Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1538

 

Research Article

 

Technische universiteit Delft-1-supported nickel oxide doped-titanium dioxide for oxidative removal of methylene blue

 

Ling Shing Liau1, Chui Min Ling1, Sie-Tiong Ha2, Nursyafreena Attan1, and Siew Ling Lee1,3*

 

1Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia

2Faculty of Science, Universiti Tunku Abdul Rahman, Jln Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

3Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia

 

*Corresponding author: lsling@utm.my

 

Received: 14 April 2025; Revised: 15 July 2025; Accepted: 22 July 2025; Published: xx August 2025

 

Abstract

The elimination of organic dyes from wastewater is essential for mitigating environmental pollution. Conventional treatment methods often fail to completely remove these persistent pollutants. Among advanced oxidation processes, the Fenton-like reaction has garnered considerable attention for its effectiveness in dye degradation. This study reports the synthesis of Technische Universiteit Delft-1 (TUD-1) supported nickel oxide-doped titanium dioxide (NiO-TiO2/TUD-1) as a Fenton-like catalyst for methylene blue (MB) removal. The catalysts were characterized using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), nitrogen adsorption-desorption analysis, and point of zero charge (pHPZC). The results confirmed the presence of the anatase TiO2 phase, successful NiO doping, and the incorporation of Ti species into TUD-1. Among the catalysts, 0.4 mol% NiO-TiO2/TUD-1 exhibited the highest MB removal efficiency (91.8%) at pH 12 under dark conditions within 2 hours. Its catalytic activity was approximately 2.5 times higher than that of unsupported NiO-TiO2. This performance is attributed to its high surface area (323 m2/g), mesoporous structure (~12 nm), and strong adsorption capacity (10.5 mg/g), which enhance dye uptake. The catalyst functions through a Ti4+/Ti3+ Fenton-like mechanism, reacting with hydrogen peroxide (H2O2) to generate hydroxyl radicals (•OH) that degrade MB. This catalyst demonstrates strong potential as a light-free solution for practical wastewater treatment.

 

Keywords: Fenton-like process, oxidative catalyst, TUD-1, titanium dioxide, nickel oxide



References

1.      Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Li, L., Fu, Y., Li, B., Zhang, M., Qin, L., Liu, S., and Yang, L. (2021). Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 275: 130104.

2.      Mohammed, H. A., Khaleefa, S. A., and Basheer, M. I. (2021). Photolysis of methylene blue using an advanced oxidation process (ultraviolet light and hydrogen peroxide). Journal of Engineering and Sustainable Development, 25 (1): 59-67.

3.      Bui, B. C., Vu, N. N., Nemamcha, H. E., Nguyen, H. T., Nguyen, V. A., and Nguyen-Tri, P. (2025). Single nickel atoms doped into TiO2 decorating carbon quantum dots for boosting photodegradation of ciprofloxacin. Journal of Water Process Engineering, 70: 106904.

4.      Santos, É. N., László, Z., Hodúr, C., Arthanareeswaran, G., and Veréb, G. (2020). Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: A review. Asia-Pacific Journal of Chemical Engineering, 15 (5): e2533.

5.      Fito, J., Abewaa, M., Mengistu, A., Angassa, K., Ambaye, A. D., Moyo, W., and Nkambule, T. (2023). Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex Abyssinicus plant. Scientific Reports, 13 (1): 5427.

6.      Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., and Oyewola, O. J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16: 100678.

7.      Deng, S. Q., Miao, Y. L., Tan, Y. L., Fang, H. N., Li, Y. T., Mo, X. J., Cai, S. L., Fan, J., Zhang, W. G., and Zheng, S. R. (2019). An anionic nanotubular metal-organic framework for high-capacity dye adsorption and dye degradation in darkness. Inorganic Chemistry, 58 (20): 13979-13987.

8.      Lu, L., Shan, R., Shi, Y., Wang, S., and Yuan, H. (2019). A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere, 222: 391-398.

