

MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES

Journal homepage: https://mjas.analis.com.my/

Research Article

4-amidobenzhydryl analogue as stable acetoxychavicol acetate (ACA): Synthesis, characterisation and cytotoxic activity against human myeloid leukaemia cell lines (KASUMI-1)

Mohamad Nurul Azmi^{1*}, Cheong Siong Tan¹, Siti Nurshahira Mohd Radzuan¹, Mahdi Babai^{1,2}, Nozlena Abdul Samad³, Julia Joseph^{3,4}, and Pinus Jumaryatno⁵

Received: 28 February 2025; Revised: 17 June 2025; Accepted: 18 June 2025; Published: 22 August 2025

Abstract

A series of 4-amidobenzhydryl-type analogues, designed as mimics of the stable compound 1'-acetoxychavicol acetate (ACA), were successfully synthesised by acylation reaction of (4-aminophenyl)(phenyl)methanol with various acyl chlorides. All the synthesised analogues were fully characterised by comprehensive spectroscopic techniques. The cytotoxic activity of these analogues was evaluated using the MTT assay against the human myeloid leukemia cell line Kasumi-1. The structure-activity relationship (SAR) analysis was conducted to examine the impact of different functional groups on the cytotoxic properties of the compounds. Compound 3a exhibit the highest cytotoxic activity with IC₅₀ values of 247.35 μM (24h), 106.01 μM (48h) and 98.94 μM (72h). SAR analysis indicated that aliphatic substitutions at the carboxamide and ester positions enhanced cytotoxic activity, while phenyl and cyclohexyl substitutions resulted in decreased activity. These results indicate that 4-amidobenzhydryl analogues, in particular compound 3a, are promising anticancer agents, with compound 3a emerging as a lead candidate for further development.

Keywords: 4-amidobenzhydryl-type analogues, 1'-acetoxychavicol acetate, cytotoxic, MTT assay, human myeloid leukemia

Introduction

Cancer continues to be a major cause of morbidity and mortality around the world, necessitating the constant search for novel therapeutic agents with improved efficacy and selectivity. Among the diverse natural products investigated, 1'-acetoxychavicol acetate (ACA), a compound derived from the rhizomes of Alpinia conchigera and Alpinia galanga, has garnered significant attention due to its potent anticancer activity against various cancer cell lines, including human myeloid leukemia cells [1-7]. Our previous study on ACA showed that this compound has extensive potential to inhibit MDA-MB-231 (4.8 μM), HSC-2 (5.0 μM), HSC-4 (5.5 μM), EJ-28 (8.2 μM), RT-112 (14.1 μM), CaSki (17.0 μM), HepG2

(18.0 μM), PC-3 (26.7 μM) and MCF-7 (30.0 μM) [1-3]. Our previous study has shown that ACA exerts its cytotoxic effect via multiple mechanisms, including induction of apoptosis through dysregulation of nuclear factor- kappaB (NF-κB) and suppression of IKKα/ β activation [8-9]. However, its inherent chemical instability in serum, poor solubility in water and limited bioavailability have posed significant challenges for its clinical application [10-12]. In addition, ACA is also unstable in a 5% ethanol–aqueous solution and transforms into other by-products, which do not show cytotoxic effects via [3,3]-sigmatropic rearrangement or hydrolysis [13-14].

¹Natural Products and Organic Synthesis Laboratory (NPSO), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.

²Department of Chemistry, Nigerian Army University Biu, Borno State, 1500, Nigeria

³Department of Toxicology, Advance Medical and Dental Institute, Sains@Bertam, 13200 Kepala Batas, Penang, Malaysia

⁴Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah,88400, Kota Kinabalu, Sabah, Malaysia

⁵Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia

^{*}Corresponding author: mnazmi@usm.my

To overcome these limitations, structural modification of ACA has been explored as a strategy to improve its stability and therapeutic potential. In this context, 4-amidobenzhydryl-type analogues offer a promising scaffold for the development of more stable ACA derivatives. The incorporation of an amide functional group into such analogues not only improves their chemical stability, but also provides opportunities for fine-tuning their physicochemical and biological properties. Previous studies on benzhydryl-based compounds have demonstrated their potential as anticancer agents, emphasising their role as promising candidates for further development [14-15].

In this study, we report the synthesis and characterisation of 4-amidobenzhydryl-type analogues designed as stable ACA mimics. The cytotoxic activity of these analogues was evaluated against human myeloid leukemia cell lines (Kasumi-1) to assess their potential as anticancer agents. In addition, a detailed structural analysis was performed to elucidate structure-activity relationships, providing valuable insights into the design of future derivatives with enhanced anticancer efficacy. By addressing the limitations of ACA through rational structural this work contributes to modifications, development of novel chemotherapeutic agents with improved stability and efficacy. This research also emphasises the importance of natural productinspired design in the search for new anticancer compounds.

