Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1564
Research
Article
Innovative
oil removal technology: Graphene oxide@ZIF-8 on alumina hollow fibre membranes
Dayang Norafizan Awang Chee1*,
Faezrul Zackry Abdul Halim1, Muhammad Shamil Soffian1,
Nur Afiqah Kamaludin1, Claudeareena Garlding1, Mohamed
Afizal Mohamed Amin2, and Farhana Aziz3
1Faculty of Resource Science and
Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak,
Malaysia
2Department of Chemical
Engineering and Energy Sustainability, Faculty of Engineering, Universiti
Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
3Advanced Membrane Technology
Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of
Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor Darul
Takzim, Malaysia
*Corresponding
author: dnorafizan@unimas.my
Received:
7 May 2025; Revised: 17 July 2025; Accepted: 21 July 2025; Published: 29 August
2025
Abstract
Oily wastewater pollution poses a severe threat to
freshwater resources, marine ecosystems, and human health. To address this, a
graphene oxide (GO) based nanocomposite membrane integrated with Zeolitic
Imidazolate Framework-8 (ZIF-8) was constructed on a pristine alumina (Al2O3)
hollow fibre support. The resulting GO@ZIF-8/Al2O3
membrane exhibited a high surface area and abundant oxygen-containing
functional groups, enhancing its oil adsorption and separation performance. GO
was synthesized via a modified Hummers’ method, followed by in situ
solvothermal assembly with ZIF-8. The membrane structure was characterized
using Fourier-Transform Infrared Spectroscopy (FTIR), Ultraviolet–Visible
(UV–Vis) Spectroscopy, X-Ray Diffraction (XRD), and Field Emission Scanning
Electron Microscopy (FESEM). Batch adsorption and crossflow filtration studies
were performed to evaluate membrane performance. Adsorption data fit well to
the Freundlich isotherm model (R2 = 0.98046) and pseudo-second order
kinetics (R2 = 0.98247), indicating multilayer chemisorption. The GO(2:1)@ZIF-8/Al2O3
membrane achieved up to 96.32% oil removal and maintained 90.08% rejection
after six reuse cycles. Compared to the pristine membrane, which showed only
33.65 Lm-2h-1 flux, the modified membrane achieved 92.15
Lm-2h-1, a 173.9% improvement. These findings demonstrate
a robust and reusable membrane system with excellent potential for practical
oily wastewater treatment.
Keywords: graphene oxide, membrane, oil removal, reusability,
zeolitic imidazoalate framework-8
References
1.
Hasan, M. K., Shahriar, A., and Jim, K. U.
(2019). Water pollution in Bangladesh and its impact on public health. Heliyon,
5(8): e02145.
2.
Kumar Nougriaya,
S., Chopra, M. K., Gupta, B., and Baredar, P. (2020). Stepped
solar still: A review on designs analysis. Materials Today: Proceedings, 46:
5647-5660.
3.
Chen, M., Heijman, S. G. J., and Rietveld,
L. C. (2021). State-of-the-art ceramic membranes for oily wastewater treatment:
Modification and application. Membranes, 11(11): 888.
4.
Kandeal, A. W., Joseph, A., Elsharkawy,
M., Elkadeem, M. R., Hamada, M. A., Khalil, A., ... and Sharshir, S. W. (2022).
Research progress on recent technologies of water harvesting from atmospheric
air: A detailed review. Sustainable Energy Technologies and Assessments, 52:
10200.
5.
Tanudjaja, H. J.,
Hejase, C. A., Tarabara, V. V., Fane, A. G., and Chew, J. W. (2019). Membrane-based
separation for oily wastewater: A practical perspective. Water Research, 156:
347-365.
6.
Usman, J., Othman, M. H., Ismail, A. F.,
Rahman, M. A., Jaafar, J., Raji, Y. O., ... and Kurniawan, T. A. (2020). Impact
of organosilanes modified superhydrophobic‐superoleophilic kaolin ceramic
membrane on efficiency of oil recovery from produced water. Journal of
Chemical Technology & Biotechnology, 95(12): 3300-3315.