9.      Akinyemi, A., Agboola, O., Alagbe, E., and Igbokwe, E. (2024). The role of catalyst in the adsorption of dye: Homogeneous catalyst, heterogeneous catalyst, and advanced catalytic activated carbon, critical review. Desalination and Water Treatment, 320: 100780.

10.   Li, S., Zhang, J., Cao, Y., Yang, Y., Xie, T., and Lin, Y. (2022). Visible light assisted heterogeneous photo-fenton-like degradation of rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648: 129248.

11.   Rodríguez, M., Bussi, J., and León, M. A. D. (2021). Application of pillared raw clay-base catalysts and natural solar radiation for water decontamination by the photo-fenton process. Separation and Purification Technology, 259: 118167.

12.   Guo, X., Chen, S., Liu, Z., Yang, C., and Chen, W. (2023). Catalytic oxidation of methylene blue by using Ni-Fe bimetallic catalyst/NaClO system: Performance, kinetics, mechanism, and DFT calculations. Separation and Purification Technology, 306: 122162.

13.   Halfadji, A., Naous, M., Kharroubi, K. N., Belmehdi, F. E. Z., and Rajendrachari, S. (2023). An ultrasonic-assisted synthesis, characterization, and application of Nano-Fe3O4/TiO2 as nano-catalyst for the removal of organic dye by like-photo-fenton reactions. Inorganic Chemistry Communications, 158: 111686.

14.   Hu, X., Xie, L., Xu, Z., Liu, S., Tan, X., Qian, R., Zhang, R., Jiang, M., Xie, W., and Tian, W. (2021). Photothermal-enhanced fenton-like catalytic activity of oxygen-deficient nanotitania for efficient and safe tooth whitening. ACS Applied Materials & Interfaces, 13 (30): 35315-35327.

15.   Keerthana, S., Yuvakkumar, R., Ravi, G., Hong, S. I., Al-Sehemi, A. G., and Velauthapillai, D. (2022). Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater. Chemosphere, 293: 133540.

16.   Alijani, M., and Ilkhechi, N. N. (2018). Effect of Ni doping on the structural and optical properties of TiO2 nanoparticles at various concentration and temperature. Silicon, 10 (6): 2569-2575.

17.   Ling, C. M., Ong, S. T., and Lee, S. L. (2025). Recent development of surface-modified titanium dioxide for enhanced oxidation catalytic activity: A short review. Journal of Alloys and Compounds, 1037: 182226.

18.   Mohseni-Salehi, M. S., Taheri-Nassaj, E., and Hosseini-Zori, M. (2018). Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 356: 57-70.

19.   Ling, C. M., Teng, C. C., Hatta, M. H. M., and Lee, S. L. (2021). Tungsten oxide doped titania supported on TUD-C for photocatalytic removal of methylene blue. Platform: A Journal of Science and Technology, 4 (2): 42-52.

20.   Koh, P. W., Yuliati, L., and Lee, S. L. (2019). Kinetics and optimization studies of photocatalytic degradation of methylene blue over Cr-doped TiO2 using response surface methodology. Iranian Journal of Science and Technology, Transactions A: Science, 43 (1): 95-103.

21.   Rodríguez, J. L., and Valenzuela, M. (2022). Ni-based catalysts used in heterogeneous catalytic ozonation for organic pollutant degradation: A mini review. Environmental Science and Pollution Research, 29 (56): 84056-84075.

22.   Mannaa, M. A., Qasim, K. F., Alshorifi, F. T., El-Bahy, S. M., and Salama, R. S. (2021). Role of NiO nanoparticles in enhancing structure properties of TiO2 and its applications in photodegradation and hydrogen evolution. ACS Omega, 6 (45): 30386-30400.

23.   Ooi, Y. K., Hussin, F., Yuliati, L., and Lee, S. L. (2019). Comparison study on molybdena-titania supported on TUD-1 and TUD-C synthesized via sol-gel templating method: Properties and catalytic performance in olefins epoxidation. Materials Research Express, 6 (7): 074001.

