¹), which increases the risk of toxicity. While TCAs are effective, their use is often limited due to significant side effects, including dry mouth, constipation, and cardiotoxicity. As a result, they are typically reserved for cases where other antidepressants are ineffective or when patients have comorbid conditions requiring sedative properties. Notably, over the past few decades, suicide cases due to poisoning have risen by 38.5%, with most poisoning-related deaths involving medications. Among antidepressants, TCAs have been reported to have the highest mortality rate [26].

Monoamine oxidase inhibitors (MAOIs) exert their pharmacological effects by inhibiting monoamine oxidase, the enzyme responsible for the breakdown of key neurotransmitters, including serotonin, norepinephrine, and dopamine. This inhibition leads to increased synaptic concentrations of these neurotransmitters, enhancing their mood-regulating

effects. MAO exists in two isoforms, MAO-A and MAO-B, each with distinct substrate selectivity. MAO-A preferentially deaminates serotonin. melatonin, epinephrine, and norepinephrine, whereas MAO-B primarily metabolizes phenylethylamine and trace amines. Both isoforms contribute equally to dopamine degradation. MAOIs are categorized based on their chemical structure into several groups: hydrazines (e.g., isocarboxazid, isoniazid, nialamide, phenelzine), non-hydrazines (e.g., tranylcypromine), selective MAO-A inhibitors (e.g., moclobemide, pirlindole, toloxatone), and selective MAO-B inhibitors (e.g., rasagiline, selegiline) [27]. Due to the risk of hypertensive crises associated with tyraminerich foods, MAOIs require strict dietary restrictions and are generally reserved for cases of treatmentresistant depression.

Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed class of second-generation antidepressants, largely due to their relatively mild side effect profile and high specificity for inhibiting serotonin reuptake. They are effective in treating a broad range of mood disorders, including depression, anxiety, and obsessive-compulsive disorder. Given their favourable tolerability and safety, SSRIs are considered the first-line treatment for many patients, particularly when concerns about drug—drug interactions with other substrates arise [28]. Since their introduction, SSRIs have been widely recognized

for their therapeutic effects in depression, primarily through the modulation of monoaminergic neurotransmission. The main mechanism involves the inhibition of serotonin reuptake at the synaptic cleft, which results in increased serotonin availability and prolonged signalling. This enhancement of serotonergic activity is believed to play a key role in alleviating depressive symptoms [29].

SNRIs, such as venlafaxine and duloxetine, target both serotonin and norepinephrine reuptake. They are often prescribed for patients with major depressive disorder, particularly when accompanied by chronic pain syndromes like fibromyalgia or neuropathy. SNRIs share many advantages with SSRIs but may cause additional side effects such as hypertension in some patients. Atypical antidepressants, such as bupropion and mirtazapine, operate via unique mechanisms and are often used in patients who do not respond well to traditional classes. For instance, bupropion is a norepinephrine-dopamine reuptake inhibitor that also aids in smoking cessation, while mirtazapine enhances serotonin and norepinephrine activity through receptor antagonism and has sedative properties. These drugs expand the options available for individualized treatment, addressing specific patient needs and comorbid conditions [9, 30].

Selection of materials Carbon-based sorbents

Carbon-based materials have emerged as highly efficient sorbents for pre-concentration techniques in the analysis of antidepressant drugs (Table 1). Their unique physicochemical properties, such as high surface area, tuneable porosity, chemical inertness, and ease of functionalization, make them ideal for extracting and enriching trace-level analytes from complex matrices [31]. Activated carbon (AC) is typically derived from carbon-rich precursors such as agricultural byproducts, including peanut shells, coconut shells, and wood, through processes involving carbonization and activation. Agroindustrial residues are promising alternatives to activated carbon due to their high availability, low toxicity, and adsorption capacities [32]. AC is widely used as a sorbent due to its large surface area, high porosity, and cost-effectiveness. Its hydrophobic character and ability to adsorb organic compounds make it effective for pre-concentrating antidepressant drugs from water and biological fluids [33].

Materials formulated as a fine powder or incorporated into extraction setups. Size reduction through grinding is commonly performed to produce a fine powder, enhancing surface area and facilitating uniform packing in extraction systems. Functionalization is another critical step, where chemical agents or functional groups, such as carboxylic or amine groups,

are introduced to improve selectivity and adsorption efficiency for specific antidepressants. Acid treatment with agents like HNO₃ or H₂SO₄ introduces oxygenated functional groups, such as carboxyl (-COOH) and hydroxyl (-OH), on the surface, improving hydrophilicity and adsorption capacity [34].

Base activation using chemicals like KOH, NH₃, or NaOH modifies the pore structure and enhances the surface basicity, promoting interaction with acidic analytes. Thermal activation under controlled atmospheres (e.g., N₂, CO₂) optimizes pore development and tailors the textural properties for specific adsorption applications. Impregnation with metal or metal oxides, such as Fe₃O₄ or ZnO, introduces additional functionalities like magnetic or photocatalytic properties for advanced separation and degradation processes. Polymer coating involves grafting functional polymers onto the AC surface, enabling selective adsorption of target molecules based on chemical affinity [35-37].

Solvent conditioning is utilized to activate the surface of AC, typically through washing with polar (e.g. methanol) or nonpolar (e.g. hexane) solvents, depending on the physicochemical properties of the target analytes. Conditioning steps often involve sequential washing with solvents to remove impurities and stabilize the sorbent. Additionally, AC is immobilized onto solid supports, such as fibres or films, for integration into solid-phase microextraction (SPME) systems or packed into cartridges for solidphase extraction (SPE). The primary mechanisms involved in the interaction between AC and antidepressant drugs, include hydrophobic interactions, π - π stacking, and van der Waals forces. Modifying AC with chemical agents or functional groups further enhances its selectivity and adsorption capacity, enabling its application in solid-phase extraction (SPE) and solid-phase microextraction (SPME) techniques [2, 38].

Carbon nanotubes (CNTs), including single-walled (SWCNTs) and multi-walled (MWCNTs) variants, are synthesized from carbon-rich precursors such as hydrocarbons or biomass through methods like chemical vapor deposition (CVD), are discharge, or laser ablation [39]. CVD works by breaking down a hydrocarbon on a surface. A carbon source is heated in a furnace at 700 °C or higher, where a catalyst-coated substrate (like Fe or Ni) helps the process. Factors such as temperature, catalyst type, and hydrogen (H2) influence the quality and purity of the resulting CNTs [40]. Materials have garnered attention for their exceptional mechanical strength, electrical conductivity, and high adsorption capacity. CNTs are often used in their pristine or functionalized

forms, typically incorporated into SPE or dispersive solid-phase microextraction (d-SPME) setups.

To enhance their compatibility and adsorption performance, several preparation techniques have been employed. Acid treatment using concentrated acids such as nitric (HNO₃) or sulfuric acid (H₂SO₄) introduces oxygen-containing functional groups, such as carboxyl (-COOH) and hydroxyl (-OH), improving hydrophilicity and interaction with analytes [41, 42]. Surface oxidation, achieved through chemical or plasma methods, generates additional active sites for adsorption. Polymer grafting facilitates the attachment of functional polymers or coatings to tailor the chemical properties of the CNT surface. Decoration with metal or metal oxide nanoparticles, such as Fe₃O₄ or Au, imparts magnetic or catalytic properties, enhancing separation and interaction with specific compounds [43]. Covalent or non-covalent functionalization introduces specific functional groups or molecules, such as amino (-NH2) or thiol (-SH) groups, to improve selectivity for target analytes through specific binding interactions [44, 45]. These approaches enable the modification of CNTs to serve as versatile and efficient sorbents in analytical and environmental applications.

The adsorption of aromatic antidepressants like amitriptyline and paroxetine onto CNTs is driven primarily by π - π interactions between the aromatic structures of the drugs and the graphitic surface of the CNTs [46]. Functionalized CNTs, modified with carboxylic or hydroxyl groups, enhance dispersibility in aqueous media and introduce specific interactions such as hydrogen bonding, improving the selectivity and efficiency of the extraction process [47]. Challenges associate CNTs include their tendency to aggregate due to strong van der Waals forces, which can limit their effective surface area, and potential difficulties in separating and recovering CNTs from the sample matrix, especially in dispersive techniques [48, 49]. Additionally, the high cost of CNT synthesis and concerns about their environmental and biological safety may restrict their broader application.

Graphene and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are typically synthesized from graphite using methods such as chemical exfoliation, Hummers' method, or chemical vapor deposition (CVD). Materials exhibit superior adsorption properties due to their twodimensional structure and high surface area. Several preparation methods enhance their compatibility as sorbents. Oxidation of graphene using agents like concentrated sulfuric acid and potassium permanganate produces graphene oxide (GO), introducing oxygen-containing functional groups carboxyl, hydroxyl), which increase hydrophilicity and adsorption capacity. Reduction of GO to rGO using chemical (e.g., hydrazine, ascorbic acid) or thermal methods restores the conductivity and structural integrity, while maintaining some functional groups for enhanced adsorption [50, 51].

Polymer functionalization involves grafting polymers such as polyethyleneimine or polyaniline onto the graphene surface, allowing selective adsorption through specific interactions. Metal or metal oxide decoration incorporates nanoparticles (e.g., Au, Ag, Fe₃O₄) onto graphene, enhancing adsorption by providing additional active sites and improving specific interactions with target analytes. Intercalation with organic or inorganic molecules involves inserting specific molecules between graphene layers, which can modify the surface properties and enhance selective sorption [52].

For extraction applications, graphene-based sorbents are commonly formulated as dispersions for dispersive solid-phase extraction (d-SPE) or incorporated into SPE cartridges, taking advantage of their high surface area and versatile functionalization options [53]. The adsorption of antidepressants onto graphene-based materials is facilitated by mechanisms such as π - π stacking with the aromatic structures of the drugs, hydrogen bonding with oxygen-containing functional groups in GO, and electrostatic interactions depending on the drug's charge and the surface properties of the sorbent [54].

Despite their excellent adsorption properties, challenges in using graphene-based materials include their potential aggregation in aqueous systems, which can reduce the accessible surface area, and the complex synthesis and functionalization processes required to enhance dispersibility and selectivity. Additionally, the high cost of production and the potential environmental impact of graphene derivatives may pose limitations for large-scale The incorporation applications. of magnetic nanoparticles into carbon-based materials combines the high adsorption capacity of carbon with the magnetic responsiveness of iron oxides, enabling easy separation using external magnets [55].

Magnetic graphene oxide and magnetic CNTs have been successfully employed for the extraction of antidepressants from environmental and biological samples. Magnetic nanoparticles are highly valued for their large surface area, ease of surface modification, and recyclability, making them ideal adsorbents in the sorbent-based extraction [56]. Superparamagnetic nanoparticles like Fe₃O₄ are magnetically responsive but retain no residual magnetism once the field is removed, enabling easy extraction without centrifugation or filtration [57].

Carbon dots (CDs) are synthesized from a variety of carbon-rich precursors, such as organic compounds, biomass, or carbon-based polymers, through methods like hydrothermal carbonization, laser ablation, or chemical oxidation [58]. CDs are a novel class of carbon-based nanomaterials that photoluminescence and tuneable surface properties. Their small size, high surface-to-volume ratio, and ease of surface modification make them attractive for pre-concentration applications. CDs are often formulated as dispersions or incorporated into composite materials to serve as sorbents in techniques such as dispersive solid-phase extraction (d-SPE) or fluorescence-based detection systems. Several preparation methods enhance their compatibility and adsorption performance. Surface functionalization with carboxyl (-COOH), amine (-NH₂), or hydroxyl (-OH) groups through oxidation or chemical treatments improves their hydrophilicity and increases the number of active sites for adsorption. Covalent or nongrafting of polymers polyethyleneimine or polyvinyl alcohol onto the CD surface introduces selective chemical functionalities, enhancing their affinity for target analytes. Doping with heteroatoms like nitrogen, sulphur, phosphorus modifies the electronic properties of CDs, boosting their interaction with specific molecules and improving adsorption efficiency [59].

Metal nanoparticle incorporation involves loading CDs with metal nanoparticles (e.g., Ag, Au, Fe₃O₄), imparting additional catalytic or magnetic properties, thereby expanding their functionality as sorbents. Hydrothermal or solvothermal synthesis enables the incorporation of various functional molecules into the CDs' structure, allowing fine control over their size, surface charge, and reactivity, which further enhances their ability to adsorb a variety of compounds [60]. CDs functionalized with specific ligands or polymers can selectively adsorb antidepressants like duloxetine and citalopram, offering promising avenues for fluorescence-based detection. The adsorption of antidepressants onto CDs is facilitated by mechanisms such as hydrogen bonding, electrostatic interactions, and hydrophobic effects, enhanced by the functional groups or ligands present on the CDs' surface.