7.
Usman, J., Othman, M. H. D., Ismail, A.
F., Rahman, M. A., Jaafar, J., Raji, Y. O., ... and Said, K. A. M. (2021).
An overview of superhydrophobic ceramic membrane surface modification for
oil-water separation. Journal of Materials Research and Technology, 12: 643-667.
8.
Abuhasel, K., Kchaou, M., Alquraish, M.,
Munusamy, Y., and Jeng, Y. T. (2021). Oily wastewater treatment: Overview of
conventional and modern methods, challenges, and future opportunities. Water,
13(7): 980.
9.
Sathya, K., Nagarajan, K., Carlin Geor
Malar, G., Rajalakshmi, S., and Raja Lakshmi, P. (2022). A comprehensive review
on comparison among effluent treatment methods and modern methods of treatment
of industrial wastewater effluent from different sources. Applied Water
Science, 12(4): 70.
10.
Yalcinkaya, F., Boyraz, E., Maryska, J., and
Kucerova, K. (2020). A review on membrane technology and chemical surface
modification for the oily wastewater treatment. Materials, 13(2): 493.
11.
Ma, C., Li, Y.,
Nian, P., Liu, H., Qiu, J., and Zhang, X. (2019). Fabrication
of oriented metal-organic framework nanosheet membrane coated stainless steel
meshes for highly efficient oil/water separation. Separation and
Purification Technology, 229: 115835.
12.
Abdullayev, A., Bekheet, M. F., Hanaor, D.
A. H., and Gurlo, A. (2019). Materials and applications for low-cost ceramic
membranes. Membranes, 9(9): 105.
13.
Kang, L., Zhao,
L., Yao, S., and Duan, C. (2019). A new architecture of
super-hydrophilic β-SiAlON/graphene oxide ceramic membrane for enhanced
anti-fouling and separation of water/oil emulsion. Ceramics International,
45(13), 16717-16721.
14.
Nikou, M., Samadi-Maybodi, A., Yasrebi,
K., and Sedighi-Pashaki, E. (2021). Simultaneous monitoring of the adsorption
process of two organophosphorus pesticides by employing GO/ZIF-8 composite as
an adsorbent. Environmental Technology & Innovation, 23: 101590.
15.
Dhaka, S., Kumar, R., Deep, A., Kurade, M.
B., Ji, S. W., and Jeon, B. H. (2019). Metal–organic frameworks (MOFs) for the
removal of emerging contaminants from aquatic environments. Coordination
Chemistry Reviews, 380: 330-352.
16.
Yang, H., Wang, N., Wang, L., Liu, H. X.,
An, Q. F., and Ji, S. (2018). Vacuum-assisted assembly of ZIF-8@GO composite
membranes on ceramic tube with enhanced organic solvent nanofiltration
performance. Journal of Membrane Science, 545: 158-166.
17.
Wang, Z., Huang, J.,
Mao, J., Guo, Q., Chen, Z., and Lai, Y. (2020). Metal-organic
frameworks and their derivatives with graphene composites: Preparation and
applications in electrocatalysis and photocatalysis. Journal of Materials
Chemistry A, 8(6): 2934-2961.
18.
Zheng, Y.,
Zheng, S., Xue, H., and Pang, H. (2018). Metal-organic
frameworks/graphene-based materials: Preparations and applications. Advanced
Functional Materials, 28(47): 1804950.
19.
Pillai, P., Dharaskar, S., Sasikumar, S.,
& Khalid, M. (2019). Zeolitic imidazolate framework-8 nanoparticle: A
promising adsorbent for effective fluoride removal from aqueous solution. Applied
Water Science, 9(7): 1-12.
20.
Hammoud, H. M. M.,
& Hamzah, A. P. D. A. H. (2022). Fabrication and
characterization of alumina thin film. University of
Babylon.
