Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1564

 

Research Article

 

Innovative oil removal technology: Graphene oxide@ZIF-8 on alumina hollow fibre membranes

 

Dayang Norafizan Awang Chee1*, Faezrul Zackry Abdul Halim1, Muhammad Shamil Soffian1, Nur Afiqah Kamaludin1, Claudeareena Garlding1, Mohamed Afizal Mohamed Amin2, and Farhana Aziz3

 

1Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

2Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

3Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor Darul Takzim, Malaysia

 

*Corresponding author: dnorafizan@unimas.my

 

Received: 7 May 2025; Revised: 17 July 2025; Accepted: 21 July 2025; Published: 29 August 2025

 

Abstract

Oily wastewater pollution poses a severe threat to freshwater resources, marine ecosystems, and human health. To address this, a graphene oxide (GO) based nanocomposite membrane integrated with Zeolitic Imidazolate Framework-8 (ZIF-8) was constructed on a pristine alumina (Al2O3) hollow fibre support. The resulting GO@ZIF-8/Al2O3 membrane exhibited a high surface area and abundant oxygen-containing functional groups, enhancing its oil adsorption and separation performance. GO was synthesized via a modified Hummers’ method, followed by in situ solvothermal assembly with ZIF-8. The membrane structure was characterized using Fourier-Transform Infrared Spectroscopy (FTIR), Ultraviolet–Visible (UV–Vis) Spectroscopy, X-Ray Diffraction (XRD), and Field Emission Scanning Electron Microscopy (FESEM). Batch adsorption and crossflow filtration studies were performed to evaluate membrane performance. Adsorption data fit well to the Freundlich isotherm model (R2 = 0.98046) and pseudo-second order kinetics (R2 = 0.98247), indicating multilayer chemisorption. The GO(2:1)@ZIF-8/Al2O3 membrane achieved up to 96.32% oil removal and maintained 90.08% rejection after six reuse cycles. Compared to the pristine membrane, which showed only 33.65 Lm-2h-1 flux, the modified membrane achieved 92.15 Lm-2h-1, a 173.9% improvement. These findings demonstrate a robust and reusable membrane system with excellent potential for practical oily wastewater treatment.

 

Keywords: graphene oxide, membrane, oil removal, reusability, zeolitic imidazoalate framework-8



References

1.      Hasan, M. K., Shahriar, A., and Jim, K. U. (2019). Water pollution in Bangladesh and its impact on public health. Heliyon, 5(8): e02145.

2.      Kumar Nougriaya, S., Chopra, M. K., Gupta, B., and Baredar, P. (2020). Stepped solar still: A review on designs analysis. Materials Today: Proceedings, 46: 5647-5660.

3.      Chen, M., Heijman, S. G. J., and Rietveld, L. C. (2021). State-of-the-art ceramic membranes for oily wastewater treatment: Modification and application. Membranes, 11(11): 888.

4.      Kandeal, A. W., Joseph, A., Elsharkawy, M., Elkadeem, M. R., Hamada, M. A., Khalil, A., ... and Sharshir, S. W. (2022). Research progress on recent technologies of water harvesting from atmospheric air: A detailed review. Sustainable Energy Technologies and Assessments, 52: 10200.

5.      Tanudjaja, H. J., Hejase, C. A., Tarabara, V. V., Fane, A. G., and Chew, J. W. (2019). Membrane-based separation for oily wastewater: A practical perspective. Water Research, 156: 347-365.

6.      Usman, J., Othman, M. H., Ismail, A. F., Rahman, M. A., Jaafar, J., Raji, Y. O., ... and Kurniawan, T. A. (2020). Impact of organosilanes modified superhydrophobic‐superoleophilic kaolin ceramic membrane on efficiency of oil recovery from produced water. Journal of Chemical Technology & Biotechnology, 95(12): 3300-3315.