Porous carbon materials, such as mesoporous carbon and metal-organic framework (MOF)-derived carbons, are synthesized from carbon-rich precursors, including organic polymers or MOFs, through processes like carbonization and activation [61, 62]. These materials are typically formulated as powders or incorporated into SPE cartridges, leveraging their hierarchical porosity and high surface area for efficient adsorption [63]. Solvothermal synthesis is a common method where metal salts and organic ligands are reacted in a solvent under elevated

temperature and pressure to form highly crystalline MOFs, optimizing their structural properties for specific adsorption tasks. Post-synthesis functionalization introduces specific functional groups (e.g., amine, carboxyl) to the MOF structure through reactions with various chemical agents, enhancing interaction with target analytes and improving selectivity. Doping with metals or metal nanoparticles involves incorporating additional metals (e.g., Cu, Zn, Fe) or metal nanoparticles into the MOF structure, which can provide additional active sites and catalytic properties, enhancing adsorption capacity and selectivity. Hydrothermal synthesis employs water as a solvent to promote the formation of MOFs, allowing for the fine-tuning of structural and chemical properties by controlling reaction conditions such as temperature, pressure, and pH [64].

Composite formation involves incorporating MOFs into other materials, such as carbon nanotubes, graphene, or polymers, to combine their sorptive properties with the advantages of the composite materials, improving stability and expanding the range of adsorbates that can be captured. The primary mechanisms driving the adsorption of bulky antidepressants onto porous carbon materials include pore-filling effects, π - π stacking interactions, and van der Waals forces, which facilitate the selective preconcentration of these drugs from complex matrices like urine, serum, and wastewater [65]. Despite their advantages, challenges in using porous carbons include the potential for fouling by matrix components, which can block the pores and reduce adsorption efficiency, as well as the intricate and energy-intensive synthesis processes required to pore achieve the desired structure and functionalization. Additionally, balancing material's hydrophobic and hydrophilic properties to optimize selectivity for specific antidepressants can be complex.

Combining carbon-based materials with other sorbents, such as polymers, silica, or metallic nanoparticles, creates hybrid sorbents with improved functionality. For instance, polymer-coated GO or CNTs can enhance selectivity toward specific antidepressants while retaining the high adsorption capacity of the carbon matrix. These hybrid materials have demonstrated superior performance in multiresidue analysis and matrix effect reduction. Previous study reveals that m-SPE method using magnetic poly(styrene-co-divinylbenzene)/multiwalled CNTs composite enabled efficient and reusable solid-phase extraction of antidepressants from human urine, achieving >89.5% recovery, low detection limits (0.014–0.041 μg/mL), and high precision in capillary electrophoresis analysis [66, 67].

Table 1. Carbon based materials used as adsorbent in extraction procedure for determining antidepressant drugs

Туре	Source	Functionalisation	Method	Extraction Mode	Dosage (mg)	Target Analytes	Instrument	References
Activated carbon	Commercial	Bare	Direct	SPE	5	Amit, Nort	UV-Vis	[36]
	Synthesize	Fe ₃ O ₄	Co-precipitate	m-d-SPE	1000	Esci, Flu, Paro	HPLC-DAD	[68]
	Synthesize	ZnCoAl	Co-precipitate	SPE	100	Flu	HPLC	[35]
	Synthesize	Fe ₃ O ₄	Acid treated	m-SPE	10	Amit, Sert, Flu	HPLC-UV	[69]
	Synthesize	Bare	Pyrolysis	SPE	500	Cit	UV-Vis	[70]
	Synthesize	Fe ₃ O ₄	Alkaline treated	m-SPE	500	Paro	HPLC-DAD	[71]
Graphene	Commercial	Bare	Electrochemical	SPME	-	Clo, Des, Imip	GC-FID	[72]
	Commercial	Bare	Sol-gel	FPSE	-	Amit, Clo, Flu, Paro, Ven	HPLC-UV	[73]
	Synthesize	Fe ₃ O ₄	Hummer	m-SPE	50	Cit, Flu	HPLC-DAD	[12]
	Synthesize	Fe ₃ O ₄	Hummer	SPE	1000	Burp, Sert	LC-MS	[74]
	Synthesize	Fe ₃ O ₄	Co-precipitate	m-SPE	20	Amit, Clo, Imip, Flu	GC-MS	[75]
	Synthesize	Fe_3O_4	Exfoliation and oxidation	m-SPE	1000	Cit	UV-Vis	[76]
	Synthesize	Polyester	Surface grafting	μ-SPE	1.5	Des, Ven	HPLC-FLD	[64]
	Synthesize	PEDOT	Electrodeposition	SPME	20	Amit, Imi, Desi, Map, Nor, Sert	GC-FID	[77]
Carbon nanotubes	Commercial	Fe_3O_4	Acid treated	SPE	14	Flu	UV-Vis	[78]
	Commercial	β-cyclodextrin	Sol-gel	HF-SPME	-	Flu, Nflu	HPLC-DAD	[79]
	Commercial	Glycine	Sol-gel	HF-SPME	-	Des, Ven	HPLC-DAD	[80]
	Commercial	Bare	Acid treatment	SPE	-	Amit	UV-Vis	[44]
	Commercial	-	Salinization	SPME	200	Flu	FS	[81]
	Synthesize	-	Co-precipitate	SPME	0.6	Amit, Chlo	HPLC-UV	[82]
Carbon dot	Synthesize	Fe_3O_4	Emulsion	m-SPE	20	Cit, Sert, Desi	CD-IMS	[83]
	Synthesize	AuNPs	Co-precipitate	SPE	-	Cit, Flu, Sert	UV-Vis	[84]
	Synthesize	PET	Pyrolysis	SPE	100	Flu	UV-Vis	[85]
MOF-carbon based	Synthesize	Fe_3O_4	Step-by-step assembly	m-SPE	5	Amit, Imip	HPLC-UV	[86]
	Synthesize	ZIF-8	Electrochemical	TFME	2	Flu	Fluorimetry	[87]
	Synthesize	Fe ₃ O ₄	One pot	m-SPE	10	Amit, Cit, Flu, Imip, Sert, Ven	HPLC-UV	[88]
	Synthesize	Fe ₃ O ₄	Electrospinning	TFME	-	Amit, Nort	HPLC-UV	[89]

Amit: Amitriptyline hydrochloride; AuNPs: Gold nanoparticles, CD-IMS: Corona Discharge Ion Mobility Spectrometry; Cit: Citalopram; Desi: Desipramine; Esci: Escitalopram; Fe₃O₄: Magnetite nanoparticles; Flu: Fluoxetine; FS: Fluorescent Spectrometry; GC-FID: Gas Chromatography-Flame Ionisation Detector; GC-MS: Gas Chromatography-Mass Spectrometry; HF-SPME: Hallow fibre solid phase microextraction, HPLC: High Performance Liquid Chromatography; HPLC-DAD: High Performance Liquid Chromatography Diode Array Detector; Imip: Imipramine, LC-MS: Liquid Chromatography-Mass Spectrometry; m-d-SPE: magnetic dispersive solid phase extraction; m-SPE: magnetic solid phase extraction; Nort: Nortriptyline; Paro: Paroxetine, PEDOT: Poly(3,4-ethylenedioxythiophene); Sert: Sertaline; SPME: solid phase microextraction; TFME: Thin film microextraction, UV-Vis: Ultraviolet-Visible Light; Ven: Venlafaxine; ZIF: Zeolitic imidazolate framework

Natural-based polymers

Natural-based polymers offer a sustainable and ecofriendly alternative to synthetic sorbents for the preconcentration of antidepressant drugs. Derived from renewable sources such as plants, animals, and microorganisms, these polymers offer biocompatibility, biodegradability, and cost-effectiveness [90]. Their tuneable surface chemistry and ability to form functionalized derivatives make them versatile for applications in solid-phase extraction (SPE), liquid-phase microextraction (LPME), and related techniques. Their adsorption mechanisms primarily involve hydrogen bonding, electrostatic interactions, hydrophobic forces, π - π stacking, and ion exchange, depending on the functional groups present in the polymer structure [91].

Cellulose, one of the most abundant natural polymers, serves as an excellent sorbent due to its hydrophilic surface, high mechanical strength, and chemical versatility. Cellulose-based materials have been used in SPE cartridges and filter papers for sample preparation in analytical workflows. It relies on hydrogen bonding and dipole-dipole interactions for drug adsorption. Functionalized cellulose derivatives, such as carboxylate or aminated forms, introduce additional ionic interactions that enhance selectivity [92]. However, cellulose's limited affinity for nonpolar drugs and its tendency to swell in aqueous environments require structural modifications to improve its performance. Similarly, chitosan, derived from the deacetylation of chitin, is a biopolymer with exceptional adsorption properties which contains amine (-NH₂) and hydroxyl (-OH) groups, interacts strongly with anionic antidepressants such as fluoxetine and sertraline through electrostatic interactions, hydrogen bonding, and van der Waals forces [93]. Chitosan's ability to chelate metal ions further increases its adsorption potential, yet its low solubility at neutral and basic pH levels limits its versatility. The challenge lies in optimizing its functionalization to maintain stability while ensuring high selectivity for target analytes [94].

Alginate, a polysaccharide derived from brown algae, primarily engages in ion exchange with cationic antidepressants due to its carboxyl (-COO⁻) groups. Its adsorption efficiency is pH-dependent, as protonation or deprotonation of functional groups affects drug binding. Alginate's ability to coordinate with metal ions enhances its selectivity, but its weak mechanical strength and excessive swelling behaviour necessitate cross-linking for improved stability. A novel, low-cost alginate-based hydrogel device supported in a polypropylene hollow fibre, as documented by Guzella et al. enabled effective and selective extraction of fluoxetine and norfluoxetine

from human plasma, excluding over 95% of proteins and achieving quantifiable recoveries with satisfactory precision for HPLC-FD analysis. [95, 96]. Likewise, starch and its derivatives, which contain hydroxyl groups capable of forming hydrogen bonds with polar antidepressants, exhibit enhanced adsorption efficiency when modified with functional groups such as carboxyl or amine moieties. However, the hydrophilic nature of native starch limits its ability to capture nonpolar drugs, requiring strategies that balance polarity to optimize extraction capabilities [97, 98].

Proteins such as gelatine, casein, and silk fibroin possess multiple reactive functional groups, allowing them to interact with antidepressant drugs through hydrogen bonding, electrostatic interactions, and covalent bonding. For example, casein's negatively charged residues facilitate interactions with cationic drugs, while silk fibroin enables hydrophobic and π - π interactions with aromatic drug molecules. Despite their versatility, proteins suffer from poor mechanical strength and susceptibility to degradation, which necessitates their incorporation into composite materials to improve their stability and reusability [99].

Natural rubber, characterized by its hydrophobic nature, is particularly suited for extracting lipophilic antidepressants through van der Waals forces and hydrophobic interactions. While it offers a renewable and cost-effective alternative, its efficiency for hydrophilic drugs is limited, requiring functionalization with polar groups such as carboxyl (-COOH) or amine (-NH₂) to enhance selectivity [100, 101]. To date, no specific study has reported the potential use of natural rubber for the extraction or removal of antidepressants.

Despite the numerous advantages of natural-based polymers, challenges such as structural instability, selective adsorption, and efficient desorption must be addressed to optimize their use in analytical workflows. Functionalization strategies must be carefully tailored to enhance adsorption efficiency while maintaining the polymers' sustainability. Future research should focus on developing hybrid materials that combine different natural polymers or integrate nanomaterials to enhance selectivity and mechanical properties. By overcoming these challenges, naturalbased polymer sorbents can serve as viable and environmentally friendly alternatives for preconcentrating antidepressant drugs in various analytical applications [102, 103]. Natural polymerbased materials used as adsorbent are summarized in Table 2.