21.
Hummers, W. S., and Offeman, R. E. (1958).
Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6):
1339.
22.
Hu, Y., Wei, J., Liang, Y., Zhang, H.,
Zhang, X., Shen, W., and Wang, H. (2016). Zeolitic imidazolate
framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin
molecular sieving membranes. Angewandte Chemie International Edition, 55(6):
2048-2052.
23.
Awang Chee, D. N. B., Aziz, F., Ismail, A.
F., Mohamed Amin, M. A. B., and Abdullah, M. S. (2021). Dual-function ZIF-8
membrane supported on alumina hollow fiber membrane for copper(II) removal. Journal
of Environmental Chemical Engineering, 9(4): 105343.
24.
Ahmad, N., Samavati, A., Nordin, N. A. H.
M., Jaafar, J., Ismail, A. F., and Malek, N. A. N. N. (2020). Enhanced
performance and antibacterial properties of amine-functionalized
ZIF-8-decorated GO for ultrafiltration membrane. Separation and Purification
Technology, 239: 116554.
25.
Li, D., and Xu, F. (2021). Removal of
Cu(II) from aqueous solutions using ZIF-8@GO composites. Journal of Solid State Chemistry, 302: 122406.
26.
Raji, Y. O., Othman, M. H. D., Nordin, N.
A. H. S. M., Kurniawan, T. A., Ismail, A. F., Rahman, M. A., ... and Farag, T.
M. (2021). Wettability improvement of ceramic membrane by intercalating
nano-Al2O3 for oil and water separation. Surfaces and Interfaces, 25:
101178.
27.
Zhong, L., Sun, C., Yang, F., and Dong, Y.
(2021). Superhydrophilic spinel ceramic membranes for oily emulsion wastewater
treatment. Journal of Water Process Engineering, 42: 102161.
28.
Li, H., Cheng, Y., Li, J., Li, T., Zhu,
J., Deng, W., ... and He, D. (2022). Preparation and adsorption performance
study of graphene quantum dots@ ZIF-8 composites for
highly efficient removal of volatile organic compounds. Nanomaterials, 12(22):
4008.
29.
Mottaghi, H., Mohammadi, Z., Abbasi, M.,
Tahouni, N., and Panjeshahi, M. H. (2021). Experimental investigation of crude
oil removal from water using polymer adsorbent. Journal of Water Process
Engineering, 40: 101959.
30.
Diraki, A., Mackey, H. R., McKay, G., and
Abdala, A. (2019). Removal of emulsified and dissolved diesel oil from high
salinity wastewater by adsorption onto graphene oxide. Journal of
Environmental Chemical Engineering, 7(3): 103106.
31.
Ewis, D., Benamor, A., Ba-Abbad, M. M.,
Nasser, M., El-Naas, M., and Qiblawey, H. (2020). Removal of oil content from
oil-water emulsions using iron oxide/bentonite nano adsorbents. Journal of
Water Process Engineering, 38: 101583.
32.
Diraki, A., Mackey, H., McKay, G., and
Abdala, A. A. (2018). Removal of oil from oil–water emulsions using thermally
reduced graphene and graphene nanoplatelets. Chemical Engineering Research
and Design, 137: 47-59.
33.
Masibi, E. G., Makhetha, T. A., and
Moutloali, R. M. (2022). Effect of the incorporation of ZIF‐8@GO into the
thin‐film membrane on salt rejection and BSA fouling. Membranes, 12(4):
1-23.
34.
Khan, I. U., Othman, M. H. D., Jilani, A.,
Ismail, A. F., Hashim, H., Jaafar, J., ... and Rehman, G. U. (2018). Economical, environmental friendly
synthesis, characterization for the production of
zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2
adsorption. Arabian Journal of Chemistry, 11(7): 1072-1083.
35.
Simonin, J. P. (2016). On the comparison
of pseudo-first order and pseudo-second order rate laws in the modeling of
adsorption kinetics. Chemical Engineering Journal, 300: 254-263.