Materials and Methods Generals

All reactions were carried out in heat-dried glassware under an atmosphere of nitrogen unless otherwise stated. All liquid transfers were conducted using standard syringe or cannula techniques. DCM was dried under molecular sieves 4Å. All other reagents were obtained from Merck or Aldrich and used as received. Column chromatography was performed on silica gel (Merck, 60 Å C. C. 40-63 mm) as the stationary phase. Thin Layer Chromatography (TLC) was performed on alumina plates pre-coated with silica gel (Merck silica gel, 60 F254), which were visualised by the quenching of UV fluorescence when applicable ($\lambda_{max} = 254$ nm and/or 366 nm) and/or by spraying with vanillin in acidic ethanol followed by heating with a heat gun. NMR spectra were recorded on a Bruker Avance (500 MHz for ¹H NMR, 125 MHz for ¹³C NMR) spectrometer system. Data were analysed via TopSpin 3.6.1 software package. Spectra were referenced to TMS or residual solvent (CDCl₃ = 7.26 ppm in ¹H spectroscopy, and 77.0 ppm in 13 C spectroscopy; MeOD-D₄ = 4.78, 3.31 ppm in ¹H spectroscopy, and 49.2 ppm in ¹³C

spectroscopy). Fourier transform infrared (FT-IR) spectra were recorded by Perkin Elmer FT-IR spectroscopy (Perkin Elmer, Waltham, MA, USA) in the frequency range of 4000 – 400 cm⁻¹ using the ATR method.

Chemistry

(4-aminophenyl)(phenyl)methanol **(2)**: aminobenzophenone (1) (4.11 g, 20.86 mmol) was treated with NaBH₄ (4 equiv.) in the mixture of THF (100 mL) and H₂O (30 mL). While the mixture was heated under reflux overnight, the colour of the mixture gradually changed from pale yellow to colourless. The reaction mixture was quenched with saturated aqueous ammonium chloride (NH₄Cl) (20 mL). The layers were then separated, and the aqueous layer was extracted with ethyl acetate (EtOAc) (3×20 mL). The combined organic solvents were then dried over sodium sulphate (Na₂SO₄), filtered, and collected. The product was directly used without further purification (Supporting information, S1-S2). Brownish solid. Yield: (3.96 g, 95%). IR $(\tilde{\mathbf{v}}/\mathbf{cm}^{-1})$: 3406 (NH stretching), 3055 (Csp²-H stretching), 1613, 1513, 1277 (C-O stretching), 1174, 746. ¹H NMR (500 MHz, CD₃OD, δ/ppm): 5.67 (s, 1H, H-7), 6.70 (d, *J*= 8.4 Hz, 2H, H-3, H-5), 7.09 (d, J= 8.4 Hz, 2H, H-2, H-6), 7.22 (t, J= 7.5 Hz, 1H, H-11), 7.30 (t, *J*= 7.5 Hz, 2H, H-10, H-12), 7.37 (d, *J*= 7.5 Hz, 2H, H-9, H13). ¹³C NMR (125 MHz, **CD₃OD, \delta/ppm):** 77.0, 116.5, 127.7, 128.0, 129.0, 129.2, 135.7, 146.5, 148.0.

Synthesis of 4-amidobenzhydryl analogues 3a-3f

A 4-aminobenzhydrol 2 (1.0 equiv.) was dissolved in 20 mL of dry dichloromethane (DCM) and stirred in an ice bath. The 4-dimethylaminopyridine (DMAP) (2.2 equiv.), triethylamine (Et₃N) (2.2 equiv.) and acetic anhydride/acyl chloride (2.2 equiv.) were added dropwise while stirring the reaction solution. The ice bath was removed, and the mixture was allowed to stir at room temperature overnight. The reaction progress was monitored by TLC (1:4, nhexane: ethyl acetate). After stirring at room temperature overnight, the reaction mixture was quenched with saturated aqueous ammonium chloride (NH₄Cl) (20 mL). The layers were then separated, and the aqueous layer was extracted with ethyl acetate (EtOAc) (3×20 mL). The combined organic solvents were then dried over sodium sulphate (Na₂SO₄), filtered, and collected. The excess volatile solvent was removed under reduced pressure by using a rotary evaporator then gave the product 3 column chromatography (Supporting information, S3-S14).