7.      Usman, J., Othman, M. H. D., Ismail, A. F., Rahman, M. A., Jaafar, J., Raji, Y. O., ... and Said, K. A. M.  (2021). An overview of superhydrophobic ceramic membrane surface modification for oil-water separation. Journal of Materials Research and Technology, 12: 643-667.

8.      Abuhasel, K., Kchaou, M., Alquraish, M., Munusamy, Y., and Jeng, Y. T. (2021). Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities. Water, 13(7): 980.

9.      Sathya, K., Nagarajan, K., Carlin Geor Malar, G., Rajalakshmi, S., and Raja Lakshmi, P. (2022). A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Applied Water Science, 12(4): 70.

10.   Yalcinkaya, F., Boyraz, E., Maryska, J., and Kucerova, K. (2020). A review on membrane technology and chemical surface modification for the oily wastewater treatment. Materials, 13(2): 493.

11.   Ma, C., Li, Y., Nian, P., Liu, H., Qiu, J., and Zhang, X. (2019). Fabrication of oriented metal-organic framework nanosheet membrane coated stainless steel meshes for highly efficient oil/water separation. Separation and Purification Technology, 229: 115835.

12.   Abdullayev, A., Bekheet, M. F., Hanaor, D. A. H., and Gurlo, A. (2019). Materials and applications for low-cost ceramic membranes. Membranes, 9(9): 105.

13.   Kang, L., Zhao, L., Yao, S., and Duan, C. (2019). A new architecture of super-hydrophilic β-SiAlON/graphene oxide ceramic membrane for enhanced anti-fouling and separation of water/oil emulsion. Ceramics International, 45(13), 16717-16721.

14.   Nikou, M., Samadi-Maybodi, A., Yasrebi, K., and Sedighi-Pashaki, E. (2021). Simultaneous monitoring of the adsorption process of two organophosphorus pesticides by employing GO/ZIF-8 composite as an adsorbent. Environmental Technology & Innovation, 23: 101590.

15.   Dhaka, S., Kumar, R., Deep, A., Kurade, M. B., Ji, S. W., and Jeon, B. H. (2019). Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews, 380: 330-352.

16.   Yang, H., Wang, N., Wang, L., Liu, H. X., An, Q. F., and Ji, S. (2018). Vacuum-assisted assembly of ZIF-8@GO composite membranes on ceramic tube with enhanced organic solvent nanofiltration performance. Journal of Membrane Science, 545: 158-166.

17.   Wang, Z., Huang, J., Mao, J., Guo, Q., Chen, Z., and Lai, Y. (2020). Metal-organic frameworks and their derivatives with graphene composites: Preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 8(6): 2934-2961.

18.   Zheng, Y., Zheng, S., Xue, H., and Pang, H. (2018). Metal-organic frameworks/graphene-based materials: Preparations and applications. Advanced Functional Materials, 28(47): 1804950.

19.   Pillai, P., Dharaskar, S., Sasikumar, S., & Khalid, M. (2019). Zeolitic imidazolate framework-8 nanoparticle: A promising adsorbent for effective fluoride removal from aqueous solution. Applied Water Science, 9(7): 1-12.

20.   Hammoud, H. M. M., & Hamzah, A. P. D. A. H. (2022). Fabrication and characterization of alumina thin film. University of Babylon.

21.   Hummers, W. S., and Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6): 1339.

22.   Hu, Y., Wei, J., Liang, Y., Zhang, H., Zhang, X., Shen, W., and Wang, H. (2016). Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes. Angewandte Chemie International Edition, 55(6): 2048-2052.

23.   Awang Chee, D. N. B., Aziz, F., Ismail, A. F., Mohamed Amin, M. A. B., and Abdullah, M. S. (2021). Dual-function ZIF-8 membrane supported on alumina hollow fiber membrane for copper(II) removal. Journal of Environmental Chemical Engineering, 9(4): 105343.