36.
Lv, Z.,
Zhang, S., Jiao, W., Zuo, X., Zhang, Y., and Liu, Y. (2023). High-efficiency
cleaning technology and lifespan prediction for the ceramic membrane treating
secondary treated effluent. Water Science and Technology, 88(1): 321-338.
37.
Gruskevica, K., and Mezule, L. (2021).
Cleaning methods for ceramic ultrafiltration membranes affected
by organic fouling. Membranes, 11(2): 1–15.
38.
Avornyo, A. J., Thanigaivelan, A., Krishnamoorthy,
R., Hassan, S. W., and Banat, F. (2023). Ag-CuO-decorated ceramic membranes for
effective treatment of oily wastewater. Membranes, 13(2): 176.
39.
Junaidi, N. F. D., Othman, N. H., Fuzil,
N. S., Shayuti, M. S. M., Alias, N. H., Shahruddin, M. Z., ... and Aba, N. D.
(2021). Recent development of graphene oxide-based membranes for oil–water
separation: A review. Separation and Purification Technology, 258:
118000.
40.
Sastry, S. S. M., Panjikar, S., and Raman,
R. S. (2021). Graphene and graphene oxide as a support for biomolecules in the
development of biosensors. Nanotechnology, Science and Applications, 14:
197-220.
41.
Tiwari, S. K., Sahoo, S., Wang, N., and
Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal
of Science: Advanced Materials and Devices, 5(1): 10-29.
42.
Yu, W.,
Sisi, L., Haiyan, Y., and Jie, L. (2020). Progress
in the functional modification of graphene/graphene oxide: A review. RSC
Advances, 10(26): 15328-15345.
43.
Trikkaliotis, D.
G., Christoforidis, A. K., Mitropoulos, A. C., and Kyzas, G. Z. (2021). Graphene
oxide synthesis, properties and characterization techniques: A comprehensive
review. ChemEngineering, 5(3): 64.
44.
Trikkaliotis, D.
G., Mitropoulos, A. C., and Kyzas, G. Z. (2020). Low-cost
route for top-down synthesis of over- and low-oxidized graphene oxide. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 600: 124928.
45.
Chen, H., Du, W.,
Liu, J., Qu, L., and Li, C. (2019). Efficient room-temperature
production of high-quality graphene by introducing removable oxygen functional
groups to the precursor. Chemical Science, 10(4): 1244-1253.
46.
Abaszade, R. G. (2022). Synthesis and
analysis of flakes graphene oxide. Journal of Optoelectronics and Biomedical
Materials, 14(3): 107-114.
47.
Guliyeva, N. A., Abaszade, R. G.,
Khanmammadova, E. A., and Azizov, E. M. (2023). Synthesis and analysis of
nanostructured graphene oxide. Journal of Optoelectronics and Biomedical
Materials, 15(1): 23-30.
48.
Al-Gaashani, R., Najjar, A., Zakaria, Y.,
Mansour, S., and Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide
prepared by different chemical oxidation methods. Ceramics International, 45(11):
14439-14448.
49.
Ain, Q. T., Haq, S. H., Alshammari, A.,
Al-Mutlaq, M. A., and Anjum, M. N. (2019). The systemic effect of
PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein
Journal of Nanotechnology, 10(1): 901-911.
50.
Kumar, A., Sadanandhan, A. M., and Jain,
S. L. (2019). Silver doped reduced graphene oxide as a promising plasmonic
photocatalyst for oxidative coupling of benzylamines under visible light
irradiation. New Journal of Chemistry, 43(23): 9116-9122.
51.
Zhang, Y., Fang, Z., Zhao, S., Wei, M.,
Wu, X., and Sun, L. (2020). An experimental study on the wall collision of
micro-sized graphite particles by high-speed photomicrography. Progress in
Nuclear Energy, 125: 103391.
52.
Adetayo, A., and Runsewe, D. (2019).