(4-acetamidophenyl)(phenyl)methyl acetate (3a): A 4-aminobenzhydrol 2 (0.219 g, 1.10 mmol) was

dissolved in 10 mL of dry dichloromethane (DCM) stirred in an ice bath. The dimethylaminopyridine (DMAP) (0.268 g, 2.20 mmol), triethylamine (Et₃N) (0.31 mL, 2.22 mmol) and acetic anhydride (0.21 mL, 2.20 mmol) were added dropwise while stirring the reaction solution. The reaction then proceeded and worked up according to the general procedure. White solid. Yield: (0.23 g, 74%). IR (v/cm⁻¹): 3242 (NH stretching), 3049 (Csp²-H stretching), 1725 (C=O stretching), 1662 (NHC=O amide), 1513, 1369, 1225 (C-O stretching), 752. ¹H NMR (500 MHz, CDCl₃, δ/ppm): 2.09 (s, 6H, H-2", H-2'), 6.78 (s, 1H, H-7), 7.22 (d, J=8.6 Hz, 2H, H-3, H-6), 7.23-7.28 (m, 5H, H-9-H-13), 7.40 (d, J= 8.6 Hz, 2H, H-3, H-5). ¹³C NMR (125 MHz, CDCl₃, δ /ppm): 21.3, 24.5, 76.6, 120.0, 127.0, 127.8, 127.9, 128.5, 136.0, 137.6, 140.0, 168.6, 170.2.

(4-benzamidophenyl)(phenyl)methyl benzoate(3b): A 4-aminobenzhydrol 2 (0.210 g, 1.06 mmol) was dissolved in 10 mL of dry dichloromethane (DCM) stirred in an ice bath. The dimethylaminopyridine (DMAP) $(0.268 \, \text{g}, \, 2.20)$ mmol), triethylamine (Et₃N) (0.31 mL, 2.22 mmol) and benzyl chloride (0.26 mL, 2.20 mmol) were added dropwise while stirring the reaction solution. The reaction then proceeded and worked up according to the general procedure. Brownish solid. Yield: (0.28 g, 63%). IR $(\tilde{\mathbf{v}}/\mathbf{cm}^{-1})$: 3374 (NH stretching), 3029 (Csp²-H stretching), 1717 (C=O stretching), 1654 (NHC=O amide), 1510, 1274 (C-O stretching), 1102, 760. ¹H NMR (500 MHz, CDCl₃, δ /ppm): 7.04 (s, 1H, H-7), 7.23 (t, J= 7.4 Hz, 1H, H-11), 7.29 (t, J= 7.4 Hz, 2H, H-10, H-12), 7.36-7.53 (m, 10H, H-2, H-6, H-9, H-13, H-4'-H-6', H-4"-H-6"), 7.57 (d, *J*= 8.7 Hz, 2H, H-3, H-5), 7.75 (s, NH), 7.79 (d, J= 8.5 Hz, 2H, H-3', H-7'), 8.08 (d, J= 8.5 Hz, 2H, H-3", H-7"). ¹³C NMR (125 MHz, CDCl₃, **δ/ppm):** 77.1, 120.1, 127.0, 127.1, 128.0, 128.1, 128.4, 128.6, 128.9, 129.8, 130.2, 132.0, 133.2, 134.9, 136.5, 137.6, 140.1, 165.6, 165.8.

(4-butyramidophenyl)(phenyl)methyl butyrate (3c): A 4-aminobenzhydrol 2 (0.209 g, 1.05 mmol) was dissolved in 10 mL of dry dichloromethane (DCM) The and stirred in an ice bath. dimethylaminopyridine (DMAP) (0.268 g, 2.20 mmol), triethylamine (Et₃N) (0.31 mL, 2.22 mmol) and butyryl chloride (0.25 mL, 2.20 mmol) were added dropwise while stirring the reaction solution. The reaction then proceeded and worked up according to the general procedure. Yellowish oil. Yield: (0.32 g, 81%). IR $(\tilde{\mathbf{v}}/\mathbf{cm}^{-1})$: 3308 (NH stretching), 2964 (Csp²-H stretching), 1737 (C=O stretching), 1668 (NHC=O amide), 1504, 1252 (C-O stretching), 1171, 746. ¹H NMR (500 MHz, CDCl₃, δ/ppm): 0.85 (t, *J*= 7.4 Hz, 3H, H-4"), 0.88 (t, *J*= 7.4 Hz, 3H, H-4'), 1.60 (m, 2H, H-3"), 1.63 (m, 2H, H-3'), 2.21 (t, *J*= 7.4 Hz, 2H, H-2"), 2.31 (t, *J*= 7.4 Hz, 2H, H-2'), 6.76 (s, 1H, H-7), 7.19 (d, *J*= 8.5 Hz, 2H, H-2, H-6), 7.17-7.24 (m, 5H, H-9–H-13), 7.41 (d, *J*= 8.5 Hz, 2H, H-3, H-5), 7.56 (s, NH). ¹³C NMR (125 MHz, CDCl₃, δ/ppm): 13.6, 13.7, 18.5, 19.1, 36.5, 39.6, 76.3, 119.8, 126.9, 127.9, 128.5, 136.1, 137.7, 140.3, 171.5, 172.8.