24.   Ahmad, N., Samavati, A., Nordin, N. A. H. M., Jaafar, J., Ismail, A. F., and Malek, N. A. N. N. (2020). Enhanced performance and antibacterial properties of amine-functionalized ZIF-8-decorated GO for ultrafiltration membrane. Separation and Purification Technology, 239: 116554.

25.   Li, D., and Xu, F. (2021). Removal of Cu(II) from aqueous solutions using ZIF-8@GO composites. Journal of Solid State Chemistry, 302: 122406.

26.   Raji, Y. O., Othman, M. H. D., Nordin, N. A. H. S. M., Kurniawan, T. A., Ismail, A. F., Rahman, M. A., ... and Farag, T. M. (2021). Wettability improvement of ceramic membrane by intercalating nano-Al2O3 for oil and water separation. Surfaces and Interfaces25: 101178.

27.   Zhong, L., Sun, C., Yang, F., and Dong, Y. (2021). Superhydrophilic spinel ceramic membranes for oily emulsion wastewater treatment. Journal of Water Process Engineering, 42: 102161.

28.   Li, H., Cheng, Y., Li, J., Li, T., Zhu, J., Deng, W., ... and He, D. (2022). Preparation and adsorption performance study of graphene quantum dots@ ZIF-8 composites for highly efficient removal of volatile organic compounds. Nanomaterials, 12(22): 4008.

29.   Mottaghi, H., Mohammadi, Z., Abbasi, M., Tahouni, N., and Panjeshahi, M. H. (2021). Experimental investigation of crude oil removal from water using polymer adsorbent. Journal of Water Process Engineering, 40: 101959.

30.   Diraki, A., Mackey, H. R., McKay, G., and Abdala, A. (2019). Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. Journal of Environmental Chemical Engineering, 7(3): 103106.

31.   Ewis, D., Benamor, A., Ba-Abbad, M. M., Nasser, M., El-Naas, M., and Qiblawey, H. (2020). Removal of oil content from oil-water emulsions using iron oxide/bentonite nano adsorbents. Journal of Water Process Engineering, 38: 101583.

32.   Diraki, A., Mackey, H., McKay, G., and Abdala, A. A. (2018). Removal of oil from oil–water emulsions using thermally reduced graphene and graphene nanoplatelets. Chemical Engineering Research and Design, 137: 47-59.

33.   Masibi, E. G., Makhetha, T. A., and Moutloali, R. M. (2022). Effect of the incorporation of ZIF‐8@GO into the thin‐film membrane on salt rejection and BSA fouling. Membranes, 12(4): 1-23.

34.   Khan, I. U., Othman, M. H. D., Jilani, A., Ismail, A. F., Hashim, H., Jaafar, J., ... and Rehman, G. U. (2018). Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption. Arabian Journal of Chemistry, 11(7): 1072-1083.

35.   Simonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300: 254-263.

36.   Lv, Z., Zhang, S., Jiao, W., Zuo, X., Zhang, Y., and Liu, Y. (2023). High-efficiency cleaning technology and lifespan prediction for the ceramic membrane treating secondary treated effluent. Water Science and Technology, 88(1): 321-338.

37.   Gruskevica, K., and Mezule, L. (2021). Cleaning methods for ceramic ultrafiltration membranes affected by organic fouling. Membranes, 11(2): 1–15.

38.   Avornyo, A. J., Thanigaivelan, A., Krishnamoorthy, R., Hassan, S. W., and Banat, F. (2023). Ag-CuO-decorated ceramic membranes for effective treatment of oily wastewater. Membranes, 13(2): 176.

39.   Junaidi, N. F. D., Othman, N. H., Fuzil, N. S., Shayuti, M. S. M., Alias, N. H., Shahruddin, M. Z., ... and Aba, N. D. (2021). Recent development of graphene oxide-based membranes for oil–water separation: A review. Separation and Purification Technology, 258: 118000.

40.   Sastry, S. S. M., Panjikar, S., and Raman, R. S. (2021). Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnology, Science and Applications, 14: 197-220.