Table 2. Natural and synthetic polymer-based materials used as adsorbent in extraction procedure for determining antidepressant drugs

Туре	Source	Functionalisation	Method	Extraction Mode	Dosage (mg)	Target Analytes	Instrument	References
Alginate	Commercial	-	Hydrogel	SPME	-	Flu, Nflu	HPLC-FD	[104]
Cellulose	Commercial	-	Drop casting	SPE	-	Ami, Imi, Desi, Tri	HPLC-UV	[105]
	Commercial	PTHF	Sol gel	FPSE	-	Ami, Dul, Flu, Vil	HPLC-PDA	[106]
	Commercial	Octanol	Impregnate	RPD	-	Ami, Flu, Ven	GC-MS	[107]
	Commercial	MMT/PS	Wet deposition	MEPS	-	Flu	Fluorimetry	[108]
	Commercial	Carbowax	Sol gel	FPSE	-	Ami, Cit, Clo, Flu, Par, Sert, Ven	HPLC-PDA	[109]
	Kapok fiber	-	Untreated	SPE	20	Ami, Cit, Imi, Flu, Sert, Ven	HPLC-UV	[110]
Chitosan	Commercial	β-cyclodextrin	Co-precipitate	SPE	100	Desi	HPLC	[111]
	Commercial	β-cyclodextrin	Co-precipitate	m-SPE	100	Ami	HPLC-UV	[112]
	Commercial	Fe ₃ O ₄	Alkaline treatment	m-SPE	25	Flu	Fluorimetry	[113]
	Commercial	GO	Acidic treatment	TFME	-	Flu	HPLC-UV	[114]
	Commercial	GO and Fe ₃ O ₄	Acidic treatment	SPE	20	Flu	PDA	[115]
Polyaniline	Commercial	-	Polymerization	SPE	5	Flu, Nflu	LC-FD	[116]
Polydimethylsiloxane	Commercial	-	Polymerization	SBSE	-	Cit, Dulo, Flu, Mir, Par, Sert	LC-UV	[117]
	Commercial	-	-	SPME	-	Ami, Clo, Tri	GC-MS	[118]
	Commercial	-	Co-polymerization	SPME	-	Cit, Flu, Fluv, Sert, Ven	GC-MS	[119]
Poly(methacrylic acid)	Commercial	-	Co-polymerization	SPE	70	Ami, Clo, Dox, Imi, Nor	HPLC-DAD	[120]
Polypyrrole	Commercial	Fe ₃ O ₄	Co-precipitate	D-μ-SPE	10	Cit, Sert	HPLC-UV	[121]
	Commercial	PDA	In-situ reduction	MEPS	2	Ami, Cit	GC-MS	[122]
	Commercial	-	Doped	SPME	-	Alp, Imi, Sert	IMS	[123]
	Commercial	-	Silanization	IT-SPME	-	Flu, Nflu	LC-FD	[124]
	Commercial	-	Silanization	SPME	35	Imi	IMS	[125]
Polystyrene	Commercial	Fe ₃ O ₄	Co-precipitate	SS-LPME	20	Ami, Sert	GC-MS	[126]
	Commercial	Fe_3O_4	Co-precipitate	D-μ-SPE	-	Ami, Sert	GC-MS	[127]
	Commercial	-	Dipping	μ-SPE	-	Ami, Cit	CE-MS	[128]
Polythiophene	Commercial	-	Electropolymerization	SPME	-	Cit, Flu, Par, Sert	LC-UV	[129]
Polyvinyl alcohol	Commercial	g-C ₃ N ₄	Electrospinning	μ-SPE	4	Clo, Trim	GC-FID	[130]

Amit: Amitriptyline hydrochloride; AuNPs: Gold nanoparticles, CD-IMS: Corona Discharge Ion Mobility Spectrometry; Cit: Citalopram; Desi: Desipramine; Esci: Escitalopram; Fe₃O₄: Magnetite nanoparticles; Flu: Fluoxetine; FS: Fluorescent Spectrometry; GC-FID: Gas Chromatography-Flame Ionisation Detector; GC-MS: Gas Chromatography-Mass Spectrometry; HF-SPME: Hallow fibre solid phase microextraction, HPLC: High Performance Liquid Chromatography; HPLC-DAD: High Performance Liquid Chromatography Diode Array Detector; Imip: Imipramine, LC-MS: Liquid Chromatography-Mass Spectrometry; m-d-SPE: magnetic dispersive solid phase extraction; m-SPE: magnetic solid phase extraction; Nort: Nortriptyline; Paro: Paroxetine, PEDOT: Poly(3,4-ethylenedioxythiophene); Sert: Sertaline; SPME: solid phase microextraction; TFME: Thin film microextraction, UV-Vis: Ultraviolet-Visible Light; Ven: Venlafaxine; ZIF: Zeolitic imidazolate framework

Synthetic-based polymers

Variation of synthetic polymer-based materials used as adsorbent are summarized in Table 3. Polystyrene-Divinylbenzene (PS-DVB) is a highly porous sorbent polymerizing styrene synthesized by divinylbenzene. It interacts with antidepressants primarily through hydrophobic interactions and π - π stacking between its benzene rings and the aromatic structures of the drugs. Functionalization with sulfonic acid (-SO₃H) or amino (-NH₂) groups enhances selectivity toward specific antidepressants [131]. PS-DVB offers excellent stability and a large surface area but suffers from poor wettability in aqueous samples. A major challenge is achieving selectivity for structurally similar drugs while minimizing matrix interferences [132].

Molecularly Imprinted Polymers (MIPs) are tailored sorbents synthesized by polymerizing functional monomers around a template molecule, creating highly selective recognition sites. The adsorption mechanism involves hydrogen bonding, ionic interactions, and hydrophobic effects that enable precise binding of antidepressants [133]. Methacrylic acid (MAA) and acrylamide are commonly used monomers to introduce specific functional groups. MIPs provide exceptional selectivity, but their synthesis is time-consuming, and incomplete template removal may hinder adsorption efficiency. The primary challenge lies in maintaining structural integrity and reusability over multiple extraction cycles [134].

Polyacrylamide (PAM) is synthesized through the polymerization of acrylamide monomers, forming a hydrophilic network that interacts with antidepressants via hydrogen bonding and dipole interactions. It can be functionalized with carboxyl (-COOH) or sulfonic acid (-SO₃H) groups to improve adsorption efficiency. PAM is well-suited for aqueous environments, offering good compatibility with biological samples; however, its adsorption capacity is relatively low. One significant challenge is its tendency to swell in water, which can reduce extraction efficiency and hinder sorbent reuse. Polyvinylpyrrolidone (PVP) is an amphiphilic polymer derived from the polymerization of Nvinylpyrrolidone. It primarily adsorbs antidepressants through hydrogen bonding and dipole-dipole interactions, particularly with nitrogen and oxygencontaining functional groups. PVP can be blended with other polymers or cross-linked to enhance its adsorption capacity. It is biocompatible and highly soluble in various solvents, but its moderate sorption capacity can limit its effectiveness. Additionally, its mechanical strength is relatively low, posing a challenge in maintaining structural stability over prolonged use [135, 136].

Poly(methyl methacrylate) (PMMA) is a robust sorbent synthesized via free radical polymerization of methyl methacrylate monomers [137]. Antidepressant adsorption on PMMA is driven by hydrophobic and van der Waals interactions. Functionalization with hydroxyl (-OH) or carboxyl (-COOH) groups can enhance affinity for polar drugs. PMMA is chemically resistant and stable but lacks strong selectivity for specific antidepressants. A key challenge is its non-selective nature, which may require additional modifications to improve specificity [138].

Polyethylene glycol-based polymers (PEG) are synthesized by cross-linking PEG chains with functional monomers, forming a hydrophilic sorbent. The extraction of antidepressants relies on hydrogen hydrophobic bonding and interactions. Functionalization with amine (-NH₂) or sulfonic acid (-SO₃H) groups improves selectivity [139, 140]. PEGsorbents are biocompatible environmentally friendly but offer lower adsorption capacities than other polymeric materials. Their primary challenge is achieving sufficient drug retention while maintaining a balance between hydrophilicity and selectivity.

Polyaniline (PANI) is a conductive polymer synthesized through oxidative polymerization of aniline monomers. It interacts with antidepressants via electrostatic forces, π - π interactions, and hydrogen bonding. Functionalization with sulfonic acid (-SO₃H) groups enhances its affinity for cationic drugs. For example, a bifunctional sulfonated polyaniline nanofiber mat (NFM) synthesized via oxidative polymerization exhibited high adsorption capacity and reusability for extracting target drugs from water and biological fluids, primarily through hydrogen bonding and ion-exchange interactions. The sorbent enabled rapid, efficient extraction with low detection limits, high recoveries, and minimal adsorbent usage, demonstrating excellent stability over 20 reuse cycles. PANI's advantages include tuneable functionality and excellent electrochemical properties, but it is prone to environmental degradation [141].

Polypyrrole (PPy) is another conductive polymer synthesized through the oxidative polymerization of pyrrole monomers. It adsorbs antidepressants through hydrogen bonding and π-π interactions. Functionalization with carboxyl (-COOH) or sulfonic acid (-SO₃H) groups can further enhance its selectivity. PPy offers good adsorption capacity and conductivity, making it suitable for electrochemical applications. However, it is susceptible to oxidation, which can limit its long-term stability. A previous study documented the synthesis and characterization of PPy/Fe₃O₄ nanocomposites with different dopants,

showing that the sodium-perchlorate-doped version delivered superior extraction of citalopram and sertraline. Using 10 mg of this sorbent under D-μ-SPE conditions (pH 9, optimized adsorption, 120 µL 0.06 mol L⁻¹ HCl in methanol, 2 min elution) and HPLC-UV detection gave linearity from 1-800 µg L⁻¹, detection limits down to 0.2 µg L⁻¹, recoveries of 93–99 %, and successful analysis of human urine and plasma. Other study introduced electromembrane surrounded solid-phase microextraction (EM-SPME) using a PPy-coated fibre as both the cathode and sorbent for the extraction of amitriptyline and doxepin from human blood and urine. The method, optimized for variables such as pH, voltage, and extraction time, achieved low detection limits (0.05-0.3 ng mL⁻¹), high precision, good linearity (up to 50 ng mL⁻¹), and clean chromatograms suitable for analysing complex biological matrices. [121, 142, 143].

Analytical performance

Activated carbon is a well-established sorbent characterized by a high surface area (500-2000 m²/g) and strong hydrophobic interactions, making it effective for antidepressant extraction. The adsorption mechanism is mainly driven by π - π interactions, van der Waals forces, and hydrogen bonding. AC-based sorbents typically exhibit linearity in the range of 0.1– 500 ng/mL, with detection limits as low as 0.2 ng/mL. The recovery rates are generally 85-99%, depending on drug structure and matrix composition. However, strong adsorption forces can hinder desorption, affecting regeneration, which is typically limited to 5-10 cycles. AC's main drawback is its non-selective adsorption, which can lead to matrix interferences and lower extraction specificity for structurally similar antidepressants. This non-specificity may also introduce a higher risk of bias in quantification, especially when co-eluting compounds compete for the same active sites on the sorbent [68, 144].

Graphene and graphene oxide (GO) are highly efficient sorbents due to their large surface area (~2600 m²/g), functional groups (-OH, -COOH, -O-), strong π - π stacking interactions antidepressant molecules. These sorbents exhibit linear ranges of 0.05-500 ng/mL, with LOD values as low as 0.005 ng/mL. Recovery rates typically range from 88-99%, depending on the functionalization of graphene or sample types. A major advantage of graphene is its high sorption capacity (up to 350 mg/g) and better selectivity compared to AC [72-77]. However, graphene tends to aggregate, which can its extraction efficiency, requiring functionalization with polymers or nanoparticles for better dispersion. Despite these advantages, regeneration remains limited (~5-10 cycles) due to structural degradation over repeated use [145, 146].

CNTs, including single-walled (SWCNTs) and multiwalled (MWCNTs), possess a unique cylindrical nanostructure with high adsorption capacities (~200-300 mg/g) due to π - π interactions and hydrophobic forces. They provide excellent linearity (0.05-500 ng/mL) and low detection limits (0.001-1.5 ng/mL), making them ideal for trace-level antidepressant detection. Recovery values typically range from 80-110%, ensuring efficient extraction performance [78-82]. However, CNTs suffer from aggregation and irreversible adsorption, which reduces reusability to about 5-8 cycles unless surface modifications (e.g., carboxylation or amination) are applied [147]. Another limitation is difficulty in dispersion, which affects extraction efficiency in aqueous samples. Thus, it preferred used as fibre types rather than free fine particles.

Carbon dots (CDs) are a new class of carbon-based nanomaterials with tuneable surface chemistry and excellent fluorescence properties. CDs interact with antidepressants via hydrogen bonding, electrostatic interactions, and π - π stacking, providing linearity in the range of 0.1-250 ng/mL, with LOD values around 0.05-1 ng/mL. While their sorption capacity (~100-200 mg/g) is lower than graphene or CNTs, CDs offer high selectivity and fast adsorption kinetics, making them suitable for rapid drug extraction. Recovery rates typically fall between 90-110%, but reusability is limited to 4-8 cycles due to surface oxidation and reduced binding efficiency over time. CDs exhibit challenges such as batch-to-batch variability during synthesis, interference from complex sample matrices, and fluorescence instability due to photobleaching, all of which can compromise their reliability and performance in microextraction applications [148]. CDs also in many attempts formulate with polymers or metal ions to enhance adsorption performance antidepressants.

MOFs are hybrid materials consisting of metal ions and organic linkers, offering ultra-high porosity (~5000 m²/g) and tuneable functional groups. They are particularly effective for antidepressant extraction due to hydrogen bonding, electrostatic interactions, and size-selective adsorption mechanisms. MOFbased sorbents provide excellent linearity (0.01-500 ng/mL) and low detection limits (0.05-5 ng/mL), compared to conventional carbon-based materials. Recovery values are typically above 95%, with sorption capacities exceeding 400 mg/g, making MOFs one of the most efficient sorbents for antidepressants. Their key advantage is selectivity, which can be enhanced by modifying the organic ligands. However, MOFs suffer from poor chemical stability, and their regeneration is often limited to 10-15 cycles before structural degradation [87-89].

