Malays. J. Anal. Sci.
Volume 29 Number 4 (2025): 1538
Research
Article
Technische universiteit Delft-1-supported nickel oxide
doped-titanium dioxide for oxidative removal of methylene blue
Ling Shing Liau1, Chui Min Ling1, Sie-Tiong Ha2,
Nursyafreena Attan1, and
Siew Ling Lee1,3*
1Department of Chemistry, Faculty of Science,
Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
2Faculty of Science, Universiti Tunku Abdul Rahman, Jln
Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
3Centre for Sustainable Nanomaterials, Ibnu Sina
Institute for Scientific and Industrial Research, Universiti Teknologi
Malaysia, 81310 Johor Bahru, Malaysia
*Corresponding author: lsling@utm.my
Received: 14 April 2025;
Revised: 15 July 2025; Accepted: 22 July 2025; Published: xx August 2025
Abstract
The
elimination of organic dyes from wastewater is essential for mitigating
environmental pollution. Conventional treatment methods often fail to
completely remove these persistent pollutants. Among advanced oxidation
processes, the Fenton-like reaction has garnered considerable attention for its
effectiveness in dye degradation. This
study reports the synthesis of Technische
Universiteit Delft-1 (TUD-1) supported nickel oxide-doped titanium dioxide
(NiO-TiO2/TUD-1) as a Fenton-like catalyst for methylene blue (MB)
removal. The catalysts were characterized using X-ray diffraction (XRD),
Fourier Transform Infrared (FTIR) spectroscopy, ultraviolet-visible diffuse
reflectance spectroscopy (UV-vis DRS), nitrogen adsorption-desorption analysis,
and point of zero charge (pHPZC). The
results confirmed the presence of the anatase TiO2 phase, successful
NiO doping, and the incorporation of Ti species into
TUD-1. Among
the catalysts, 0.4 mol% NiO-TiO2/TUD-1
exhibited the highest MB removal efficiency (91.8%) at pH 12 under dark
conditions within 2 hours. Its catalytic activity was approximately 2.5 times
higher than that of unsupported NiO-TiO2. This performance is
attributed to its high surface area (323 m2/g), mesoporous structure
(~12 nm), and strong adsorption capacity (10.5 mg/g), which enhance dye uptake.
The catalyst functions through a Ti4+/Ti3+ Fenton-like
mechanism, reacting with hydrogen peroxide (H2O2) to
generate hydroxyl radicals (•OH) that degrade MB. This catalyst demonstrates
strong potential as a light-free solution for practical wastewater treatment.
Keywords:
Fenton-like process, oxidative catalyst,
TUD-1, titanium dioxide, nickel oxide
References
1. Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Li, L., Fu, Y.,
Li, B., Zhang, M., Qin, L., Liu, S., and Yang, L. (2021). Critical review of
advanced oxidation processes in organic wastewater treatment. Chemosphere, 275:
130104.
2. Mohammed, H. A., Khaleefa, S. A., and Basheer, M. I. (2021). Photolysis
of methylene blue using an advanced oxidation process (ultraviolet light and
hydrogen peroxide). Journal of
Engineering and Sustainable Development,
25 (1): 59-67.
3. Bui, B. C., Vu, N. N., Nemamcha, H. E., Nguyen, H. T., Nguyen, V. A.,
and Nguyen-Tri, P. (2025). Single nickel atoms doped into TiO2
decorating carbon quantum dots for boosting photodegradation of ciprofloxacin. Journal of Water Process Engineering, 70: 106904.
4. Santos, É. N., László, Z., Hodúr, C., Arthanareeswaran, G., and
Veréb, G. (2020). Photocatalytic membrane filtration and its advantages over
conventional approaches in the treatment of oily wastewater: A review. Asia-Pacific Journal of Chemical Engineering, 15 (5): e2533.
5. Fito, J., Abewaa, M., Mengistu, A., Angassa, K., Ambaye, A. D.,
Moyo, W., and Nkambule, T. (2023). Adsorption of methylene blue from textile
industrial wastewater using activated carbon developed from Rumex
Abyssinicus plant. Scientific Reports, 13 (1): 5427.
6. Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., and Oyewola, O. J.
(2022). Methylene blue dye: Toxicity and potential elimination technology from
wastewater. Results in Engineering, 16: 100678.
7. Deng, S. Q., Miao, Y. L., Tan, Y. L., Fang, H. N., Li, Y. T., Mo, X.
J., Cai, S. L., Fan, J., Zhang, W. G., and Zheng, S. R. (2019). An anionic
nanotubular metal-organic framework for high-capacity dye adsorption and dye
degradation in darkness. Inorganic
Chemistry, 58 (20): 13979-13987.
8. Lu, L., Shan, R., Shi, Y., Wang, S., and Yuan, H. (2019). A novel TiO2/biochar
composite catalysts for photocatalytic degradation of methyl orange. Chemosphere, 222: 391-398.
9. Akinyemi, A., Agboola, O., Alagbe, E., and Igbokwe, E.
(2024). The role of catalyst in the adsorption of dye: Homogeneous catalyst,
heterogeneous catalyst, and advanced catalytic activated carbon, critical
review. Desalination and Water Treatment, 320: 100780.
10. Li, S., Zhang, J., Cao, Y., Yang, Y., Xie, T., and Lin,
Y. (2022). Visible light assisted heterogeneous photo-fenton-like degradation of
rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst
properties, photogenerated carrier transfer and degradation mechanism. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 648: 129248.
11. Rodríguez, M., Bussi, J., and León, M. A. D. (2021). Application of
pillared raw clay-base catalysts and natural solar radiation for water
decontamination by the photo-fenton process. Separation and Purification Technology, 259:
118167.