Synthesis and fabrication of graphene and graphene oxide: A review. Open
Journal of Composite Materials, 9(2): 207-229.
53.
Benzait, Z., Chen, P., and Trabzon, L.
(2021). Enhanced synthesis method of graphene oxide. Nanoscale Advances, 3(1):
223-230.
54.
Chen, X., Qu, Z., Liu, Z., and Ren, G.
(2022). Mechanism of oxidization of graphite to graphene oxide by the Hummers
method. ACS Omega, 7(27): 23503-23510.
55.
Abaszade, R. G., Mamedova, S. A., Agayev,
F. G., Budzulyak, S. I., Kapush, O. A., Mamedova, M. A., ... and Kotsyubynsky,
V. O. (2021). Synthesis and characterization of graphene oxide flakes for
transparent thin films. Physics and Chemistry of Solid State, 22(3):
595-601.
56.
Zhu, T., Xu, S., Yu, F., Yu, X., and Wang,
Y. (2020). ZIF-8@GO composites incorporated polydimethylsiloxane membrane with
prominent separation performance for ethanol recovery. Journal of Membrane
Science, 598: 117681.
57.
Zhu, Q., Zhuang, W., Chen, Y., Wang, Z.,
Villacorta Hernandez, B., Wu, J., ... and Zhu, Z. (2018). Nano-biocatalysts of
Cyt c@ ZIF-8/GO composites with high recyclability via
a de novo approach. ACS Applied Materials & Interfaces, 10(18):
16066-16076.
58.
Hoseinzadeh, H., Hayati, B., Shahmoradi
Ghaheh, F., Seifpanahi-Shabani, K., and Mahmoodi, N. M. (2021). Development of
room temperature synthesized and functionalized metal-organic
framework/graphene oxide composite and pollutant adsorption ability. Materials
Research Bulletin, 142: 111408.
59.
Makhetha, T. A., Ray, S. C., and
Moutloali, R. M. (2020). Zeolitic imidazolate framework-8-encapsulated
nanoparticle of Ag/Cu composites supported on graphene oxide: Synthesis and
antibacterial activity. ACS Omega, 5(17): 9626-9640.
60.
Tuncel,
D., and Ökte, A. N. (2021). Improved adsorption capacity and
photoactivity of ZnO-ZIF-8 nanocomposites. Catalysis Today, 361: 191-197.
61.
Li, D., Liu, H., Niu, C., Yuan, J., and
Xu, F. (2019). mpg-C₃N₄-ZIF-8 composites for the degradation of
tetracycline hydrochloride using visible light. Water Science and
Technology, 80(11): 2206-2217.
62.
Wang, X.,
Zhao, Y., Tian, E., Li, J., and Ren, Y. (2018). Graphene
oxide-based polymeric membranes for water treatment. Advanced Materials
Interfaces, 5(15): 1701427.
63.
Makhetha, T. A., and Moutloali, R. M.
(2020). Stable zeolitic imidazolate framework-8 supported onto graphene oxide
hybrid ultrafiltration membranes with improved fouling resistance and water
flux. Chemical Engineering Journal Advances, 1: 100005.
64.
Biata, N. R.,
Jakavula, S., Mpupa, A., Moutloali, R. M., and Nomngongo, P. N. (2022). Recovery
of palladium and gold from PGM ore and concentrates using ZnAl-layered double
hydroxide@zeolitic imidazolate framework-8 nanocomposite. Separations, 9(10):
274.
65.
Ahmad, N., Nordin, N. A. H. M., Jaafar,
J., Ismail, A. F., and Ramli, M. K. N. B. (2021). Significant improvement in
antibacterial property of ZIF-8 decorated graphene oxide by post-synthetic
modification process. Journal of Environmental Chemical Engineering, 9(5):
105887.
66.
Chen, F., Dong, S., Wang, Z., Xu, J., Xu,
R., and Wang, J. (2020). Preparation of mixed matrix composite membrane for
hydrogen purification by incorporating ZIF-8 nanoparticles modified with tannic
acid. International Journal of Hydrogen Energy, 45(12): 7444-7454.