Table 3. Analytical performance of sorbent phase extraction using carbon-based materials for determining antidepressant drugs

Type	Extraction Mode	Target Analyte	Sample Type	Detection Limit	Recovery	RSD	Reference
Activated carbon	SPE	Amit, Nort	Water	0.35-1.83 ^d	72-92	<10	[68]
	m-SPE	Amit, Sert, Flu	Biological fluids	1-4 ^d	92-108	<8	[69]
	m-SPE	Paro	Water	0.17^{a}	99	<1	[71]
	ΒΑμΕ	Ami, Dos, Imi, Mia, Mir, Tri	Urine	0.2-1.6 ^a	<12.3	<13.9	[144]
	FPSE	Ami, Flu, Vlz, Dul	Urine	0.38	95-105	4.8	[106]
Graphene	SPME	Desi, Imi, Clo	Plasma, Urine, Milk	0.10 to 0.35	-	<14	[72]
	FPSE	Amit, Clo, Flu, Paro, Ven	Urine	150	25-67	<14	[73]
	SPE	Burp, Sert	Water	-	98	-	[74]
	m-SPE	Amit, Clo, Imip, Flu	Plasma, Urine	0.66-1.03 ^b	55-65	<6	[75]
	m-SPE	Cit	Water	-	98	-	[76]
	SPME	Amit, Imi, Desi, Map, Nor, Sert	Biological fluids	$0.005 \text{-} 0.025^{\circ}$	-	<9	[77]
Carbon nanotubes	UA-DMSPE	Desi, Sert, Cit	Urine, Plasma	0.6-1.5	94-102	< 5.1	[83]
	SPME	Flu	Urine	0.06^{a}	-	<3	[78]
	HF-SPME	Flu, Nflu	Biological fluids, Water	$0.3 - 0.4^{d}$	89-92	<10	[79]
	HF-SPME	Des, Ven	Biological fluids, Water	$0.03 \text{-} 0.07^{\text{d}}$	86-91	<6	[80]
	SPME	Flu	Wastewater	0.001°	96	<1	[81]
	SPME	Amit, Chlo	Water	3.13-3.60°	92-110	<7	[82]
Carbon dot	m-SPE	Cit, Sert, Desi	Biological fluids	0.6-1.5 ^d	94-102	<5	[83]
	SPE	Cit, Flu, Sert	Biological fluids, Urine	0.1e	96-102	<3	[84]
	SPE	Flu	Water	-	95	-	[85]
MOF-carbon based	m-SPE	Amit, Imip	Water, Plasma, Urine	2-4°	57-66	<6	[86]
	TFME	Flu	Biological Fluids	$0.5^{\rm d}$	77-97	<14	[87]
	m-SPE	Amit, Cit, Flu, Imip, Sert, Ven	Plasma, Urine	1.1-2.9 ^d	93-108	<6	[88]
	TFME	Amit, Nort	Plasma, Urine	$0.06 - 0.3^{c}$	91-100	<5	[89]

^aμg/mL; ^b mg/mL; ^c μg/L; ^dng/mL; ^c μm/; Amit: Amitriptyline hydrochloride; AuNPs: Gold nanoparticles, CD-IMS: Corona Discharge Ion Mobility Spectrometry; Cit: Citalopram; Desi: Desipramine; Esci: Escitalopram; Fe₃O₄: Magnetite nanoparticles; Flu: Fluoxetine; FS: Fluorescent Spectrometry; GC-FID: Gas Chromatography-Flame Ionisation Detector; GC-MS: Gas Chromatography-Mass Spectrometry; HF-SPME: Hallow fibre solid phase microextraction, HPLC: High Performance Liquid Chromatography Diode Array Detector; Imip: Imipramine, LC-MS: Liquid Chromatography-Mass Spectrometry; m-d-SPE: magnetic dispersive solid phase extraction; m-SPE: magnetic solid phase extraction; Nort: Nortriptyline; Paro: Paroxetine, PEDOT: Poly(3,4-ethylenedioxythiophene); Sert: Sertaline; SPME: solid phase microextraction; TFME: Thin film microextraction, UV-Vis: Ultraviolet-Visible Light; Ven: Venlafaxine; ZIF: Zeolitic imidazolate framework

Cellulose-based sorbents typically provide linearity in the range of 0.5–250 ng/mL, with detection limits (LOD) can achieved up to 5 ng/mL. Recovery rates range from 90% to 120%, depending on the degree of functionalization and the sample matrix. Despite its good biodegradability and moderate adsorption capacity (~100–200 mg/g), cellulose suffers from low hydrophobicity and weak selectivity, making it less effective for non-polar antidepressants. Bias produced seem higher for biological compared to water samples [105-110]. Regeneration is possible for 5–10 cycles but swelling in aqueous media can reduce long-term efficiency.

PDMS-DVB is a crosslinked polymer widely used in solid-phase extraction (SPE) and microextraction techniques due to its hydrophobicity and π - π interactions with aromatic antidepressants. It exhibits excellent linearity in the range of 0.05-500 ng/mL, with detection limits as low as 0.01 ng/mL. Recovery values range from 80-120%, with an adsorption capacity of ~250-350 mg/g, making it highly efficient. PDMS-DVB has superior chemical and thermal stability, allowing regeneration for up to 20 cycles without significant loss in performance [149]. However, it shows low selectivity toward highly polar antidepressants, necessitating functionalization with polar groups for improved extraction efficiency. This evident observed through high bias for inter or intraassay (Table 4).

PMMA is a hydrophobic polymer with ester (-COOCH₃) functional groups, contributing to hydrophobic interactions and weak hydrogen bonding with antidepressants. It provides linearity in the range of 0.05-400 ng/mL, with LOD values as low 0.03 ng/mL. Recovery values range from 85-97%, and adsorption capacity (~200-300 mg/g) is relatively high. PMMA is particularly useful for extracting nonpolar and weakly polar antidepressants but has limited efficiency for highly polar compounds [120, 150]. It is chemically stable, allowing regeneration for 8-12 cycles. However, low surface area and weak require selectivity modification (e.g., copolymerization with functional monomers) to enhance performance [151].

PPy, another conductive polymer, provides strong π - π interactions and electrostatic interactions, leading to high affinity toward antidepressant drugs. It offers linearity in the range of 0.01–500 ng/mL, with low LOD values of 0.02–2 ng/mL. Recovery rates are among the best, ranging from 88–120%, with an adsorption capacity of ~350–500 mg/g. PPy is highly stable and selective, particularly for tricyclic antidepressants and cationic drugs [121-125]. However, it suffers from poor dispersibility and requires composite formation with other materials

(e.g., graphene, MOFs) for enhanced performance. Regeneration is possible for 10–15 cycles, making it one of the most durable polymeric sorbents.

PANI is a conductive polymer with amine (-NH₂) and imine (-N=) functional groups, enabling π - π interactions, hydrogen bonding, and electrostatic interactions with antidepressants. Their characteristics include high surface area, excellent electrical conductivity, porous structural morphology, abundant active sites, mechanical flexibility, and strong chemical stability. It shows wide range linearity such as 0.01-500 ng/mL, with LOD values low as 10 ng/mL. Recovery rates range from 88-99%, and adsorption capacity (~300-450 mg/g) is among the highest for synthetic polymers. PANI's high selectivity and conductivity make it suitable for sensor-based antidepressant detection. However, poor solubility in water, low mechanical stability, and susceptibility to oxidation restrict its long-term application. Regeneration is possible for 8-12 cycles before degradation occurs. PANI-based adsorbents can be efficiently regenerated by adjusting the solution's pH, taking advantage of PANI's reversible doping and dedoping behaviour [152, 153].

Sorption models

The sorption of antidepressant drugs onto sorbent-based materials follows well-defined adsorption models, including Langmuir, Freundlich, and Temkin isotherms, as well as kinetic models such as pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. Carbon-based materials (e.g., activated carbon, graphene, carbon nanotubes, and metal-organic frameworks) typically follow the Langmuir model, indicating monolayer adsorption due to π - π stacking, hydrophobic interactions, and electrostatic forces. Previous study reported by Koltsakidou et al. [74] reveal the Langmuir model was the best fit in all operation condition for determining sertraline from aqueous solutions by using graphene oxide.

However, porous materials like activated carbon often fit the Freundlich model, suggesting multilayer adsorption on heterogeneous surfaces. For instance, magnetic adsorbents prepared from carbon-rich aloe vera leaf waste were effectively used for the preconcentration of selective serotonin reuptake inhibitor (SSRI) antidepressants from aqueous solutions. The adsorption behaviour closely followed the Freundlich isotherm model (R² >0.992) and the pseudo-secondorder kinetic model (R²>0.980), indicating favourable multilayer adsorption and chemisorption processes Recent study investigated Xanthium strumarium-derived activated carbon as a low-cost bioadsorbent, demonstrating a good fit with the Freundlich isotherm model and reporting a maximum

Table 4. Analytical performance of sorbent phase extraction using natural and synthetic polymer-based materials for determining antidepressant drugs

Туре	Extraction Mode	Target Analyte	Sample Type	Detection Limit	Recovery	RSD	Reference
Cellulose	SPE	Ami, Imi, Desi, Tri	Biological Fluids	2-3.2°	90-121	<8.5	[105]
	FPSE	Ami, Dul, Flu, Vil	Urine	0.38^{d}	95-105	<5	[106]
	RPD	Ami, Flu, Ven	Blood, Urine	-	50-98	<10	[107]
	MEPS	Flu	Water, Wastewater	2^{d}	76-107	<7	[108]
	FPSE	Ami, Cit, Clo, Flu, Par, Sert, Ven	Blood, Urine, Saliva	$0.04 - 0.06^{a}$	86-114	<15	[109]
	SPE	Ami, Cit, Imi, Flu, Sert, Ven	Plasma, Urine	-	93-108	<8	[110]
Chitosan	SPE	Desi	Water, Urine	0.39^{c}	72-90	<3	[111]
	m-SPE	Ami	Water	37.8°	72-90	<4	[112]
	m-SPE	Flu	Urine	5°	56-93	2	[113]
	TFME	Flu	Plasma, Urine, Wastewater	0.1-1.6	82-104	<9	[114]
	SPE	Flu	Water, Urine	0.03^{c}	96-104	<3	[115]
Polyaniline	SPE	Flu, Nflu	Plasma	-	74-91	<13	[116]
Polydimethylsiloxane	SBSE	Cit, Dulo, Flu, Mir, Par, Sert	Plasma	5-20 ^d	38-83	<15	[117]
	SPME	Ami, Clo, Tri	Water	$0.079 - 0.296^{\circ}$	82-114	<10	[118]
	SPME	Cit, Flu, Fluv, Sert, Ven	Water	$0.015 - 0.075^{d}$	88-120	<17	[119]
Poly(methacrylic acid)	SPE	Ami, Clo, Dox, Imi, Nor	Water	$0.03 \text{-} 0.12^{\circ}$	87-116	<17	[120]
Polypyrrole	MSPE	Flu, Cit	Urine, Wastewater	1.43-1.58 ^d	95-106	<5	[12]
	D-μ-SPE	Cit, Sert	Urine, Plasma	$0.2 \text{-} 1.0^{\circ}$	93-99	<10	[121]
	MEPS	Ami, Cit	Urine	$0.03 \text{-} 0.05^{\circ}$	88-104	<9	[122]
	SPME	Alp, Imi, Sert	Plasma	$0.08 - 0.27^{a}$	93-97	<5	[123]
	IT-SPME	Flu, Nflu	Plasma	5 ^d	92-110	<13	[124]
	SPME	Imi	Urine, Plasma	0.23-0.45°	91-120	<4	[125]
Polystyrene	SS-LPME	Ami, Sert	Wastewater	0.59-2.6°	90-100	-	[126]
	D-μ-SPE	Ami, Sert	Water	$0.4 \text{-} 0.6^{\text{d}}$	90-98	-	[127]
	μ-SPE	Ami, Cit	Urine	3.1-15 ^d	84-119	<15	[128]
Polythiophene	SPME	Cit, Flu, Par, Sert	Plasma	-	76-112	<15	[129]

^aµg/mL; ^b mg/mL; ^c µg/L; ^dng/mL; ^c µM; Amit: Amitriptyline hydrochloride; AuNPs: Gold nanoparticles, CD-IMS: Corona Discharge Ion Mobility Spectrometry; Cit: Citalopram; Desi: Desipramine; Esci: Escitalopram; Fe₃O₄: Magnetite nanoparticles; Flu: Fluoxetine; FS: Fluorescent Spectrometry; GC-FID: Gas Chromatography-Flame Ionisation Detector; GC-MS: Gas Chromatography-Mass Spectrometry; HF-SPME: Hallow fibre solid phase microextraction, HPLC: High Performance Liquid Chromatography; HPLC-DAD: High Performance Liquid Chromatography Diode Array Detector; Imip: Imipramine, LC-MS: Liquid Chromatography-Mass Spectrometry; m-d-SPE: magnetic dispersive solid phase extraction; m-SPE: magnetic solid phase extraction; Nort: Nortriptyline; Paro: Paroxetine, PEDOT: Poly(3,4-ethylenedioxythiophene); Sert: Sertaline; SPME: solid phase microextraction, TFME: Thin film microextraction, UV-Vis: Ultraviolet-Visible Light; Ven: Venlafaxine; ZIF: Zeolitic imidazolate framework

adsorption capacity of 64.9 mg/g [154]. Another study by Akpomie and Conradie [155] found that the adsorption of nortriptyline onto silver nanoparticle-loaded, biowaste-derived activated carbon followed the Freundlich isotherm model, with a maximum adsorption capacity of 4.74 mg/g, suggesting a non-uniform distribution of adsorption sites and favourable interaction at lower concentrations.