(4-isobutyramidophenyl)(phenyl)methyl isobutyrate (3d): A 4-aminobenzhydrol 2 (0.220 g, 1.10 mmol) was dissolved in 20 mL of dry dichloromethane (DCM) and stirred in an ice bath. The 4dimethylaminopyridine (DMAP) (0.268 g, 2.20 mmol), triethylamine (Et₃N) (0.31 mL, 2.22 mmol) and isobutyryl chloride (0.23 mL, 2.20 mmol) were added dropwise while stirring the reaction solution. The reaction then proceeded and worked up according to the general procedure. Brownish solid. Yield: (0.36 g, 90%). IR $(\tilde{\mathbf{v}}/\mathbf{cm}^{-1})$: 3291 (NH stretching), 2970 (Csp²-H stretching), 1726 (C=O stretching), 1654 (NHC=O amide), 1533, 1461, 1192 (C-O stretching), 1117, 746, 694. ¹H NMR (500 MHz, CDCl₃, δ /ppm): 1.19 (dd, J= 1.8, 7.0 Hz, 6H, H-3', H-4'), 1.24 (d, J= 7.0 Hz, 6H, H-3'', H-4''), 2.42 (m, 1H, H-2"), 2.59 (m, 1H, H-2'), 6.75 (s, 1H, H-7), 7.12 (br s, 1H, NH), 7.29 (d, J= 8.5 Hz, 2H, H-2, H-6), 7.30-7.34 (m, 5H, H-9-H-13), 7.50 (d, J= 8.5 Hz, 2H, H-3, H-5). ¹³C NMR (125 MHz, CDCl₃, δ/ppm): 18.9, 19.7, 34.2, 36.7, 76.1, 119.7, 126.9, 127.8, 127.9, 128.5, 136.2, 137.6, 140.3, 175.2, 176.0.

(4-pentanamidophenyl)(phenyl)methyl pentanoate (3e): A 4-aminobenzhydrol 2 (0.220 g, 1.10 mmol) was dissolved in 20 mL of dry dichloromethane (DCM) and stirred in an ice bath. The 4dimethylaminopyridine (DMAP) (0.268 g, 2.20 mmol), triethylamine (Et₃N) (0.31 mL, 2.22 mmol) and valeroyl chloride (0.24 mL, 2.20 mmol) were added dropwise while stirring the reaction solution. The reaction then proceeded and worked up according to the general procedure. Yellowish oil. Yield: (0.34 g, 85%). IR (v/cm⁻¹): 3308 (NH stretching), 3032 (Csp²-H stretching), 2932 (Csp³-H stretching), 1737 (C=O stretching), 1665 (NHC=O amide), 1522, 1413, 1249 (C-O stretching), 1168, 743, 697. ¹H NMR (500 MHz, CDCl₃, δ/ppm): 0.82 (t, J= 7.4 Hz, 3H, H-5"), 0.86 (t, J= 7.4 Hz, 3H, H-5'), 1.25 (m, 2H, H-4"), 1.31 (m, 2H, H-4'), 1.56 (m, 2H, H-3"), 1.62 (m, 2H, H-3'), 2.26 (t, J=7.7 Hz, 2H, H-2''), 2,34 (t, J=7.6 Hz, 2H, H-2'), 6.77 (s, 1H, H-2') 7), 7.20 (d, J= 8.5 Hz, 1H, H-2, H-6), 7.22-7.27 (m, 5H, H-9-H-13), 7.41 (d, J= 8.5 Hz, 1H, H-3, H-5). ¹³C NMR (125 MHz, CDCl₃, δ /ppm): 13.7, 13.8, 22.2, 22.4, 27.0, 27.7, 34.3, 37.5, 76.3, 119.8, 127.0,