67.
Wei, N.,
Zheng, X., Ou, H., Yu, P., Li, Q., and Feng, S. (2019). Fabrication
of an amine-modified ZIF-8@GO membrane for high-efficiency adsorption of copper
ions. New Journal of Chemistry, 43(14): 5603-5610.
68.
Li, C. R., Hai, J., Fan, L., Li, S. L.,
Wang, B. D., and Yang, Z. Y. (2019). Amplified colorimetric detection of
Ag⁺ based on Ag⁺-triggered peroxidase-like catalytic activity of
ZIF-8/GO nanosheets. Sensors and Actuators B: Chemical, 284: 213-219.
69.
Su, P.,
Wang, F., Li, Z., Tang, C. Y., and Li, W. (2020). Graphene
oxide membranes: Controlling their transport pathways. Journal of Materials
Chemistry A, 8(31): 15319-15340.
70.
Wang, Y., Li, L., Zhang, X., Li, J., Wang,
J., and Li, N. (2020). Polyvinylamine/amorphous metakaolin mixed-matrix
composite membranes with facilitated transport carriers for highly efficient
CO₂/N₂ separation. Journal of Membrane Science, 599: 117828.
71.
McCoy, T. M., Turpin, G., Teo, B. M., and
Tabor, R. F. (2019). Graphene oxide: A surfactant or particle? Current
Opinion in Colloid & Interface Science, 39: 98-109.
72.
Cao, J., Su, Y., Liu, Y., Guan, J., He,
M., Zhang, R., and Jiang, Z. (2018). Self-assembled MOF membranes with
underwater superoleophobicity for oil/water separation. Journal of
Membrane Science, 566: 268-277.
73.
Efome, J. E.,
Rana, D., Matsuura, T., and Lan, C. Q. (2019). Effects
of operating parameters and coexisting ions on the efficiency of heavy metal
ions removal by nano-fibrous metal-organic framework membrane filtration
process. Science of the Total Environment, 674: 355-362.
74.
Abu-Nada, A.,
Abdala, A., and McKay, G. (2021). Isotherm and kinetic modeling of
strontium adsorption on graphene oxide. Nanomaterials, 11(11): 1-11.
75.
Javadian, S., Khalilifard, M., and
Sadrpoor, S. M. (2019). Functionalized graphene oxide with core-shell of
Fe₃O₄@oleic acid nanospheres as a recyclable demulsifier for
effective removal of emulsified oil from oily wastewater. Journal of Water
Process Engineering, 32: 100961.
76.
Kubra, K. T., Salman, M. S., and Hasan, M.
N. (2021). Enhanced toxic dye removal from wastewater using biodegradable
polymeric natural adsorbent. Journal of Molecular Liquids, 328: 115468.
77.
Ni, W., Xiao, X., Geng, W., Zhang, L., Li,
Y., and Li, N. (2021). Controllable preparation of amino-functionalized ZIF-8:
A functionalized MOF material for adsorbing Congo Red and Eriochrome Black T in
aqueous solution. JCIS Open, 3: 100018.
78.
Mo, Z., Tai, D. Z., Zhang, H., and Shahab,
A. (2022). A comprehensive review on the adsorption of heavy metals by zeolite
imidazole framework (ZIF-8) based nanocomposite in water. Chemical
Engineering Journal, 443: 136320.
79.
Abadikhah, H., Zou, C. N., Hao, Y. Z.,
Wang, J. W., Lin, L., Khan, S. A., ... and Agathopoulos, S. (2018). Application
of asymmetric Si3N4 hollow fiber membrane for cross-flow
microfiltration of oily wastewater. Journal of the European Ceramic
Society, 38(13): 4384-4394.
80.