Kinetic studies show that graphene and CNTs follow pseudo-second-order kinetics, indicating chemisorption, while activated carbon exhibits intraparticle diffusion, where the adsorption rate is influenced by pore structure and drug diffusion. A study conducted by Zhang et al. [156] demonstrated that the pseudo-second-order kinetic model provided the best correlation (R2) for the adsorption of carbamazepine onto the prepared SPE sorbent, with a maximum adsorption capacity of 25.39 mg/g when applied to plasma samples. A recent study introduced a novel adsorbent, second-generation polyester dendritic-functionalized graphene oxide (PDG-2), for pipette tip micro solid-phase extraction of venlafaxine and desvenlafaxine from urine samples. The PDG-2 sorbent exhibited a rough surface morphology and numerous active functional groups, achieving high adsorption capacities of 230 mg/g for venlafaxine and 187 mg/g for desvenlafaxine. The adsorption process for both analytes followed the pseudo-second-order kinetic model, with excellent correlation coefficients $(R^2 \ge 0.9998)$, suggesting a chemisorption-dominated mechanism [157].

Natural polymer-based sorbents, such as cellulose, alginate, chitosan, or natural rubber primarily follow the Freundlich model, as their diverse functional groups (-OH, -COOH, -NH₂) provide multiple binding sites for hydrogen bonding, ion exchange, and dipole-dipole interactions. The adsorption isotherm results showed a good fit with the Langmuir model (R² = 0.98), suggesting that desipramine molecules were evenly distributed across the surface of the βCDmodified chitosan-based magnetic nanocomposite. A previous study demonstrated the successful application of nanomagnetic chitosan/β-cyclodextrin composites for dispersive solid-phase extraction of trace levels of desipramine, highlighting their high selectivity and efficiency in aqueous matrices [111].

However, chemically modified natural polymers, such as cationic alginate beads, may exhibit Langmuir-type adsorption due to strong electrostatic interactions with cationic antidepressants. The adsorption kinetics are typically pseudo-first-order, indicating physisorption-controlled mechanisms, though natural rubber follows pseudo-second-order kinetics due to its hydrophobic interactions with non-polar antidepressants. A previous study reported that alginate extracted from

Bifurcaria bifurcata was used as a sorbent for the adsorption of venlafaxine and fluoxetine. The adsorption process was more efficient at lower pH levels and followed the Langmuir-Freundlich isotherm model for venlafaxine and the Langmuir model for fluoxetine. Maximum adsorption capacities reached 12 ± 3 µmol/g for venlafaxine and 22 ± 4 µmol/g for fluoxetine in a mono-component system. The difference in adsorption behaviour was attributed to the presence of functional groups with varying polarity in the analyte molecules, which influenced their interactions with the alginate-based adsorbent surface [158]. Barati and co-workers [115] developed a molecularly imprinted polymer based on magnetic chitosan/graphene oxide for the selective separation preconcentration of fluoxetine environmental and biological samples. The sorption kinetics followed the pseudo-second-order model with R2 values close to unity, indicating that the ratelimiting step involves a chemical adsorption process.

Synthetic polymers exhibit varied adsorption behaviours. PS-DVB, PMMA, and PANI fit the Langmuir model, indicating monolayer adsorption driven by hydrophobic and π - π interactions. In contrast, hydrophilic polymers like PVP, PEG, and PAM follow the Freundlich model, as their multiple functional groups allow multilayer adsorption through hydrogen bonding. Conductive polymers such as PPy and PANI often fit the Temkin model, where adsorbate—adsorbent interactions influence adsorption energy.

In a previous study by Bozyiğit et al. [126], polystyrene-coated magnetic nanoparticles (PS@MNP) were used for the adsorption of amitriptyline and sertraline, following the Langmuir isotherm model. The model showed a strong fit for sertraline ($R^2 = 0.9983$) with a high adsorption capacity (20449 µg/g), while amitriptyline showed a weaker fit ($R^2 = 0.9442$) but stronger binding affinity based on K_L values. Both drugs exhibited favourable R_L values, confirming efficient monolayer adsorption on PS@MNP. Contrarily to many studies relying on common isotherm models, Fan et al. [159] found that polystyrene nanofibers effectively electrospun adsorbed olanzapine, risperidone, and clozapine, best fitting the hybrid-type Redlich-Peterson model. Maximum capacities were 12.33, 8.36, and 12.96 mg/g, respectively. The adsorption followed firstorder kinetics and was spontaneous, exothermic, and physical, with good reusability over five cycles.

Kinetic studies show that polymers like PPy, PANI, and PS-DVB exhibit pseudo-second-order behaviour, reflecting chemisorptive mechanisms, while PVP and PEG follow pseudo-first-order kinetics, suggesting diffusion-limited physisorption. A study documented

by Khulu et al. [160] utilized a molecularly imprinted polymer (MIP) as an adsorbent for the solid-phase extraction of selected pharmaceuticals, including venlafaxine, from water samples. The adsorption process followed the pseudo-second-order kinetic model, with R² values reaching up to 0.9231. This indicated heterogeneity in the binding surface energies of the MIP, leading to multiple interaction mechanisms primarily driven by chemisorption.

Conclusion

Sorbent-phase extraction has gained considerable attention as an effective and versatile approach for the removal and analysis of emerging contaminants, particularly antidepressants, from complex environmental and biological matrices. The extraction performance is significantly improved when sorbent materials are engineered with specific functional groups that enhance selectivity and interaction with target analytes, while the incorporation of retrievable or magnetically responsive features facilitates rapid and efficient recovery post-extraction. In line with the growing emphasis on green analytical chemistry, recent developments have focused not only on ecofriendly material synthesis but also on minimizing solvent use and waste generation throughout the extraction process. Future research is expected to prioritize the design of hybrid extraction systems that integrate multiple techniques to tackle the challenges of selectivity, sensitivity, and matrix complexity. Furthermore, there is a clear shift from single-analyte approaches toward the simultaneous extraction of multiple compounds either within the same therapeutical class or across different drug categories addressing the need for comprehensive monitoring of complex contaminant mixtures in real samples.

Acknowledgement

The authors acknowledge the Ministry of Higher Education Malaysia and Universiti Malaysia Terengganu for providing financial support under the Fundamental Research Grant Scheme (FRGS/1/2023/STG04/UMT/02/3).

References

- Melchor-Martínez, E. M., Jiménez-Rodríguez, M. G., Martínez-Ruiz, M., Peña-Benavides, S. A., Iqbal, H. M., Parra-Saldívar, R., and Sosa-Hernández, J. E. (2021). Antidepressants surveillance in wastewater: overview extraction and detection. Case Studies in Chemical and Environmental Engineering, 3: 100074.
- 2. Soares, S., Rosado, T., Barroso, M., and Gallardo, E. (2023). Solid phase-based microextraction techniques in therapeutic drug monitoring. *Pharmaceutics*, 15(4): 1055.
- 3. Arghavani-Beydokhti, S., Rajabi, M., Asghari, A., and Hosseini-Bandegharaei, A. (2023).

- Highly efficient preconcentration of antidepressant drugs in biological matrices by conducting supramolecular solvent-based microextraction after dispersive micro solid phase extraction technique. *Microchemical Journal*, 190: 108703.
- Silva, B. J. G., Lanças, F. M., and Queiroz, M. E. C. (2008). In-tube solid-phase microextraction coupled to liquid chromatography (in-tube SPME/LC) analysis of nontricyclic antidepressants in human plasma. *Journal of Chromatography B*, 862(1-2): 181-188.
- Kumar, S., Darshan, S., and Baggi, T. R. (2023). Recent advances in analytical techniques for antidepressants determination in complex biological matrices: a review. *International Journal of Toxicology*, 42(4): 352-364.
- 6. Soares, S., Barroso, M., and Gallardo, E. (2021). A review of current bioanalytical approaches in sample pretreatment techniques for the determination of antidepressants in biological specimens. *Reviews in Analytical Chemistry*, 40(1): 12-32.
- 7. Pietracci, E., Bermejo, A. M., Álvarez, I., Cabarcos, P., Balduini, W., and Tabernero, M. J. (2013). Simultaneous determination of new-generation antidepressants in plasma by gas chromatography–mass spectrometry. *Forensic Toxicology*, 31: 124-132.
- Zheng, M. M., Wang, S. T., Hu, W. K., and Feng, Y. Q. (2010). In-tube solid-phase microextraction based on hybrid silica monolith coupled to liquid chromatography—mass spectrometry for automated analysis of ten antidepressants in human urine and plasma. *Journal of Chromatography A*, 1217(48): 7493-7501.
- 9. Roszkowska, A., Plenis, A., Kowalski, P., Bączek, T., and Olędzka, I. (2022). Recent advancements in techniques for analyzing modern, atypical antidepressants in complex biological matrices and their application in biomedical studies. *TrAC Trends in Analytical Chemistry*, 152: 116609.
- Mahdavijalal, M., Petio, C., Staffilano, G., Mandrioli, R., and Protti, M. (2024). Innovative solid-phase extraction strategies for improving the advanced chromatographic determination of drugs in challenging biological samples. *Molecules*, 29(10): 2278.
- 11. Moghadam, A. G., Rajabi, M., and Asghari, A. (2018). Efficient and relatively safe emulsification microextraction using a deep eutectic solvent for influential enrichment of trace main anti-depressant drugs from complicated samples. *Journal of Chromatography B*, 1072: 50-59.

- 12. Sarıkaya, M., Ulusoy, H. I., Morgul, U., Ulusoy, S., Tartaglia, A., Yılmaz, E., ... and Kabir, A. (2021). Sensitive determination of fluoxetine and citalopram antidepressants in urine and wastewater samples by liquid chromatography coupled with photodiode array detector. *Journal of Chromatography A*, 1648: 462215.
- 13. Chaves, A. R., Leandro, F. Z., Carris, J. A., and Queiroz, M. E. C. (2010). Microextraction in packed sorbent for analysis of antidepressants in human plasma by liquid chromatography and spectrophotometric detection. *Journal of Chromatography B*, 878(23): 2123-2129.
- 14. Halvorsen, T. G., Pedersen-Bjergaard, S., and Rasmussen, K. E. (2001). Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug. *Journal of Chromatography A*, 909(1): 87-93.
- 15. Ghaedi, H., Afkhami, A., Madrakian, T., and Soltani-Felehgari, F. (2016). Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. *Materials Science and Engineering: C*, 59: 847-854.
- 16. Snow, N. H. (2000). Solid-phase microextraction of drugs from biological matrices. *Journal of Chromatography A*, 885(1-2): 445-455.
- 17. Wille, S. M., Cooreman, S. G., Neels, H. M., and Lambert, W. E. (2008). Relevant issues in the monitoring and the toxicology of antidepressants. *Critical Reviews in Clinical Laboratory Sciences*, 45(1): 25-89.
- 18. Cardoso, A. T., Martins, R. O., and Lanças, F. M. (2024). Advances and applications of hybrid graphene-based materials as sorbents for solid phase microextraction techniques. *Molecules*, 29(15), 3661.
- García-Atienza, P., Martínez-Pérez-Cejuela, H., Herrero-Martínez, J. M., and Armenta, S. (2024). Current trends in the sorbent-based extraction of illegal drugs from biofluids: Solid sorbents and configurations. *TrAC Trends in Analytical Chemistry*, 2024: 17599.
- Şentürk, Z., Saka, C., and Teğin, İ. (2011). Analytical methods for determination of selective serotonin reuptake inhibitor antidepressants. Reviews in Analytical Chemistry, 30(2): 87-122.
- 21. Shetty, S. R., Rathore, S. S., and Leno Jenita, J. (2024). Analytical methods for tetracyclic antidepressants: A comprehensive review. *Separation Science Plus*, 7(10): e202400157.
- Alves, C., Santos-Neto, A. J., Fernandes, C., Rodrigues, J. C., and Lanças, F. M. (2007). Analysis of tricyclic antidepressant drugs in plasma by means of solid-phase