41.   Tiwari, S. K., Sahoo, S., Wang, N., and Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1): 10-29.

42.   Yu, W., Sisi, L., Haiyan, Y., and Jie, L. (2020). Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 10(26): 15328-15345.

43.   Trikkaliotis, D. G., Christoforidis, A. K., Mitropoulos, A. C., and Kyzas, G. Z. (2021). Graphene oxide synthesis, properties and characterization techniques: A comprehensive review. ChemEngineering, 5(3): 64.

44.   Trikkaliotis, D. G., Mitropoulos, A. C., and Kyzas, G. Z. (2020). Low-cost route for top-down synthesis of over- and low-oxidized graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 600: 124928.

45.   Chen, H., Du, W., Liu, J., Qu, L., and Li, C. (2019). Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chemical Science, 10(4): 1244-1253.

46.   Abaszade, R. G. (2022). Synthesis and analysis of flakes graphene oxide. Journal of Optoelectronics and Biomedical Materials, 14(3): 107-114.

47.   Guliyeva, N. A., Abaszade, R. G., Khanmammadova, E. A., and Azizov, E. M. (2023). Synthesis and analysis of nanostructured graphene oxide. Journal of Optoelectronics and Biomedical Materials, 15(1): 23-30.

48.   Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., and Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45(11): 14439-14448.

49.   Ain, Q. T., Haq, S. H., Alshammari, A., Al-Mutlaq, M. A., and Anjum, M. N. (2019). The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein Journal of Nanotechnology, 10(1): 901-911.

50.   Kumar, A., Sadanandhan, A. M., and Jain, S. L. (2019). Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New Journal of Chemistry, 43(23): 9116-9122.

51.   Zhang, Y., Fang, Z., Zhao, S., Wei, M., Wu, X., and Sun, L. (2020). An experimental study on the wall collision of micro-sized graphite particles by high-speed photomicrography. Progress in Nuclear Energy, 125: 103391.

52.   Adetayo, A., and Runsewe, D. (2019). Synthesis and fabrication of graphene and graphene oxide: A review. Open Journal of Composite Materials, 9(2): 207-229.

53.   Benzait, Z., Chen, P., and Trabzon, L. (2021). Enhanced synthesis method of graphene oxide. Nanoscale Advances, 3(1): 223-230.

54.   Chen, X., Qu, Z., Liu, Z., and Ren, G. (2022). Mechanism of oxidization of graphite to graphene oxide by the Hummers method. ACS Omega, 7(27): 23503-23510.

55.   Abaszade, R. G., Mamedova, S. A., Agayev, F. G., Budzulyak, S. I., Kapush, O. A., Mamedova, M. A., ... and Kotsyubynsky, V. O. (2021). Synthesis and characterization of graphene oxide flakes for transparent thin films. Physics and Chemistry of Solid State, 22(3): 595-601.

56.   Zhu, T., Xu, S., Yu, F., Yu, X., and Wang, Y. (2020). ZIF-8@GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery. Journal of Membrane Science, 598: 117681.

57.   Zhu, Q., Zhuang, W., Chen, Y., Wang, Z., Villacorta Hernandez, B., Wu, J., ... and Zhu, Z. (2018). Nano-biocatalysts of Cyt c@ ZIF-8/GO composites with high recyclability via a de novo approach. ACS Applied Materials & Interfaces10(18): 16066-16076.

58.   Hoseinzadeh, H., Hayati, B., Shahmoradi Ghaheh, F., Seifpanahi-Shabani, K., and Mahmoodi, N. M. (2021). Development of room temperature synthesized and functionalized metal-organic framework/graphene oxide composite and pollutant adsorption ability. Materials Research Bulletin, 142: 111408.

59.   Makhetha, T. A., Ray, S. C., and Moutloali, R. M. (2020). Zeolitic imidazolate framework-8-encapsulated nanoparticle of Ag/Cu composites supported on graphene oxide: Synthesis and antibacterial activity. ACS Omega, 5(17): 9626-9640.