127.8, 127.9, 128.5, 136.1, 137.6, 140.2, 171.6, 172.9

(4-(cyclohexanecarboxamido)phenyl)(phenyl)methyl cyclohexanecarboxylate (3f): A 4-aminobenzhydrol 2 (0.220 g, 1.10 mmol) was dissolved in 20 mL of dry dichloromethane (DCM) and stirred in an ice bath. The 4-dimethylaminopyridine (DMAP) (0.268 g, 2.20 mmol), triethylamine (Et₃N) (0.31 mL, 2.22 mmol) and cyclohexanecarbonyl chloride (0.26 mL, 2.20 mmol) were added dropwise while stirring the reaction solution. The reaction then proceeded and worked up according to the general procedure. Brownish solid. Yield: (0.449 g, 91%). IR (v/cm⁻¹): 3259 (NH stretching), 3029 (Csp²-H stretching), 2926 (Csp³-H stretching), 2851, 1737 (C=O stretching), 1662 (NHC=O amide), 1539, 1507, 1249 (C-O stretching), 1160, 726, 694. ¹H NMR (500 MHz, CDCl₃, δ/ppm): 1.20-1.34 (m, 6H, H-4a', H-6a', H-4a", H-6a", H-5a', H-5a"), 1.46 (m, 2H, H-3a", H-7a"), 1.53 (m, 2H, H-3a', H-7a'), 1.68-1.77 (m, 4H, 5b', H-5b", H-4b", H-6b"), 1.81-1.85 (m, 2H, H-4b', H-6b'), 1.91-1.97 (m, 2H, H-3b', H-7b', H-3b", H-7b"), 2.21 (tt, J= 3.4, 11.8 Hz, 1H, H-2"), 2.40 (tt, J= 3.4, 11.8 Hz,, 1H, H-2'), 6.82 (s, 1H, H-7), 7.16 (br s, 1H, NH), 7.26 (d, J= 8.5 Hz, 1H, H-2, H-6), 7.29-7.33 (m, 5H, H-9-H-13), 7.49 (d, J= 8.5 Hz, 1H, H-3, H-5). 13 C NMR (125 MHz, CDCl₃, δ /ppm): 25.4, 25.6, 25.7, 29.0, 29.6, 43.3, 46.6, 76.0, 119.7, 126.9, 127.7, 127.8, 128.5, 136.2,137.6, 140.4, 174.4, 175.0.

Biological assay Cell culture

Kasumi-1 cells were purchased from the American Type Culture Collection (ATCC Manassa, VA, USA). Kasumi-1 cells were maintained in RPMI 1640 medium containing L-Glutamine supplemented with 10% of fetal bovine serum and 1% of Penicillin-Streptomycin. The cells were subcultured at least twice a week (48-72hrs) or when 80% confluent with a dilution of 1:10 and kept in T-25 or T-75 flasks.

Cytotoxic evaluation of 4-amidobenzhydryl analogues

The effects of 4-amidobenzhydryl analogues (3a-3f) on Kasumi-1 cell viability were examined using the thiazolyl blue tetrazolium bromide (MTT) assay [16]. The cells were then seeded in clear round bottom 96-well microplates at a seeding density of 1×10^4 cells per well in 100 μL of cell suspension per well. The cells were treated with serial dilutions of the synthesised compounds in DMSO at final concentrations of 200 $\mu g/mL$, 100 $\mu g/mL$, and 50 $\mu g/mL$. Cells treated with 0.1% DMSO served as the vehicle control. The treatments were carried out for durations of 24, 48, and 72 hours. After exposure

times, the plate was centrifuged, and the media was aspirated and replaced with fresh media with 10% of 5 mg/mL MTT solution. The microplate was then incubated at 37°C for 4 hours. Then, the media was once again aspirated. 70 μL of DMSO was then added into each well and the absorbance was measured at 570 nm with a reference wavelength of 620 nm. The IC $_{50}$ value of each treatment group was obtained by referencing the treatment concentration needed to reduce the cell viability to 50% using the dose-response curve. All treatments were performed in triplicate and repeated in three independent experiments

The cell viability was calculated using the following formula:

Cell Viability (%) =
$$\frac{\text{Treated Cells Absorbance}^{570-620}}{\text{Vehicle Control Absorbance}^{570-620}} \times 100 \text{ (1)}$$

Results and Discussion Synthesis of 4-amidobenzhydryl analogues

Scheme 1 shows the synthetic pathway for the preparation of 4-amidobenzhydryl analogues (3a-3f). The synthesis began with the preparation of (4aminophenyl)(phenyl)methanol (2), which was achieved by reducing (4-aminophenyl)(phenyl) methanone (1) with sodium borohydride (NaBH₄) in a THF-H₂O solvent system under heating. In the next step, 4-amidobenzhydryl analogues (3a-3f) were synthesised through an acylation reaction. This was accomplished by reacting (4-aminophenyl)(phenyl) methanol (2) with various acyl chlorides in the presence of dry dichloromethane (DCM) as the solvent. The reaction was catalysed by 4dimethylaminopyridine (DMAP) and facilitated by triethylamine (Et₃N) as a base at 0 °C. The chemical structures of the synthesised target compounds were confirmed through comprehensive spectroscopic analyses, including FT-IR and NMR techniques.