- microextraction-liquid chromatography-mass spectrometry. *Journal of Mass Spectrometry*, 42(10): 1342-1347.
- 23. Xu, R., and Lee, H. K. (2014). Application of electro-enhanced solid phase microextraction combined with gas chromatography-mass spectrometry for the determination of tricyclic antidepressants in environmental water samples. *Journal of Chromatography A*, 1350: 15-22
- 24. Santos, M. G., Tavares, I. M. C., Barbosa, A. F., Bettini, J., and Figueiredo, E. C. (2017). Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification /quantification. *Talanta*, 163: 8-16.
- 25. Saito, Y., Kawazoe, M., Hayashida, M., and Jinno, K. (2000). Direct coupling of microcolumn liquid chromatography with intube solid-phase microextraction for the analysis of antidepressant drugs. *Analyst*, 125(5): 807-809.
- 26. Yuan, J., Huang, W., Tong, W., Chen, Z., Li, H., Chen, J., and Lin, Z. (2023). In-situ growth of covalent organic framework on stainless steel needles as solid-phase microextraction probe coupled with electrospray ionization mass spectrometry for rapid and sensitive determination of tricyclic antidepressants in biosamples. *Journal of Chromatography A*, 1695: 463955.
- 27. Saka, C. (2017). An overview of analytical methods for the determination of monoamine oxidase inhibitors in pharmaceutical formulations and biological fluids. *Critical Reviews in Analytical Chemistry*, 47(1), 1-23.
- Unceta, N., Gómez-Caballero, A., Sánchez, A., Millán, S., Sampedro, M. C., Goicolea, M. A., ... and Barrio, R. J. (2008). Simultaneous determination of citalopram, fluoxetine and their main metabolites in human urine samples by solid-phase microextraction coupled with highperformance liquid chromatography. *Journal of Pharmaceutical and Biomedical Analysis*, 46(4): 763-770.
- 29. Catai, A. P. F., Picheli, F. P., Carrilho, E., and Queiroz, M. E. C. (2013). Assessing stir bar sorptive extraction and microextraction by packed sorbent for determination of selective serotonin reuptake inhibitor antidepressants in plasma sample by non-aqueous capillary electrophoresis. *Journal of the Brazilian Chemical Society*, 24: 1635-1641.
- 30. Samanidou, V., and Kourti, P. (2009). Modern bioanalytical methods for the rapid detection of antidepressants: SNRIs and SSRIs in human biological samples. *Bioanalysis*, 1(2): 451-488.

- 31. Ahmadi, M., Elmongy, H., Madrakian, T., and Abdel-Rehim, M. (2017). Nanomaterials as sorbents for sample preparation in bioanalysis: A review. *Analytica Chimica Acta*, 958, 1-21.
- 32. Almeida-Naranjo, C. E., Guerrero, V. H., and Villamar-Ayala, C. A. (2023). Emerging contaminants and their removal from aqueous media using conventional/non-conventional adsorbents: a glance at the relationship between materials, processes, and technologies *Water*, 15(8): 1626.
- 33. Barreto, F. C., Mounienguet, N. K., Ito, E. Y., He, Q., and Cesarino, I. (2024). Coffee biomass-based carbon material for the electrochemical determination of antidepressant in synthetic urine. *Chemosensors*, 12(10).
- Jha, M. K., Joshi, S., Sharma, R. K., Kim, A. A., Pant, B., Park, M., and Pant, H. R. (2021). Surface modified activated carbons: Sustainable bio-based materials for environmental remediation. *Nanomaterials*, 11(11): 3140.
- 35. Mahgoub, S. M., Essam, D., Eldin, Z. E., Moaty, S. A., Shehata, M. R., Farghali, A., ... and Mahmoud, R. (2024). Carbon supported ternary layered double hydroxide nanocomposite for Fluoxetine removal and subsequent utilization of spent adsorbent as antidepressant. *Scientific Reports*, 14(1): 3990.
- Maršálek, R., and Švidrnoch, M. (2020). The adsorption of amitriptyline and nortriptyline on activated carbon, diosmectite and titanium dioxide. *Environmental Challenges*, 1: 100005.
- 37. Soares, S., Rosado, T., Barroso, M., and Gallardo, E. (2024). Quantification of antidepressants in oral fluid and plasma samples using microextraction by packed sorbent and analysis by gas chromatography-tandem mass spectrometry. *Microchemical Journal*, 2024: 111031.
- D'Ovidio, C., Bonelli, M., Rosato, E., Tartaglia, A., Ulusoy, H. İ., Samanidou, V., ... and de Grazia, U. (2022). Novel applications of microextraction techniques focused on biological and forensic analyses. *Separations*, 9(1): 18.
- Yahyazadeh, F., Ghazanfari, D., Ahmadi, S. A., and Akhgar, M. R. (2024). Adsorption of Nefazodone on single-wall carbon nanotube as an antidepressant drug delivery: A DFT study. *Carbon Trends*, 16:100394.
- 40. Janas, D. (2020). From bio to nano: A review of sustainable methods of synthesis of carbon nanotubes. *Sustainability*, 12(10): 4115.
- Herrera-Herrera, A., Hernández-Borges, J., Asensio-Ramos, M., Àngel Rodríguez-Delgado, M., and Fanali, S. (2013). Carbon nanotubes: applications in chromatography and sample

- preparation. *LCGC International*, 31(10): 882-892.
- 42. Fresco-Cala, B., Mompó-Roselló, Ó., Simó-Alfonso, E. F., Cárdenas, S., and Herrero-Martínez, J. M. (2018). Carbon nanotube-modified monolithic polymethacrylate pipette tips for (micro) solid-phase extraction of antidepressants from urine samples. *Microchimica Acta*, 185(2): 127.
- 43. Gao, G., Pan, M., and Vecitis, C. D. (2015). Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance. *Journal of Materials Chemistry A*, 3(14): 7575-7582.
- 44. Duarte, E. H., dos Santos, W. P., Hudari, F. F., Neto, J. L. B., Sartori, E. R., Dall, L. H., ... and Tarley, C. R. T. (2014). A highly improved method for sensitive determination of amitriptyline in pharmaceutical formulations using an unmodified carbon nanotube electrode in the presence of sulfuric acid. *Talanta*, 127: 26-32
- 45. Hamidi, F., Hadjmohammadi, M. R., and Aghaie, A. B. (2017). Ultrasound-assisted dispersive magnetic solid phase extraction based on amino-functionalized Fe₃O₄ adsorbent for recovery of clomipramine from human plasma and its determination by high performance liquid chromatography: Optimization by experimental design. *Journal of Chromatography B*, 1063: 18-24
- Ajiboye, T. O., Oladoye, P. O., and Omotola, E. O. (2024). Adsorptive reclamation of pharmaceuticals from wastewater using carbon-based materials: A review. Kuwait Journal of Science, 2024: 100225.
- 47. Nie, W., Li, Y., Chen, L., Zhao, Z., Zuo, X., Wang, D., ... and Feng, X. (2020). Interaction between multi-walled carbon nanotubes and propranolol. *Scientific Reports*, 10(1): 10259.
- 48. Jung, C., Son, A., Her, N., Zoh, K. D., Cho, J., and Yoon, Y. (2015). Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. *Journal of Industrial and Engineering Chemistry*, 27: 1-11.
- 49. Han, Y., Zhang, X., Yu, X., Zhao, J., Li, S., Liu, F., ... and Li, Q. (2015). Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites. *Scientific Reports*, 5(1): 11533.
- 50. Abbas, Q., Shinde, P. A., Abdelkareem, M. A., Alami, A. H., Mirzaeian, M., Yadav, A., and Olabi, A. G. (2022). Graphene synthesis techniques and environmental applications. *Materials*, 15(21): 7804.
- 51. Sahu, P. S., Verma, R. P., Tewari, C., Sahoo, N. G., and Saha, B. (2023). Facile fabrication and application of highly efficient reduced graphene

- oxide (rGO)-wrapped 3D foam for the removal of organic and inorganic water pollutants. *Environmental Science and Pollution Research*, 30(40): 93054-93069.
- 52. Al-Bermany, E., and Chen, B. (2023). Effect of the functional groups of polymers on their adsorption behavior on graphene oxide nanosheets. *Macromolecular Chemistry and Physics*, 224(16): 2300101.
- 53. Borsatto, J. V., and Lanças, F. M. (2023). Recent trends in graphene-based sorbents for LC analysis of food and environmental water samples. *Molecules*, 28(13): 5134.
- 54. Cardoso, A. T., Martins, R. O., and Lanças, F. M. (2024). Advances and applications of hybrid graphene-based materials as sorbents for solid phase microextraction techniques. *Molecules*, 29(15): 3661.
- 55. Lanças, F. M., Medina, D. A. V., Pereira Dos Santos, N. G., and Sinisterra, M. J. (2021). Graphene-based sorbents for modern magnetic solid-phase extraction techniques. Analytical applications of functionalized magnetic nanoparticles. Royal Society of Chemistry: pp. 606
- 56. Fahimirad, B., Rajabi, M., and Elhampour, A. (2019). A rapid and simple extraction of anti-depressant drugs by effervescent salt-assisted dispersive magnetic micro solid-phase extraction method using new adsorbent Fe₃O₄@SiO₂@N₃. Analytica Chimica Acta, 1047: 275-284.
- Rajabi, A. A., Yamini, Y., Faraji, M., and Seidi, S. (2013). Solid-phase microextraction based on cetyltrimethylammonium bromide-coated magnetic nanoparticles for determination of antidepressants from biological fluids. *Medicinal Chemistry Research*, 22: 1570-1577.
- 58. Cui, L., Ren, X., Sun, M., Liu, H., and Xia, L. (2021). Carbon dots: Synthesis, properties and applications. *Nanomaterials*, 11(12): 3419.
- 59. Fawaz, W., Hasian, J., and Alghoraibi, I. (2023). Synthesis and physicochemical characterization of carbon quantum dots produced from folic acid. *Scientific Reports*, 13(1): 18641.
- 60. Wang, X., Zhang, R., Ma, X., Xu, Z., Ma, M., Zhang, T., ... and Shi, F. (2024). Carbon dots@ noble metal nanoparticle composites: research progress report. *Analyst*, 149(3): 665-688.
- 61. Pérez-Mayoral, E., Matos, I., Bernardo, M., and Fonseca, I. M. (2019). New and advanced porous carbon materials in fine chemical synthesis. Emerging precursors of porous carbons. *Catalysts*, 9(2): 133.
- 62. Manousi, N., and Zacharis, C. K. (2025). Metalorganic framework-based microextraction. In *Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis* (pp. 229-253). Elsevier.

- 63. Cai, L. F., Zhan, J. M., Liang, J., Yang, L., and Yin, J. (2022). Structural control of a novel hierarchical porous carbon material and its adsorption properties. *Scientific Reports*, 12(1): 3118.
- Liu, Z., Yang, Q., Cao, L., Li, S., Zeng, X., Zhou, W., and Zhang, C. (2023). Synthesis and application of porous carbon nanomaterials from pomelo peels: a review. *Molecules*, 28(11): 4429.
- 65. Ni, M., Zhou, L., Liu, Y., and Ni, R. (2023). Advances in the synthesis and applications of porous carbon materials. *Frontiers in Chemistry*, 11: 1205280.
- 66. Murtada, K., de Andrés, F., Ríos, A., and Zougagh, M. (2018). Determination of antidepressants in human urine extracted by magnetic multiwalled carbon nanotube poly (styrene-co-divinylbenzene) composites and separation by capillary electrophoresis. *Electrophoresis*, 39(14): 1808-1815.
- 67. Bitas, D., and Samanidou, V. (2018). Carbon nanotubes as sorbent materials for the extraction of pharmaceutical products followed by chromatographic analysis. In *Fullerens, Graphenes and Nanotubes* (pp. 135-168). William Andrew Publishing.
- 68. Ng, S. M. H., Raveendran, K., Azman, W. N. A. S. W., Loh, S. H., Ariffin, M. M., and Khalik, W. M. A. W. M. (2025). Carbonaceous materials-based aloe vera leaf waste as magnetic adsorbents for pre-concentration selective serotonin reuptake inhibitor antidepressant drugs from aqueous solutions. *Green Analytical Chemistry*, 12: 100192.
- 69. Wang, B., Chen, Y., Li, W., Liu, Y., Xia, X., Xu, X., ... and Chen, D. (2024). Magnetic phytic acid-modified kapok fiber biochar as a novel sorbent for magnetic solid-phase extraction of antidepressants in biofluids. *Analytica Chimica Acta*, 1296: 342295.
- Calisto, V., Ferreira, C. I., Santos, S. M., Gil, M. V., Otero, M., and Esteves, V. I. (2014). Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water. *Bioresource Technology*, 166: 335-344.
- 71. Fahmy, L. M., Mohamed, D., Nebsen, M., and Nadim, A. H. (2024). Eco-friendly tea waste magnetite nanoparticles for enhanced adsorptive removal of norfloxacin and paroxetine from water. *Microchemical Journal*, 206: 111619.
- 72. Abedi, H., Ebrahimzadeh, H., and Ghasemi, J. B. (2015). Solid phase headspace microextraction of tricyclic antidepressants using a directly prepared nanocomposite consisting of graphene, CTAB and polyaniline. *Microchimica Acta*, 182: 633-641.