24.   Soekiman, C. N., Miyake, K., Hayashi, Y., Zhu, Y., Ota, M., Al-Jabri, H., Inoue, R., Hirota, Y., Uchida, Y., Tanaka, S., Kong, C. Y., and Nishiyama, N. (2020). Synthesis of titanium silicalite-1 (TS-1) zeolite with high content of Ti by a dry gel conversion method using amorphous TiO2-SiO2 composite with highly dispersed Ti species. Materials Today Chemistry, 16: 100209.

25.   Al-Shehri, B. M., Shabaan, M. R., Shkir, M., and Hamdy, M. S. (2020). Single-step fabrication of Na-TUD-1 novel heterogeneous base nano-catalyst for knoevenagel condensation reaction. Journal of Nanostructure in Chemistry, 11 (2): 259-269.

26.   Boora, A., Duhan, S., Rohilla, B., Malik, P., Sehrawat, S., Goyat, M., Mishra, Y. K., and Kumar, V. (2024). A three-dimensional ZnO/TUD-1 nanocomposite-based multifunctional sensor for humidity detection and wastewater remediation. Materials Advances, 5 (10): 4467-4479.

27.   Ekinci, E., Oruç, M., Oktar, N., and Murtezaoğlu, K. (2024). Catalytic performances of Ni‑containing mesoporous TUD‑1 catalysts in steam reforming of acetic acid. Catalysis Letters, 154 (7): 3776-3786.

28.   Zhang, L., Xing, L., Liu, J., Qi, T., Li, M., and Wang, L. (2021). Synchronous catalysis of sulfite oxidation and abatement of Hg2+ in wet desulfurization using one-pot synthesized Co-TUD-1/S. Separation and Purification Technology, 266: 118546.

29.   Alhanash, A. M., Alqahtani, F. A., Aldalbahi, A., Rahaman, M., Benaissa, M., and Hamdy, M. S. (2021). The hydrogenation of cycloalkenes over direct-synthetized well-defined zero-valent Pt nanoparticles incorporated TUD-1 mesoporous material. Inorganic Chemistry Communications, 127: 108545.

30.   Ng, N., Keyon, A. S. A., Ibrahim, W. A. W., Sanagi, M. M., Sutirman, Z. A., and Marsin, F. M. (2023). Amino-functionalised chrysin as adsorbent in dispersive micro-solid phase extraction of selected heavy metal ions from stingless bee honey. Journal of Food Composition and Analysis, 123: 105561.

31.   Dutta, A., Nayak, M., Nag, R., Bera, A., Bhaumik, S., Akhtar, A. J., and Saha, S. K. (2024). Precipitation-assisted, low-temperature-annealed TiO2 and its nanocomposites-based photoanode for DSSCs. Journal of Materials Science: Materials in Electronics, 35 (4): 292.

32.   Keshri, K. S., Bhattacharjae, S., Singha, A., Bhaumik, A., and Chowdhury, B. (2022). Synthesis of cyclic carbonates of different epoxides using CO2 as a C1 building block over Ag/TUD-1 mesoporous silica catalyst: A solvent free approach. Molecular Catalysis, 522: 112234.

33.   Garg, A., Singhania, T., Singh, A., Sharma, S., Rani, S., Neogy, A., Yadav, S. R., Sangal, V. K., and Garg, N. (2019). Photocatalytic degradation of bisphenol-A using N, Co codoped TiO2 catalyst under solar light. Scientific Reports, 9(1): 765.

34.   Ballestas-Barrientos, A. R., Xia, Q., Masters, A. F., Ling, C. D., and Maschmeyer, T. (2020). Interfacial reactions between lithium and grain boundaries from anatase TiO2-TUD-1 electrodes in lithium-ion batteries with enhanced capacity retention. ACS Omega, 5 (13), 7584-7592.