From the characterisation analysis conducted, the structural confirmation of the target compounds is successfully validated. This can be observed through the presence of the C=O carbon peak in the ¹³C-NMR spectra in range of 146.0 to 180.0 ppm. From the FT-IR spectra, the presence of a sharp C=O carbonyl and NHC=O amide peaks at range 1600 to 1740 cm⁻¹ can also be observed, further confirming the structure of the target compounds. For example, the ¹³C-NMR spectrum for compound **3a** visualises the peak for C=O carbons at 168.6 and 170.2 ppm, while from the FT-IR spectrum, peaks observed at 1725 and 1662 cm⁻¹ were assigned to functional groups C=O and NHC=O respectively.

$$\begin{array}{c} O\\ NaBH_4\\ THF-H_2O\\ \Delta\\ \end{array}$$

$$\begin{array}{c} O\\ H_2N\\ \end{array}$$

$$\begin{array}{c} O\\ \\ DMAP,\ Et_3N\\ \end{array}$$

$$\begin{array}{c} O\\ \\ DCM,\ 0^{\circ}C\\ \end{array}$$

$$\begin{array}{c} O\\ \\ R_1\\ \end{array}$$

$$\begin{array}{c} O\\ \\ C\\ \end{array}$$

$$\begin{array}{$$

Scheme 1. Synthesis strategy for the preparation of 4-amidobenzyhydryl analogues 3a-f

Cytotoxic evaluation

The synthesised compounds demonstrated significant cytotoxic effects against Kasumi-1 cells, as assessed using the MTT assay (Table 1 and Figure 1). After 72 hours of exposure, all tested compounds reduced cell viability notably. Among them, 3a is particularly effective, showing notable reductions in cell viability even after 24 hours of treatment (Figure 1). 3a consistently exhibited cytotoxic activity across all time points, with IC50 values of 247.35 μM at 24 hours, 106.01 μM at 48 hours, and 98.94 μM at 72 hours. Other compounds, such as 3e displayed timedependent cytotoxicity, with their effects becoming prominent only at 48 and 72 hours. The IC₅₀ values for 3e were 272.48 µM and 98.09 µM at 48 and 72 hours, respectively. The delayed activity of these compounds suggests a unique mechanism of action that justifies further investigation. These results highlight 3a as the most promising compound due to its consistent efficacy across all time points. Its superior performance, coupled with stable activity, positions 3a as a lead candidate for further development. The time-dependent cytotoxic effects observed with 3e suggest they may offer targeted applications, potentially through mechanisms that take effect over prolonged exposure durations. However, it is important to note that the IC₅₀ values are derived from triplicate experiments and represent descriptive comparisons only.

While these findings provide valuable insights into the anticancer potential of the analogues, it is essential to note that this is a preliminary screening conducted on a single cell line, Kasumi-1. Further studies involving additional cancer cell lines and normal cell lines are necessary to validate the selectivity and broad-spectrum efficacy of these compounds. Additionally, future studies should incorporate a known chemotherapeutic agent as a positive control to enable direct comparison of cytotoxic potency. Mechanistic studies, such as apoptosis assays or pathway analyses, will also be essential to elucidate the mode of cell death induced by these analogues.

Structural activity relationship study (SAR study)

All compounds exhibited cytotoxic activity, with ICs0 values ranging from 82.6 μM to 98.9 μM after 72 hours of treatment. The methyl-substituted derivative 3a showed significant cytotoxic effects against Kasumi-1 cells, with ICs0 values of 247.3 μM at 24 hours, 106.0 μM at 48 hours, and 98.9 μM at 72 hours. To investigate the impact of substitutions, different functional groups were introduced at the carboxamide and ester positions of the 4-amidobenzhydryl analogues.

Initially, the cytotoxic effect of the methyl group was evaluated. The introduction of a methyl group (3a) at the carboxamide and ester positions enhanced cytotoxic activity compared to other substituted derivatives. However, the cytotoxic activity observed methyl-substituted derivative 3a and the butyl (3c) and isobutyl (3d) derivatives appeared comparable within the tested concentration range. In contrast, phenyl substituted derivatives 3b and cyclohexyl derivatives 3f showed no cytotoxic activity at 24 and 48 hours. Substitution with butyl (3c) and isobutyl (3d) groups reduced potency, indicating that these groups were less favourable.

Table 1. IC₅₀ value of 4-amidobenzyhydryl analogues **3a-3f**

Table 1 . IC ₅₀ value of 4-amidober	e 1. IC ₅₀ value of 4-amidobenzyhydryl analogues 3a-3f		
	24 hrs	50 Value (µM 48 hrs) 72 hrs
O O O O O O O O O O O O O O O O O O O	247.35	106.01	98.94
3a O Ph O Ph 3b	NA	NA	86.00
O N H 3c	NA	147.58	89.06
O O O O O O O O O O O O O O O O O O O	412.98	147.49	82.60
$0 \\ N \\ H$ $3e$	NA	272.48	98.09
O O O O O O O O O O O O O O O O O O O	NA	NA	88.31

NA signifies undetermined IC₅₀ value. All experiments were conducted in triplicates