Khalifa,
R. E., Omer, A. M., Tamer, T. M., Ali, A. A., Ammar, Y. A., and Eldin, M. S. M.
(2019). Efficient eco-friendly crude oil adsorptive chitosan
derivatives: Kinetics, equilibrium and thermodynamic studies. Desalination
and Water Treatment, 159: 269-281.
81.
Uddin, M. J., Ampiaw, R. E., and Lee, W.
(2021). Adsorptive removal of dyes from wastewater using a metal-organic
framework: A review. Chemosphere, 284: 131314.
82.
Katheresan,
V., Kansedo, J., and Lau, S. Y. (2018). Efficiency
of various recent wastewater dye removal methods: A review. Journal of
Environmental Chemical Engineering, 6(4): 4676-4697.
83.
Fathy, M., El-Sayed, M., Ramzi, M., and
Abdelraheem, O. H. (2018). Adsorption separation of condensate oil from
produced water using ACTF prepared of oil palm leaves by batch and fixed bed
techniques. Egyptian Journal of Petroleum, 27(3): 319-326.
84.
Mahmoodi, N. M., Taghizadeh, M., and
Taghizadeh, A. (2019). Activated carbon/metal-organic framework composite as a
bio-based novel green adsorbent: Preparation and mathematical pollutant removal
modeling. Journal of Molecular Liquids, 277: 310-322.
85.
Ragadhita, R., and
Nandiyanto, A. B. D. (2022). Curcumin adsorption on zinc
imidazole framework-8 particles: Isotherm adsorption using Langmuir,
Freundlich, Temkin, and Dubinin-Radushkevich models. Journal of Engineering
Science and Technology, 17(2): 1078-1089.
86.
Musah, M., Azeh, Y., Mathew, J., Umar, M.,
Abdulhamid, Z., and Muhammad, A. (2022). Adsorption kinetics and isotherm
models: A review. Caliphate Journal of Science and Technology, 4(1): 20-26.
87.
Awwad, A. M., Amer,
M. W., and Al-aqarbeh, M. M. (2020). TiO₂-kaolinite nanocomposite
prepared from the Jordanian kaolin clay: Adsorption and thermodynamics of
Pb(II) and Cd(II) ions in aqueous solution. Chemical International, 6(4):
168-178.
88.
Alasadi, A. M., Khaili, F. I., and Awwad,
A. M. (2019). Adsorption of Cu(II), Ni(II) and Zn(II) ions by nano kaolinite:
Thermodynamics and kinetics studies. Chemical International, 5(4): 258-268.
89.
Moussout, H., Ahlafi, H., Aazza, M., and
Maghat, H. (2018). Critical of linear and nonlinear equations of pseudo-first
order and pseudo-second order kinetic models. Karbala International Journal
of Modern Science, 4(2): 244-254.
90.
Wang, J., and Guo, X. (2020). Adsorption
kinetic models: Physical meanings, applications, and solving methods. Journal
of Hazardous Materials, 390: 122156.
91.
Son, H., and An, B. (2022). Investigation
of adsorption kinetics for per- and poly-fluoroalkyl substances (PFAS)
adsorption onto powder activated carbon (PAC) in the competing systems. Water,
Air, & Soil Pollution, 233(4): 129.
92.
Sahoo, T. R., and Prelot, B. (2020).
Adsorption processes for the removal of contaminants from wastewater: The
perspective role of nanomaterials and nanotechnology. In Nanomaterials for
the Detection and Removal of Wastewater Pollutants. Elsevier Inc. pp. 161-222.
93.
Revellame, E. D., Fortela, D. L., Sharp,
W., Hernandez, R., and Zappi, M. E. (2020). Adsorption kinetic modeling using
pseudo-first order and pseudo-second order rate laws: A review. Clean
Engineering and Technology, 1: 100032.
94.
Edet, U.
A., and Ifelebuegu, A. O. (2020). Kinetics, isotherms, and
thermodynamic modeling of the adsorption of phosphates from model wastewater
using recycled brick waste. Processes, 8(6): 665.