35.   Klinyod, S., Yomthong, K., Suttipat, D., Pornsetmetakul, P., Kidkhunthod, P., Choojun, K., Namuangruk, S., Sooknoi, T., and Wattanakit, P. C. (2025). Tailoring the first coordination shell of isolated Ti(IV) active sites in zeolite frameworks boosting catalytic activity in epoxidation. ChemCatChem, 17 (9): e202401862.

36.   Ekhsan, J. M., Lee, S. L., and Nur, H. (2014). Niobium oxide and phosphoric acid impregnated silica-titania as oxidative-acidic bifunctional catalyst. Applied Catalysis A: General, 471: 142-148.

37.   Koh, P. W., Leong, C. Y., Yuliati, L., Nur, H., and Lee, S. L. (2020). Role of vanadia and titania phases in the removal of methylene blue by adsorption and photocatalytic degradation. Malaysian Journal of Analytical Sciences, 24 (6), 1045-1060.

38.   Ling, C. M., Yuliati, L., Lintang, H. O., and Lee, S. L. (2020). TUD-C supported tungsten oxide doped titania catalysts for cyclohexane oxidation. Malaysian Journal of Chemistry, 22 (2): 29-36.

39.   Guettaıa, D., Zazoua, H., Bacharı, K., and Boudjemaa, A. (2022). A facile fabrication a novel photocatalyst (Fe-TUD-1) with enhanced photocatalytic degradation of ibuprofen. Reaction Kinetics, Mechanisms and Catalysis, 135 (6): 3359-3374.

40.   Liu, L., Chen, Z., Zhang, J., Shan, D., Wu, Y., Bai, L., and Wang, B. (2021). Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. Journal of Water Process Engineering, 42: 102122.

41.   Peramune, D., Manatunga, D. C., Dassanayake, R. S., Premalal, V., Liyanage, R. N., Gunathilake, C., and Abidi, N. (2022). Recent advances in biopolymer-based advanced oxidation processes for dye removal applications: A review. Environmental Research, 215: 114242.

42.   Targhan, H., Evans, P., and Bahrami, K. (2021). A review of the role of hydrogen peroxide in organic transformations. Journal of Industrial and Engineering Chemistry, 104: 295-332.

43.   Xue, G., Wang, Q., Qian, Y., Gao, P., Su, Y., Liu, Z., Chen, H., Li, X., and Chen, J. (2019). Simultaneous removal of aniline, antimony and chromium by ZVI coupled with H2O2: Implication for textile wastewater treatment. Journal of Hazardous Materials, 368: 840-848.

44.   Liu, Z., Wang, T., Yu, X., Geng, Z., Sang, Y., and Liu, H. (2017). In situ alternative switching between Ti4+ and Ti3+ driven by H2O2 in TiO2 nanostructures: Mechanism of pseudo-fenton reaction. Materials Chemistry Frontiers, 1 (10): 1989-1994.

45.   Badvi, K., and Javanbakht, V. (2021). Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. Journal of Cleaner Production, 280: 124518.

46.   Al-Shehri, B. M., Mohamed, S. K., Alzahly, S., and Hamdy, M. S. (2021). A significant improvement in adsorption behavior of mesoporous TUD-1 silica through neodymium incorporation. Journal of Rare Earths, 39 (4): 469-476.

47.   Wang, N., Chen, J., Wang, J., Feng, J., and Yan, W. (2019). Removal of methylene blue by polyaniline/TiO2 hydrate: Adsorption kinetic, isotherm and mechanism studies. Powder Teachology, 347: 93-102.

48.   Rajagopal, S., Paramasivam, B., and Muniyasamy, K. (2020). Photocatalytic removal of cationic and anionic dyes in the textile wastewater by H2O2 assisted TiO2 and micro-cellulose composites. Separation and Purification Technology, 252: 117444.

49.   Tichapondwa, S. M., Newman, J. P., and Kubheka, O. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118: 102900.