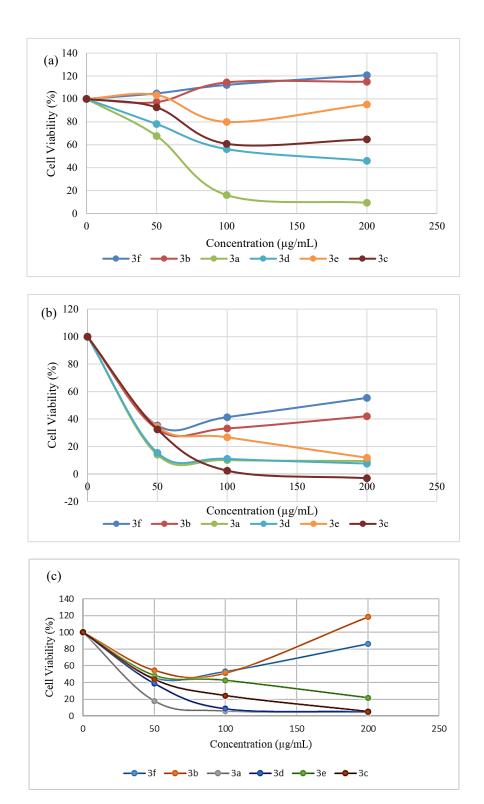


Figure 1. Dose-response curves of Kasumi-1 cells when treated with 4-amidobenzyhydryl analogues. Cells were exposed to various concentrations of each compound for (A) 24 hrs, (B) 48 hrs, and (C) 72 hrs. Cytotoxicity was assessed using the MTT assay. Each data point represents the mean cell viability (%) from three independent experiments

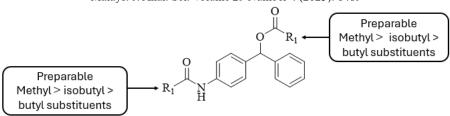


Figure 2. Structure activity relationship of 4-amidobenzhydryl analogues

Furthermore, compounds 3c (IC₅₀ = $147.58 \mu M$ at 48 hours; $89.06 \mu M$ at 72 hours) and 3e (IC₅₀ = 272.48 μM at 48 hours; 82.6 μM at 72 hours) exhibited cytotoxic activity, although less effectively than 3a. These findings suggest that aliphatic substitutions are generally more favourable for cytotoxic activity. Interestingly, cytotoxicity was observed to decrease as the length of the carbon chain in the substituent increased. Additionally, the introduction of bulky groups such as phenyl or cyclohexyl rings reduced cytotoxic potency, likely due to steric hindrance interfering with the interaction of the compounds with their biological targets. It may also be caused by the conformational flexibility aliphatic chains offer compared to aromatic or cyclic substituents, possibly allowing for more favourable conformation for optimal binding with the biological targets (Figure 2).

Conclusion

In summary, the synthesised 4-amidobenzhydryl analogues demonstrated significant anticancer potential against human myeloid leukemia Kasumi-1 cells, with promising IC₅₀ values observed after 72 hours of treatment. Cytotoxicity evaluations revealed that the efficacy of compound 3a in reducing cell viability was most consistent across all time points compared to the other analogues, distinguishing the compound as the most potent analogue. The structure-activity relationship study highlighted that aliphatic substitutions at the carboxamide and ester positions enhanced cytotoxic activity, in contrast to substitutions such as phenyl and cyclohexyl groups, which reduced the cytotoxicity. This supports the cytotoxic evaluation of the analogue compounds. These findings suggest that 4-amidobenzhydryl analogues, especially compound 3a, could serve as lead candidates for further development as anticancer agents.

Acknowledgement

The author would like to acknowledge the financial support from the Ministry of Higher Education Malaysia (MOHE) under the Fundamental Grant Research Scheme (FRGS) - FRGS/1/2023/STG04/USM/02/3. The authors sincerely thank University Sains Malaysia (USM) for approval of sabbatical

leave M.N.A. and the NPSO Laboratory for the facilities used in this research work.