95.
Zhang, T., Xiao, C., Zhao, J., Liu, X.,
Ji, D., and Zhang, H. (2021). One-step facile fabrication of PVDF/graphene
composite nanofibrous membrane with enhanced oil affinity for highly efficient
gravity-driven emulsified oil/water separation and selective oil absorption. Separation
and Purification Technology, 254: 117576.
96.
Ahmed, R. M. G., Anis, B., and Khalil, A.
S. G. (2021). Facile surface treatment and decoration of graphene-based 3D
polymeric sponges for high performance separation of heavy oil-in-water
emulsions. Journal of Environmental Chemical Engineering, 9(2): 105087.
97.
Zhang, T., Yang, R., Zhang, X., Yin, X.,
Tian, H., and Zhu, L. (2020). Preparation, oil adsorption behavior, and
mechanism of micro/nanofibrous polycaprolactone membrane prepared through
solution blow spinning. Polymer Advanced Technologies, 31(4): 686-698.
98.
Zhang, B., Yu, S., Zhu, Y., Shen, Y., Gao,
X., Shi, W., and Tay, J. H. (2020). Adsorption mechanisms of crude oil onto
polytetrafluoroethylene membrane: Kinetics and isotherm, and strategies for
adsorption fouling control. Separation and Purification Technology, 235:
116212.
99.
Yi, X., Zhu, Y., Wang, D., Yang, F., Wang,
Y., and Shi, W. (2018). Adsorption mechanism of oil-in-water on a
TiO₂/Al₂O₃-polyvinylidene fluoride (PVDF) ultrafiltration
membrane. Langmuir, 34(34): 9907-9916.
100. Zhao,
Y., Wu, M., Guo, Y., Mamrol, N., Yang, X., Gao, C., and Van der Bruggen, B.
(2021). Metal-organic framework-based membranes for selective separation of
target ions. Journal of Membrane Science, 634: 119407.
101. Elhenawy,
S., Khraisheh, M., Almomani, F., and Hassan, M. K. (2021). Recent developments
and advancements in graphene-based technologies for oil spill cleanup and
oil–water separation processes. Nanomaterials, 12(1): 87.
102. Zhang,
D., Wang, G., Zhi, S., Xu, K., Zhu, L., Li, W., ... and Xue, Q. (2018).
Superhydrophilicity and underwater superoleophobicity TiO2/Al2O3
composite membrane with ultra low oil adhesion for highly efficient
oil-in-water emulsions separation. Applied Surface Science, 458:
157-165.
103. Mu,
H., Qiu, Q., Cheng, R., Qiu, L., Xie, K., Gao, M., and Liu, G. (2021).
Adsorption-enhanced ceramic membrane filtration using Fenton oxidation for
advanced treatment of refinery wastewater: treatment efficiency and
membrane-fouling control. Membranes, 11(9): 651.
104. Othman,
N. H., Alias, N. H., Shahruddin, M. Z., Hussein, S. N. C. M., and Dollah, A.
(2017). Supported graphene oxide hollow fibre membrane for oily wastewater
treatment. AIP Conference Proceedings, 1901: 1-7.
105. Kayvani
Fard, A., Bukenhoudt, A., Jacobs, M., McKay, G., and Atieh, M. A. (2018). Novel
hybrid ceramic/carbon membrane for oil removal. Journal of Membrane Science,
559: 42-53.
106. Manawi,
Y., Hussien, M., Buekenhoudt, A., Zekri, A., Al-Sulaiti, H., Lawler, J., and
Kochkodan, V. (2022). New ceramic membrane for Phosphate and oil removal. Journal
of Environmental Chemical Engineering, 10(1): 106916.
107. Sutrisna,
P. D., Kurnia, K. A., Siagian, U. W. R., Ismadji, S., and Wenten, I. G. (2022).
Membrane fouling and fouling mitigation in oil–water separation: A review. Journal
of Environmental Chemical Engineering, 10(3): 107532.