60.   Tuncel, D., and Ökte, A. N. (2021). Improved adsorption capacity and photoactivity of ZnO-ZIF-8 nanocomposites. Catalysis Today, 361: 191-197.

61.   Li, D., Liu, H., Niu, C., Yuan, J., and Xu, F. (2019). mpg-C₃N₄-ZIF-8 composites for the degradation of tetracycline hydrochloride using visible light. Water Science and Technology, 80(11): 2206-2217.

62.   Wang, X., Zhao, Y., Tian, E., Li, J., and Ren, Y. (2018). Graphene oxide-based polymeric membranes for water treatment. Advanced Materials Interfaces, 5(15): 1701427.

63.   Makhetha, T. A., and Moutloali, R. M. (2020). Stable zeolitic imidazolate framework-8 supported onto graphene oxide hybrid ultrafiltration membranes with improved fouling resistance and water flux. Chemical Engineering Journal Advances, 1: 100005.

64.   Biata, N. R., Jakavula, S., Mpupa, A., Moutloali, R. M., and Nomngongo, P. N. (2022). Recovery of palladium and gold from PGM ore and concentrates using ZnAl-layered double hydroxide@zeolitic imidazolate framework-8 nanocomposite. Separations, 9(10): 274.

65.   Ahmad, N., Nordin, N. A. H. M., Jaafar, J., Ismail, A. F., and Ramli, M. K. N. B. (2021). Significant improvement in antibacterial property of ZIF-8 decorated graphene oxide by post-synthetic modification process. Journal of Environmental Chemical Engineering, 9(5): 105887.

66.   Chen, F., Dong, S., Wang, Z., Xu, J., Xu, R., and Wang, J. (2020). Preparation of mixed matrix composite membrane for hydrogen purification by incorporating ZIF-8 nanoparticles modified with tannic acid. International Journal of Hydrogen Energy, 45(12): 7444-7454.

67.   Wei, N., Zheng, X., Ou, H., Yu, P., Li, Q., and Feng, S. (2019). Fabrication of an amine-modified ZIF-8@GO membrane for high-efficiency adsorption of copper ions. New Journal of Chemistry, 43(14): 5603-5610.

68.   Li, C. R., Hai, J., Fan, L., Li, S. L., Wang, B. D., and Yang, Z. Y. (2019). Amplified colorimetric detection of Ag⁺ based on Ag⁺-triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets. Sensors and Actuators B: Chemical, 284: 213-219.

69.   Su, P., Wang, F., Li, Z., Tang, C. Y., and Li, W. (2020). Graphene oxide membranes: Controlling their transport pathways. Journal of Materials Chemistry A, 8(31): 15319-15340.

70.   Wang, Y., Li, L., Zhang, X., Li, J., Wang, J., and Li, N. (2020). Polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient CO₂/N₂ separation. Journal of Membrane Science, 599: 117828.

71.   McCoy, T. M., Turpin, G., Teo, B. M., and Tabor, R. F. (2019). Graphene oxide: A surfactant or particle? Current Opinion in Colloid & Interface Science, 39: 98-109.

72.   Cao, J., Su, Y., Liu, Y., Guan, J., He, M., Zhang, R., and Jiang, Z. (2018). Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation. Journal of Membrane Science, 566: 268-277.

73.   Efome, J. E., Rana, D., Matsuura, T., and Lan, C. Q. (2019). Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process. Science of the Total Environment, 674: 355-362.

74.   Abu-Nada, A., Abdala, A., and McKay, G. (2021). Isotherm and kinetic modeling of strontium adsorption on graphene oxide. Nanomaterials, 11(11): 1-11.

75.   Javadian, S., Khalilifard, M., and Sadrpoor, S. M. (2019). Functionalized graphene oxide with core-shell of Fe₃O₄@oleic acid nanospheres as a recyclable demulsifier for effective removal of emulsified oil from oily wastewater. Journal of Water Process Engineering, 32: 100961.