References

- 1. Awang, K., Azmi, M. N., In, L. L., Aziz, A. N., Ibrahim, H., and Nagoor, N. H. (2010). The apoptotic effect of 1'S-1'-acetoxychavicol acetate from Alpinia conchigera on human cancer cells. *Molecules*, 15: 8048-8059.
- Hasima, N., In, L. L., Azmi, M. N., Aziz, A. N., Thirthagiri, E., Ibrahim, H., and Awang, K. (2010). 1'S-1'-acetoxyeugenol acetate: A new chemotherapeutic natural compound against MCF-7 human breast cancer cells. *Phytomedicine*, 17: 935-939
- 3. Liew, S. K., Azmi, M. N., In, L. L., Awang, K., and Nagoor, N. H. (2017). Anti-proliferative, apoptotic induction, and 1' S-1'-acetoxychavicol acetate analogs on MDA-MB-231 breast cancer cells. *Drug Design, Development and Therapy*, 11: 2763-2776.
- 4. Suhendi, A., Wikantyasning, E. R., Setyadi, G., Wahyuni, A. S., and Da'i, M. (2017). Acetoxy chavicol acetate (ACA) concentration and cytotoxic activity of Alpinia galanga extract on HeLa, MCF7 and T47D cancer cell lines. *Indonesian Journal of Cancer Chemoprevention*, 8(2): 79-82.
- Da'i, M., Meilinasary, K. A., Suhendi, A., and Haryanti, S. (2019). Selectivity index of *Alpinia* galanga extract and 1'-acetoxychavicol acetate on cancer cell lines. *Indonesian Journal of* Cancer Chemoprevention, 10(2): 95-100.
- Baradwaj, R. G., Rao, M. V., and Kumar, T. S. (2017). Novel purification of 1'S-1'-acetoxychavicol acetate from *Alpinia galanga* and its cytotoxic plus antiproliferative activity in colorectal adenocarcinoma cell line SW480. *Biomedicine & Pharmacotherapy*, 91: 485-493.
- Ito, K., Nakazato, T., Murakami, A., Yamato, K., Miyakawa, Y., Yamada, T., Hozumi, N., Ohigashi, H., Ikeda, Y., and Kizaki, M. (2004). Induction of apoptosis in human myeloid leukemic cells by 1'-acetoxychavicol acetate through a mitochondrial- and Fas-mediated dual mechanism. Clinical Cancer Research, 10: 2120-2130.

- 8. In, L. L., Azmi, M. N., Ibrahim, H., Awang, K., and Nagoor, N. H. (2011). 1'S-1'-acetoxychavicol acetate: A novel phenylpropanoid from *Alpinia conchigera* enhances the apoptotic effects of paclitaxel in MCF-7 cells through NF-kB inactivation. *Anti-Cancer Drugs*, 22: 424-434.
- In, L. L., Mohd Arshad, N., Ibrahim, H., Azmi, M. N., Awang, K., and Nagoor, N. H. (2012).
 1'-Acetoxychavicol acetate inhibits growth of human oral carcinoma xenograft in mice and potentiates cisplatin effect via proinflammatory microenvironment alterations. BMC Complementary Alternative Medicine, 12: 179.
- Mohd Arshad, N., In, L. L., Soh, T. L., Azmi, M. N., Ibrahim, H., Awang, K., Dudich, E., Tatulov, E., and Nagoor, N. H. (2015). Recombinant human alpha fetoprotein synergistically potentiates the anti-cancer effects of 1'-S-1'-acetoxychavicol acetate when used as a complex against human tumours harbouring AFP-receptors. *Oncotarget*, 6 (18): 16151-16167.
- Azuma, H., Aizawa, Y., Higashitani, N., Tsumori, T., Kojima-Yuasa, A., Matsui-Yuasa, I., and Nagasaki, T. (2011). Biological activity of water-soluble inclusion complexes of 1'acetoxychavicol acetate with cyclodextrins. *Bioorganic & Medicinal Chemistry*, 19(12): 3855-3863.
- 12. Li, J., Aizawa, Y., Hiramoto, K., Kasahara, E., Tsuruta, D., Suzuki, Y., Ikeda, A., Azuma, H., and Nagasaki, T. (2015). Anti-inflammatory effect of water-soluble complex of 1′-acetoxychavicol acetate with highly branched β-1,3-glucan on contact dermatitis. *Biomedicine & Pharmacotherapy*, 69: 201-207.
- 13. Yang, X., and Eilerman R. G. (199). Pungent principal of *Alpinia galangal* (L.) swartz and its applications. *Journal of Agricultural and Food Chemistry*, 27 (4): 1657-1662.
- 14. Azmi, M. N., Tan, C. S., Abdulameed, H. T., Nik Mohamad Kamal, N. N. S., Abdul Kahar, N. E., and Che Omar, M. T. (2024). Synthesis of benzhydrol analogues based on 1'-acetoxychavicol acetate (ACA), as a stable and potent antiproliferative agent on breast cancer cell lines, ADMET analysis and molecular docking study. Organic Communications, 17(2): 99-114.
- 15. Misawa, T., Aoyama, H., Furuyama, T., Dodo, K., Sagawa, M., Miyachi, H., Kizaki, M., and Hashimoto, Y. (2008). Structural development of benzhydrol-type 1-acetoxychavicol acetate (ACA) analogs as human leukemia cell-growth inhibitors based on quantitative structure–activity relationship (QSAR) analysis.

- Chemical and Pharmaceutical Bulletin, 56(10): 1490-1495.
- 16. Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. *Journal Immunology Methods*, 65(1-2): 55-63.