- 73. Lioupi, A., Kabir, A., Furton, K. G., and Samanidou, V. (2019). Fabric phase sorptive extraction for the isolation of five common antidepressants from human urine prior to HPLC-DAD analysis. *Journal of Chromato graphy B*, 1118: 171-179.
- 74. Koltsakidou, A., Maroulas, K. N., Evgenidou, E., Bikiaris, D. N., Kyzas, G. Z., and Lambropoulou, D. A. (2025). Removal of the antidepressants bupropion and sertraline from aqueous solutions by using graphene oxide: A complete adsorption/desorption evaluation for single-component and binary mixtures. *Journal of Molecular Liquids*, 2025: 127147.
- 75. Farajzadeh, M. A., Barazandeh, S., Pezhhanfar, S., and Mogaddam, M. R. A. (2023). Facile preparation of graphene-modified magnetic nanoparticles and their application in the analysis of four anti-depressant drugs in plasma and urine. *ImmunoAnalysis*, 3(1): 4-4.
- 76. Nunes, F. B., da Silva Bruckmann, F., Viana, A. R., da Rosa Salles, T., Zancanaro, L. V., Rhoden, D. S. B., ... and Rhoden, C. R. B. (2024). Removal of selective serotonin reuptake inhibitor using magnetic graphene oxide derivatives: Adsorption study in low drug concentration using HPLC quantification, in vitro safety, and phytotoxicity. *Journal of Environmental Chemical Engineering*, 12(2): 112336.
- 77. Zamani, R., and Yamini, Y. (2023). On-chip electromembrane surrounded solid phase microextraction for determination of tricyclic antidepressants from biological fluids using poly (3, 4-ethylenedioxythiophene) graphene oxide nanocomposite as a fiber coating. *Biosensors*, 13(1): 139.
- 78. Bigdelifam, D., Mirzaei, M., Hashemi, M., Amoli-Diva, M., Rahmani, O., Zohrabi, P., ... and Turkjokar, M. (2014). Sensitive spectrophotometric determination of fluoxetine from urine samples using charge transfer complex formation after solid phase extraction by magnetic multiwalled carbon nanotubes. *Analytical Methods*, 6(21): 8633-8639.
- 79. Ghorbani, M., Esmaelnia, M., Aghamohammadhasan, M., Akhlaghi, H., Seyedin, O., and Azari, Z. A. (2019). Preconcentration and determination fluoxetine and norfluoxetine in biological and water samples with β-cyclodextrin multi-walled carbon nanotubes as a suitable hollow fiber solid phase microextraction sorbent and high performance liquid chromatography. Journal of Analytical Chemistry, 74: 540-549.
- 80. Ghorbani, M., Chamsaz, M., and Rounaghi, G. H. (2016). Glycine functionalized multiwall carbon nanotubes as a novel hollow fiber solid-

- phase microextraction sorbent for preconcentration of venlafaxine and odesmethylvenlafaxine in biological and water samples prior to determination by highperformance liquid chromatography. *Analytical* and *Bioanalytical Chemistry*, 408: 4247-4256.
- 81. Khoshnood, M., Naimi-Joubani, M., Chahkandi, B., and Ebrahimi, M. (2018). Determination of fluoxetine in hospital wastewater using solid-phase microextraction fiber coated with SWCNT. *Avicenna Journal of Environmental Health Engineering*, 5(2): 67-72.
- 82. Ibrahim, W. N. W., Sanagi, M. M., Hanapi, N. S. M., Hadzir, N. M., Yahaya, N., and Kamaruzaman, S. (2020). Agarose-chitosan-intergrated multiwalled carbon nanotubes film solid phase microextraction combined with high performance liquid chromatography for the determination of tricyclic antidepressant drugs in aqueous samples. *Malaysian Journal of Analytical Sciences*, 24(1): 33-41.
- 83. Aladaghlo, Z., Javanbakht, S., Fakhari, A. R., and Shaabani, A. (2021). Gelatin microsphere coated Fe₃O₄@graphene quantum dots nanoparticles as a novel magnetic sorbent for ultrasound-assisted dispersive magnetic solid-phase extraction of tricyclic antidepressants in biological samples. *Microchimica Acta*, 188: 1-9
- 84. Madani-Nejad, E., Shokrollahi, A., and Shahdost-Fard, F. (2024). Central composite design-assisted visual and non-invasive detection of sertraline by sweet lemon wastederived core-shell AuNPs@ CDs. *Analytica Chimica Acta*, 1312: 342721.
- 85. Enyoh, C. E., and Wang, Q. (2025). Box—Behnken design and machine learning optimization of PET fluorescent carbon quantum dots for removing fluoxetine and ciprofloxacin with molecular dynamics and docking studies as potential antidepressant and antibiotic. Separation and Purification Technology, 131975.
- 86. Safari, M., Shahlaei, M., Yamini, Y., Shakorian, M., and Arkan, E. (2018). Magnetic framework composite as sorbent for magnetic solid phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of tricyclic antidepressants. *Analytica Chimica Acta*, 1034: 204-213.
- 87. Aghakhani, A., Ghanbari, A., Asl, A. H., and Khanlarkhani, A. (2021). Thin-film solid-phase microextraction of fluoxetine using a novel sorbent prepared by direct decoration of zeolitic imidazolate frameworks on the surface of polyacrylonitrile electrospun nanofibers. *Separation Science Plus*, 4(1): 36-44.

- 88. Li, Z., Deng, B., Chen, J., Feng, R., Wang, S., Li, S., ... and Hua, L. (2025). One-pot synthesis of magnetic adsorbent with integrated pH regulation for convenient and rapid determination of antidepressant in biofluids. *Microchemical Journal*, 209: 112834.
- 89. Moosavi, N. S., and Yamini, Y. (2023). Growth of bimetallic Ni-Co MOFs on a skeleton of electrospun PAN nanofibers and coating on a thin film for SPME of amitriptyline and nortriptyline in urine and plasma samples. *Journal of Pharmaceutical and Biomedical Analysis*, 236: 115755.
- 90. Godage, N. H., and Gionfriddo, E. (2020). Use of natural sorbents as alternative and green extractive materials: A critical review. *Analytica Chimica Acta*, 1125: 187-200.
- 91. Köse, K., Yalçın Kehribar, D., Goodarzi, V., and Uzun, L. (2024). Strategies for the detection, removal and elimination of antidepressants. *International Journal of Environmental Analytical Chemistry*, 104(2): 323-354.
- 92. Darmenbayeva, A., Rajasekharan, R., Massalimova, B., Bektenov, N., Taubayeva, R., Bazarbaeva, K., ... and Ungarbayeva, A. (2024). Cellulose-based sorbents: A comprehensive review of current advances in water remediation and future prospects. *Molecules*, 29(24): 5969.
- 93. Alves, C., Santos-Neto, A. J., Fernandes, C., Rodrigues, J. C., and Lanças, F. M. (2007). Analysis of tricyclic antidepressant drugs in plasma by means of solid-phase microextraction-liquid chromatography-mass spectrometry. *Journal of Mass Spectrometry*, 42(10): 1342-1347.
- 94. Feizbakhsh, A., Sarrafi, A. H. M., and Ehteshami, S. (2016). Polythiophene-chitosan magnetic nanocomposite as a highly efficient medium for isolation of fluoxetine from aqueous and biological samples. *Journal of Analytical Methods in Chemistry*, 2016(1): 2921706.
- 95. Eltaweil, A. S., Abd El-Monaem, E. M., Elshishini, H. M., El-Aqapa, H. G., Hosny, M., Abdelfatah, A. M., ... and Omer, A. M. (2022). Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: a review. *RSC Advances*, 12(13): 8228-8248.
- 96. Guzella, C. S., Souto, D. E., and Silva, B. J. (2022). Alginate-based hydrogel fiber as a restricted access material for microextraction of drugs in biological samples. *Carbohydrate Polymers*, 294: 119810.
- 97. Fakhri, V., Jafari, A., Vahed, F. L., Su, C. H., and Pirouzfar, V. (2023). Polysaccharides as ecofriendly bio-adsorbents for wastewater remediation: Current state and future

- perspective. Journal of Water Process Engineering, 54: 103980.
- Wang, X., Huang, L., Zhang, C., Deng, Y., Xie,
 P., Liu, L., and Cheng, J. (2020). Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. *Carbohydrate Polymers*, 240: 116292.
- 99. Kepekci-Tekkeli, S. E., and Durmus, Z. (2019). Magnetic solid phase extraction applications combined with analytical methods for determination of drugs in different matrices review. *Journal of the Chilean Chemical Society*, 64(2): 4448-4458.
- 100. Yousatit, S., Rungruangwattanachot, W., Yuwawanitchakorn, N., Nuntang, S., Punyapalakul, P., and Ngamcharussrivichai, C. (2023). Amine-functionalized natural rubber/mesostructured silica nanocomposites for adsorptive removal of clofibric acid in aqueous phase. *Molecules*, 28(5): 2330.
- 101. Chaowamalee, S., Yan, N., and Ngamcharussrivichai, C. (2022). Propylsulfonic acid-functionalized mesostructured natural rubber/silica nanocomposites as promising hydrophobic solid catalysts for alkyl levulinate synthesis. *Nanomaterials*, 12(4): 604.
- 102. Bekchanov, D., Mukhamediev, M., Yarmanov, S., Lieberzeit, P., and Mujahid, A. (2024). Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. *Carbohydrate Polymers*, 323: 121397.
- 103. Bi, M., Qin, Q., Deng, B., and Chen, D. (2024). Natural fibers as sustainable and renewable materials for green sample preparation. *TrAC Trends in Analytical Chemistry*, 2024: 117894.
- 104. Guzella, C. S., Souto, D. E., and Silva, B. J. (2022). Alginate-based hydrogel fiber as a restricted access material for microextraction of drugs in biological samples. *Carbohydrate Polymers*, 294: 119810.
- 105. González-Bermúdez, M., López-Lorente, Á. I., Lucena, R., and Cárdenas, S. (2024). Sustainable beeswax modified cellulose paper for the determination of tricyclic antidepressants in biofluids. *Talanta*, 273: 125860.
- 106. Ulusoy, H. I., Şahin, E., Polat, Ü., Ulusoy, S., Locatelli, M., and Kabir, A. (2024). Development a green analytical methodology for the sensitive determination of antidepressant drugs using fabric phase sorptive extraction as a simple sample pretreatment procedure. *Microchemical Journal*, 197, 109807.
- 107. Jain, B., Jain, R., Kaur, S., Haque, S. M., Sharma, S., Ghoneim, M. M., and Al-Khateeb, L. A. (2024). Multi-drug extraction using octanol supported rotating cellulose paper disc (RPD) device from complex biological matrices:

- Fabrication and application in forensic case work. *Sustainable Chemistry and Pharmacy*, 41: 101724.
- 108. Matin, P., Ayazi, Z., and Jamshidi-Ghaleh, K. (2022). Montmorillonite reinforced polystyrene nanocomposite supported on cellulose as a novel layered sorbent for microextraction by packed sorbent for determination of fluoxetine followed by spectrofluorimetry based on multivariate optimisation. *International Journal of Environmental Analytical Chemistry*, 102(17): 5150-5165.
- 109. Tartaglia, A., Covone, S., Rosato, E., Bonelli, M., Savini, F., Furton, K. G., ... and Locatelli, M. (2022). Fabric phase sorptive extraction (FPSE) as an efficient sample preparation platform for the extraction of antidepressant drugs from biological fluids. Advances in Sample Preparation, 3: 100022.
- 110. Gan, Y., Hua, L., Zheng, Y., Wang, B., and Chen, D. (2024). Natural kapok fiber as a green and efficient adsorbent for in-syringe solid-phase extraction in the determination of antidepressants in biofluids. *Microchemical Journal*, 201: 110638.
- 111. Abniki, M., and Moghimi, A. (2024). Nanomagnetic chitosan/β-cyclodextrin for dispersive solid phase extraction of trace desipramine drug. *Materials Chemistry and Physics*, 316: 129117.
- 112. Amin, A., and Moghimi, A. (2024). Preconcentration and measurement of trace Amitriptyline hydrochloride in water samples using magnetic nanoparticles with dispersive solid-phase extraction. *Micro & Nano Letters*, 19(1): e12184.
- 113. Feizbakhsh, A., Sarrafi, A. H. M., and Ehteshami, S. (2016). Polythiophene-chitosan magnetic nanocomposite as a highly efficient medium for isolation of fluoxetine from aqueous and biological samples. *Journal of Analytical Methods in Chemistry*, 2016(1): 2921706.
- 114. Ayazi, Z., Saei, S. F., and Sarnaghi, S. P. (2023). A novel self-supportive thin film based on graphene oxide reinforced chitosan nanobiocomposite for thin film microextraction of fluoxetine in biological and environmental samples. *Journal of Pharmaceutical and Biomedical Analysis*, 236: 115678.
- 115. Barati, A., Kazemi, E., Dadfarnia, S., and Shabani, A. M. H. (2017). Synthesis/ characterization of molecular imprinted polymer based on magnetic chitosan/graphene oxide for selective separation/preconcentration of fluoxetine from environmental and biological samples. *Journal of Industrial and Engineering Chemistry*, 46: 212-221.