76.   Kubra, K. T., Salman, M. S., and Hasan, M. N. (2021). Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. Journal of Molecular Liquids, 328: 115468.

77.   Ni, W., Xiao, X., Geng, W., Zhang, L., Li, Y., and Li, N. (2021). Controllable preparation of amino-functionalized ZIF-8: A functionalized MOF material for adsorbing Congo Red and Eriochrome Black T in aqueous solution. JCIS Open, 3: 100018.

78.   Mo, Z., Tai, D. Z., Zhang, H., and Shahab, A. (2022). A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water. Chemical Engineering Journal, 443: 136320.

79.   Abadikhah, H., Zou, C. N., Hao, Y. Z., Wang, J. W., Lin, L., Khan, S. A., ... and Agathopoulos, S. (2018). Application of asymmetric Si3N4 hollow fiber membrane for cross-flow microfiltration of oily wastewater. Journal of the European Ceramic Society, 38(13): 4384-4394.

80.   Khalifa, R. E., Omer, A. M., Tamer, T. M., Ali, A. A., Ammar, Y. A., and Eldin, M. S. M. (2019). Efficient eco-friendly crude oil adsorptive chitosan derivatives: Kinetics, equilibrium and thermodynamic studies. Desalination and Water Treatment, 159: 269-281.

81.   Uddin, M. J., Ampiaw, R. E., and Lee, W. (2021). Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere, 284: 131314.

82.   Katheresan, V., Kansedo, J., and Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4): 4676-4697.

83.   Fathy, M., El-Sayed, M., Ramzi, M., and Abdelraheem, O. H. (2018). Adsorption separation of condensate oil from produced water using ACTF prepared of oil palm leaves by batch and fixed bed techniques. Egyptian Journal of Petroleum, 27(3): 319-326.

84.   Mahmoodi, N. M., Taghizadeh, M., and Taghizadeh, A. (2019). Activated carbon/metal-organic framework composite as a bio-based novel green adsorbent: Preparation and mathematical pollutant removal modeling. Journal of Molecular Liquids, 277: 310-322.

85.   Ragadhita, R., and Nandiyanto, A. B. D. (2022). Curcumin adsorption on zinc imidazole framework-8 particles: Isotherm adsorption using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. Journal of Engineering Science and Technology, 17(2): 1078-1089.

86.   Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., and Muhammad, A. (2022). Adsorption kinetics and isotherm models: A review. Caliphate Journal of Science and Technology, 4(1): 20-26.

87.   Awwad, A. M., Amer, M. W., and Al-aqarbeh, M. M. (2020). TiO₂-kaolinite nanocomposite prepared from the Jordanian kaolin clay: Adsorption and thermodynamics of Pb(II) and Cd(II) ions in aqueous solution. Chemical International, 6(4): 168-178.

88.   Alasadi, A. M., Khaili, F. I., and Awwad, A. M. (2019). Adsorption of Cu(II), Ni(II) and Zn(II) ions by nano kaolinite: Thermodynamics and kinetics studies. Chemical International, 5(4): 258-268.

89.   Moussout, H., Ahlafi, H., Aazza, M., and Maghat, H. (2018). Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala International Journal of Modern Science, 4(2): 244-254.

90.   Wang, J., and Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390: 122156.

91.   Son, H., and An, B. (2022). Investigation of adsorption kinetics for per- and poly-fluoroalkyl substances (PFAS) adsorption onto powder activated carbon (PAC) in the competing systems. Water, Air, & Soil Pollution, 233(4): 129.

92.   Sahoo, T. R., and Prelot, B. (2020). Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. In Nanomaterials for the Detection and Removal of Wastewater Pollutants. Elsevier Inc. pp. 161-222.

93.   Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., and Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean Engineering and Technology, 1: 100032.