50.   Wei, X., Wang, Y., Feng, Y., Xie, X., Li, X., and Yang, S. (2019). Different adsorption-degradation behavior of methylene blue and congo red in nanoceria/H2O2 system under alkaline conditions. Scientific Reports, 9 (1): 4964.

51.   Muthamilarasu, A., Sivakumar, S., Divya, G., Sivakumar, M., and Sakthi, D. (2022). NiO/CuO/TiO2 ternary composites: Development, physicochemical characterization and photocatalytic degradation study over reactive orange 30 solutions under solar light irradiation. Advances in Materials Science, 22 (1): 36-54.

52.   Somsesta, N., Sricharoenchaikul, V., and Aht-Ong, D. (2020). Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies. Materials Chemistry and Physics, 240: 122221.

53.   Igwegbe, C. A., Mohmmadi, L., Ahmadi, S., Rahdar, A., Khadkhodaiy, D., and Dehghani, R. (2019). Modeling of adsorption of methylene blue dye on Ho-CaWO4 Nanoparticles using response surface methodology (RSM) and Artificial Neural Network (ANN) Techniques. MethodsX, 6: 1779-1797.

54.   Priatmoko, S., Widhihastuti, E., Widiarti, N., and Subagja, D. (2021). Synthesis of Ni/NiO-TiO2 using sol-gel method and its activity in blue methylene degradation. Journal of Physics: Conference Series, 1918 (3): 032013.

55.   Mohammed, W., Matalkeh, M., Soubaihi, R. M. A., Elzatahry, A., and Saoud, K. M. (2023). Visible light photocatalytic degradation of methylene blue dye and pharmaceutical wastes over ternary NiO/Ag/TiO2 heterojunction. ACS Omega, 8 (43): 40063-40077.

56.   Kurokawa, Y., Nguyen, D. T., and Taguchi, K. (2020). Enhancing the photocatalytic activity of commercial P25 TiO2 powder by combining with handmade Ni-doped TiO2 powder. International Journal of Electrical and Computer Engineering, 10 (2): 1782-1790.

57.   Gnanasekaran, L., Hemamalini, R., Rajendran, S., Naushad, M., Qin, J., Gracia, F., and Cornejo, L. (2020). Photocatalytic degradation of organic dyes using nickel oxide incorporated titania nanocatalyst. Desalination and Water Treatment, 182: 359-364.

58.   Villamayor, A., Pomone, T., Perero, S., Ferraris, M., Barrio, V. L., G-Berasategui, E., and Kelly, P. (2023). Development of photocatalytic nanostructured TiO2 and NiO/TiO2 coatings by DC magnetron sputtering for photocatalytic applications. Ceramics International, 49 (11): 19309-19317.

59.   Wiedmer, D., Sagstuen, E., Welch, K., Haugen, H. J., and Tiainen, H. (2016). Oxidative power of aqueous non-irradiated TiO2-H2O2 suspensions: Methylene blue degradation and the role of reactive oxygen species. Applied Catalysis B: Environmental, 198: 9-15.

60.   Vo, Q. V., Thao, L. T. T., Manh, T. D., Bay, M. V., Truong-Le, B. T., Hoa, N. T., and Mechler, A. (2024). Reaction of methylene blue with OH radicals in the aqueous environment: Mechanism, kinetics, products and risk assessment. RSC Advances, 14 (37): 27265-27273.

61.   Mohammed, K. S., Atlabachew, M., Aragaw, B. A., and Asmare, Z. G. (2024). Synthesis of kaolin-supported nickel oxide composites for the catalytic oxidative degradation of methylene blue dye. ACS Omega, 9 (4): 4287-4299.

62.   Pham, V. L., Kim, D. G., and Ko, S. O. (2020). Mechanisms of methylene blue degradation by nano-sized β-MnO2. KSCE Journal of Civil Engineering, 24 (5): 1385-1394.