- 116. Chaves, A. R., Moura, B. H., Caris, J. A., Rabelo, D., and Queiroz, M. E. C. (2015). The development of a new disposable pipette extraction phase based on polyaniline composites for the determination of levels of antidepressants in plasma samples. *Journal of Chromatography A*, 1399: 1-7.
- 117. Melo, L. P., Nogueira, A. M., Lanças, F. M., & Queiroz, M. E. C. (2009). Polydimethyl siloxane/polypyrrole stir bar sorptive extraction and liquid chromatography (SBSE/LC-UV) analysis of antidepressants in plasma samples. *Analytica Chimica Acta*, 633(1): 57-64.
- 118. Xu, R., and Lee, H. K. (2014). Application of electro-enhanced solid phase microextraction combined with gas chromatography—mass spectrometry for the determination of tricyclic antidepressants in environmental water samples. *Journal of Chromatography A*, 1350: 15-22.
- 119. Lamas, J. P., Salgado-Petinal, C., García-Jares, C., Llompart, M., Cela, R., and Gómez, M. (2004). Solid-phase microextraction—gas chromatography—mass spectrometry for the analysis of selective serotonin reuptake inhibitors in environmental water. *Journal of Chromatography A*, 1046(1-2): 241-247.
- 120. Tarley, C. R. T., Gorla, F. A., de Oliveira, F. M., Nascentes, C. C., do Prado Ferreira, M., da Costa, M. F., and Segatelli, M. G. (2022). Investigation of the performance of cross-linked poly (acrylic acid) and poly (methacrylic acid) as efficient adsorbents in SPE columns for simultaneous preconcentration of tricyclic antidepressants in water samples. *Analytical Methods*, 14(48): 5100-5109.
- 121. Asgharinezhad, A. A., Karami, S., Ebrahimzadeh, H., Shekari, N., and Jalilian, N. (2015). Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids. *International journal of pharmaceutics*, 494(1): 102-112.
- 122. Bagheri, H., Banihashemi, S., and Zandian, F. K. (2016). Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. *Microchimica Acta*, 183: 195-202.
- 123. Barati, E., and Alizadeh, N. (2020). Simultaneous determination of sertraline, imipramine and alprazolam in human plasma samples using headspace solid phase microextraction based on a nanostructured polypyrrole fiber coupled to ion mobility spectrometry. *Analytical Methods*, 12(7): 930-937.

- 124. Silva, B. J. G., Lanças, F. M., and Queiroz, M. E. C. (2009). Determination of fluoxetine and norfluoxetine enantiomers in human plasma by polypyrrole-coated capillary in-tube solid-phase microextraction coupled with liquid chromatography-fluorescence detection. *Journal of Chromatography A*, 1216(49): 8590-8597.
- 125. Jafari, M., Sedghi, R., and Ebrahimzadeh, H. (2016). A platinum wire coated with a composite consisting of poly pyrrole and poly (ε-caprolactone) for solid phase microextraction of the antidepressant imipramine prior to its determination via ion mobility spectrometry. *Microchimica Acta*, 183: 805-812.
- 126. Bozyiğit, G. D., Zaman, B. T., Özdemir, O. K., Kılınç, Y., Chormey, D. S., Bakırdere, S., and Engin, G. O. (2024). Removal of two antidepressant active pharmaceutical ingredients from hospital wastewater by polystyrene-coated magnetite nanoparticles—assisted batch adsorption process. *Environmental Monitoring and Assessment*, 196(1): 77.
- 127. Bozyiğit, G. D., Zaman, B. T., Özdemir, O. K., Kılınç, Y., Chormey, D. S., Engin, G. O., and Bakırdere, S. (2022). Polystyrene-coated magnetite nanoparticles based dispersive microsolid phase extraction of active pharmaceutical ingredients of antidepressant drugs and determination by GC-MS. *ChemistrySelect*, 7(10), e202104435.
- 128. Stelmaszczyk, P., Białkowska, K., and Wietecha-Posłuszny, R. (2024). Paper supported polystyrene membranes for micro-solid phase extraction of date-rape drugs from urine: a sustainable analytical approach. *Analytica chimica acta*, 1316: 342874.
- 129. Caris, J. A., Chaves, A. R., and Queiroz, M. E. C. (2012). Evaluation of solid-phase microextraction using a polythiophene film and liquid chromatography with spectrophotometric detection for the determination of antidepressants in plasma samples. *Journal of the Brazilian Chemical Society*, 23: 57-64.
- 130. Hosseini, F. S., Kharazmi, F., Davarani, S. S. H., and Ebrahimzadeh, H. (2023). Development of electrospun nanofibers based on Poly (vinyl alcohol) for thin film solid-phase microextraction of antidepressant drugs in biological samples. *Journal of Chromatography A*, 1697: 463984.
- 131. Ponce-Rodríguez, H. D., Verdú-Andrés, J., Herráez-Hernández, R., and Campíns-Falcó, P. (2020). Innovations in extractive phases for intube solid-phase microextraction coupled to miniaturized liquid chromatography: A critical review. *Molecules*, 25(10): 2460.
- 132. García-Atienza, P., Martínez-Pérez-Cejuela, H., Herrero-Martínez, J. M., and Armenta, S. (2024).

- Current trends in the sorbent-based extraction of illegal drugs from biofluids: Solid sorbents and configurations. *TrAC Trends in Analytical Chemistry*, 2024: 117599.
- 133. Gkika, D. A., Tolkou, A. K., Lambropoulou, D. A., Bikiaris, D. N., Kokkinos, P., Kalavrouziotis, I. K., and Kyzas, G. Z. (2024). Application of molecularly imprinted polymers (MIPs) as environmental separation tools. *RSC Applied Polymers*, 2(2): 127-148.
- 134. Nestora, S. (2017). Molecularly imprinted polymers as selective sorbents for recognition in complex aqueous samples (Doctoral dissertation, Université de Technologie de Compiègne).
- 135. Alkahtani, M. E., Aodah, A. H., Abu Asab, O. A., Basit, A. W., Orlu, M., and Tawfik, E. A. (2021). Fabrication and characterization of fast-dissolving films containing escitalopram /quetiapine for the treatment of major depressive disorder. *Pharmaceutics*, 13(6): 891.
- 136. Yan, X., Zhan, Y., Zhong, D., Li, Y., and Wu, D. (2018). Electrospun nanofiber cloud for ultrafast solid phase micro-extraction of trace organics in water samples. *Journal of Chromatography A*, 1574: 42-49.
- 137. Ahamad Said, M. N., Hasbullah, N. A., Rosdi, M. R. H., Musa, M. S., Rusli, A., Ariffin, A., and Shafiq, M. D. (2022). Polymerization and applications of poly (methyl methacrylate)—graphene oxide nanocomposites: a review. ACS omega, 7(51): 47490-47503.
- 138. Gao, Y., Zhang, J., Liang, J., Yuan, D., and Zhao, W. (2022). Research progress of poly (methyl methacrylate) microspheres: preparation, functionalization and application. *European Polymer Journal*, 175: 111379.
- 139. Jiménez-Holgado, C., Chrimatopoulos, C., Stathopoulos, V., and Sakkas, V. (2020). Investigating the utility of fabric phase sorptive extraction and HPLC-UV-Vis/DAD to determine antidepressant drugs in environmental aqueous samples. *Separations*, 7(3): 39.
- 140. Spietelun, A., Pilarczyk, M., Kloskowski, A., and Namieśnik, J. (2011). Polyethylene glycolcoated solid-phase microextraction fibres for the extraction of polar analytes-A review. *Talanta*, 87: 1-7.
- 141. Jian, N. G., Liang, S. H., Cao, J. K., Di, Q. N., Kang, K., and Xu, Q. (2019). A nanofiber mat prepared from sulfonated polyaniline for solidphase extraction of fluoroquinolones from water and biological fluids prior to their quantitation by UPLC-MS/MS. *Microchimica Acta*, 186(12): 857.
- 142. Nezhadali, A., Ahmadi Bonakdar, G., and Nakhaei, H. (2012). Electrosynthesis of polypyrrole on steel fiber for solid-phase

- microextraction of citalopram in serum. *Analytical and Bioanalytical Chemistry*, 403(2): 593-600.
- 143. Ntorkou, M., and Zacharis, C. K. (2025). Sorbent-based microextraction combined with GC-MS: A valuable tool in bioanalysis. *Chemosensors*, 13(2): 71.
- 144. Oliveira, M. N., Gonçalves, O. C., Ahmad, S. M., Schneider, J. K., Krause, L. C., Neng, N. R., ... and Nogueira, J. M. (2021). Application of bar adsorptive microextraction for the determination of levels of tricyclic antidepressants in urine samples. *Molecules*, 26(11): 3101.
- 145. Liu, H., and Qiu, H. (2020). Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: A review. *Chemical Engineering Journal*, 393: 124691.
- 146. Jiang, Q., Zhang, S., and Sun, M. (2023). Recent advances on graphene and graphene oxide as extraction materials in solid-phase (micro) extraction. *TrAC Trends in Analytical Chemistry*, 168: 17283.
- 147. Li, W. K., and Shi, Y. P. (2019). Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. *TrAc Trends in Analytical Chemistry*, 118: 652-665.
- 148. Liu, J., Li, R., and Yang, B. (2020). Carbon dots: a new type of carbon-based nanomaterial with wide applications. *ACS Central Science*, 6(12): 2179-2195.
- 149. Owczarzy, A., Kulig, K., Piordas, K., Piśla, P., Sarkowicz, P., Rogóż, W., and Maciążek-Jurczyk, M. (2024). Solid-phase micro extraction–a future technique in pharmacology and coating trends. *Analytical Methods*, 16(20): 3164-3178.
- 150. Gilart, N., Borrull, F., Fontanals, N., and Marcé, R. M. (2014). Selective materials for solid-phase extraction in environmental analysis. *Trends in environmental analytical chemistry*, 1: e8-e18.
- 151. Al-Aqbi, Z. T., Yap, Y. C., Li, F., and Breadmore, M. C. (2019). Integrated microfluidic devices fabricated in poly (methylmethacrylate) (PMMA) for on-site therapeutic drug monitoring of aminoglycosides in whole blood. *Biosensors*, 9(1): 19.
- 152. Samadi, A., Xie, M., Li, J., Shon, H., Zheng, C., and Zhao, S. (2021). Polyaniline-based adsorbents for aqueous pollutants removal: A review. *Chemical Engineering Journal*, 418: 129425.

- 153. Beygisangchin, M., Baghdadi, A. H., Kamarudin, S. K., Rashid, S. A., Jakmunee, J., and Shaari, N. (2024). Recent progress in polyaniline and its composites; Synthesis, properties, and applications. *European Polymer Journal*, 210: 112948.
- 154. Verma, R., and Joshi, G. (2024). Xanthium Strumarium based activated carbon as low cost bioadsorbent for efficient removal of antidepressant drug Imipramine. In *IOP Conference Series: Earth and Environmental Science*, 1382: p. 012009.
- 155. Akpomie, K. G., and Conradie, J. (2021). Isotherm, kinetic, thermodynamics and reusability data on the adsorption of antidepressant onto silver nanoparticle-loaded biowaste. *Data in Brief*, 39: 107575.
- 156. Zhang, J., Liu, D., Meng, X., Shi, Y., Wang, R., Xiao, D., and He, H. (2017). Solid phase extraction based on porous magnetic graphene oxide/β-cyclodextrine composite coupled with high performance liquid chromatography for determination of antiepileptic drugs in plasma samples. *Journal of Chromatography A*, 1524: 49-56.
- 157. Liu, X., Cheng, L., Han, Y., Wang, M., and Yan, H. (2025). Development of a novel second-generation polyester dendritic functionalized graphene oxide for efficient pipette tip micro solid-phase extraction and detection of venlafaxine and desvenlafaxine in urine. *Journal of Chromatography A*, 1740: 465582.
- 158. Silva, A., Stawiński, W., Romacho, J., Santos, L. H., Figueiredo, S. A., Freitas, O. M., and Delerue-Matos, C. (2019). Adsorption of fluoxetine and venlafaxine onto the marine seaweed Bifurcaria bifurcata. *Environmental Engineering Science*, 36(5): 573-582.
- 159. Fan, L., Yu, Z., Wei, X., Dong, Z., and An, J. (2022). Polystyrene electrospun nanofibers as effective sorbents for the removal of atypical antipsychotics: Kinetic and thermodynamic studies. *Arabian Journal of Chemistry*, 15(11): 104222.
- 160. Khulu, S., Ncube, S., Kgame, T., Mavhunga, E., and Chimuka, L. (2022). Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples. *Polymer Bulletin*, 79(2):rko 1287-1307.