94.   Edet, U. A., and Ifelebuegu, A. O. (2020). Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 8(6): 665.

95.   Zhang, T., Xiao, C., Zhao, J., Liu, X., Ji, D., and Zhang, H. (2021). One-step facile fabrication of PVDF/graphene composite nanofibrous membrane with enhanced oil affinity for highly efficient gravity-driven emulsified oil/water separation and selective oil absorption. Separation and Purification Technology, 254: 117576.

96.   Ahmed, R. M. G., Anis, B., and Khalil, A. S. G. (2021). Facile surface treatment and decoration of graphene-based 3D polymeric sponges for high performance separation of heavy oil-in-water emulsions. Journal of Environmental Chemical Engineering, 9(2): 105087.

97.   Zhang, T., Yang, R., Zhang, X., Yin, X., Tian, H., and Zhu, L. (2020). Preparation, oil adsorption behavior, and mechanism of micro/nanofibrous polycaprolactone membrane prepared through solution blow spinning. Polymer Advanced Technologies, 31(4): 686-698.

98.   Zhang, B., Yu, S., Zhu, Y., Shen, Y., Gao, X., Shi, W., and Tay, J. H. (2020). Adsorption mechanisms of crude oil onto polytetrafluoroethylene membrane: Kinetics and isotherm, and strategies for adsorption fouling control. Separation and Purification Technology, 235: 116212.

99.   Yi, X., Zhu, Y., Wang, D., Yang, F., Wang, Y., and Shi, W. (2018). Adsorption mechanism of oil-in-water on a TiO₂/Al₂O₃-polyvinylidene fluoride (PVDF) ultrafiltration membrane. Langmuir, 34(34): 9907-9916.

100. Zhao, Y., Wu, M., Guo, Y., Mamrol, N., Yang, X., Gao, C., and Van der Bruggen, B. (2021). Metal-organic framework-based membranes for selective separation of target ions. Journal of Membrane Science, 634: 119407.

101. Elhenawy, S., Khraisheh, M., Almomani, F., and Hassan, M. K. (2021). Recent developments and advancements in graphene-based technologies for oil spill cleanup and oil–water separation processes. Nanomaterials, 12(1): 87.

102. Zhang, D., Wang, G., Zhi, S., Xu, K., Zhu, L., Li, W., ... and Xue, Q. (2018). Superhydrophilicity and underwater superoleophobicity TiO2/Al2O3 composite membrane with ultra low oil adhesion for highly efficient oil-in-water emulsions separation. Applied Surface Science, 458: 157-165.

103. Mu, H., Qiu, Q., Cheng, R., Qiu, L., Xie, K., Gao, M., and Liu, G. (2021). Adsorption-enhanced ceramic membrane filtration using Fenton oxidation for advanced treatment of refinery wastewater: treatment efficiency and membrane-fouling control. Membranes, 11(9): 651.

104. Othman, N. H., Alias, N. H., Shahruddin, M. Z., Hussein, S. N. C. M., and Dollah, A. (2017). Supported graphene oxide hollow fibre membrane for oily wastewater treatment. AIP Conference Proceedings, 1901: 1-7.

105. Kayvani Fard, A., Bukenhoudt, A., Jacobs, M., McKay, G., and Atieh, M. A. (2018). Novel hybrid ceramic/carbon membrane for oil removal. Journal of Membrane Science, 559: 42-53.

106. Manawi, Y., Hussien, M., Buekenhoudt, A., Zekri, A., Al-Sulaiti, H., Lawler, J., and Kochkodan, V. (2022). New ceramic membrane for Phosphate and oil removal. Journal of Environmental Chemical Engineering, 10(1): 106916.

107. Sutrisna, P. D., Kurnia, K. A., Siagian, U. W. R., Ismadji, S., and Wenten, I. G. (2022). Membrane fouling and fouling mitigation in oil–water separation: A review. Journal of Environmental Chemical Engineering, 10(3): 107532.