12. Guo, X., Chen, S., Liu, Z., Yang, C., and Chen, W. (2023).
Catalytic oxidation of methylene blue by using Ni-Fe bimetallic catalyst/NaClO system:
Performance, kinetics, mechanism, and DFT calculations. Separation and Purification Technology, 306:
122162.
13. Halfadji, A., Naous, M., Kharroubi, K. N., Belmehdi, F. E. Z., and
Rajendrachari, S. (2023). An ultrasonic-assisted synthesis, characterization, and
application of Nano-Fe3O4/TiO2 as nano-catalyst
for the removal of organic dye by like-photo-fenton reactions. Inorganic Chemistry Communications, 158: 111686.
14. Hu, X., Xie, L., Xu, Z., Liu, S., Tan, X., Qian, R., Zhang, R.,
Jiang, M., Xie, W., and Tian, W. (2021). Photothermal-enhanced fenton-like
catalytic activity of oxygen-deficient nanotitania for efficient and safe tooth
whitening. ACS Applied Materials &
Interfaces, 13 (30): 35315-35327.
15. Keerthana, S., Yuvakkumar, R., Ravi, G., Hong, S. I., Al-Sehemi, A.
G., and Velauthapillai, D. (2022). Fabrication of Ce doped TiO2 for efficient
organic pollutants removal from wastewater. Chemosphere, 293: 133540.
16. Alijani, M., and Ilkhechi, N. N. (2018). Effect of Ni doping on the
structural and optical properties of TiO2 nanoparticles at various
concentration and temperature. Silicon, 10 (6): 2569-2575.
17. Ling, C. M., Ong, S. T., and Lee, S. L. (2025). Recent development
of surface-modified titanium dioxide for enhanced oxidation catalytic activity:
A short review. Journal of Alloys and Compounds, 1037: 182226.
18. Mohseni-Salehi, M. S., Taheri-Nassaj, E., and Hosseini-Zori, M.
(2018). Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on
photocatalytic activity of titania towards dye degradation. Journal of Photochemistry and Photobiology
A: Chemistry, 356: 57-70.
19. Ling, C. M., Teng, C. C., Hatta, M. H. M., and Lee, S. L. (2021).
Tungsten oxide doped titania supported on TUD-C for photocatalytic removal of
methylene blue. Platform: A Journal of
Science and Technology, 4 (2): 42-52.
20. Koh, P. W., Yuliati, L., and Lee, S. L. (2019). Kinetics and
optimization studies of photocatalytic degradation of methylene blue over Cr-doped
TiO2 using response surface methodology. Iranian Journal of Science and Technology, Transactions A: Science, 43 (1): 95-103.
21. Rodríguez, J. L., and Valenzuela, M. (2022). Ni-based catalysts used
in heterogeneous catalytic ozonation for organic pollutant degradation: A mini review.
Environmental Science and Pollution
Research, 29 (56): 84056-84075.
22. Mannaa, M. A., Qasim, K. F., Alshorifi, F. T., El-Bahy, S. M., and
Salama, R. S. (2021). Role of NiO nanoparticles in enhancing structure
properties of TiO2 and its applications in photodegradation and
hydrogen evolution. ACS Omega, 6 (45): 30386-30400.
23. Ooi, Y. K., Hussin, F., Yuliati, L., and Lee, S. L. (2019).
Comparison study on molybdena-titania supported on TUD-1 and TUD-C synthesized via
sol-gel templating method: Properties and catalytic performance in olefins
epoxidation. Materials Research Express, 6 (7): 074001.
24. Soekiman, C. N., Miyake, K., Hayashi, Y., Zhu, Y., Ota, M.,
Al-Jabri, H., Inoue, R., Hirota, Y., Uchida, Y., Tanaka, S., Kong, C. Y., and
Nishiyama, N. (2020). Synthesis of titanium silicalite-1 (TS-1) zeolite with high
content of Ti by a dry gel conversion method using amorphous TiO2-SiO2
composite with highly dispersed Ti species. Materials
Today Chemistry, 16: 100209.
25. Al-Shehri, B. M., Shabaan, M. R., Shkir, M., and Hamdy, M. S.
(2020). Single-step fabrication of Na-TUD-1 novel heterogeneous base
nano-catalyst for knoevenagel condensation reaction. Journal of Nanostructure in Chemistry, 11 (2):
259-269.
26. Boora, A., Duhan, S., Rohilla, B., Malik, P., Sehrawat, S., Goyat,
M., Mishra, Y. K., and Kumar, V. (2024). A three-dimensional ZnO/TUD-1 nanocomposite-based
multifunctional sensor for humidity detection and wastewater remediation. Materials Advances, 5 (10):
4467-4479.
27. Ekinci, E., Oruç, M., Oktar, N., and Murtezaoğlu, K. (2024).
Catalytic performances of Ni‑containing mesoporous TUD‑1 catalysts
in steam reforming of acetic acid. Catalysis
Letters, 154 (7): 3776-3786.
28. Zhang, L., Xing, L., Liu, J., Qi, T., Li, M., and Wang, L. (2021).
Synchronous catalysis of sulfite oxidation and abatement of Hg2+ in wet
desulfurization using one-pot synthesized Co-TUD-1/S. Separation and Purification Technology, 266:
118546.
29. Alhanash, A. M., Alqahtani, F. A., Aldalbahi, A., Rahaman, M.,
Benaissa, M., and Hamdy, M. S. (2021). The hydrogenation of cycloalkenes over
direct-synthetized well-defined zero-valent Pt nanoparticles incorporated TUD-1
mesoporous material. Inorganic Chemistry
Communications, 127: 108545.
30. Ng, N., Keyon, A. S. A., Ibrahim, W. A. W., Sanagi, M. M., Sutirman,
Z. A., and Marsin, F. M. (2023). Amino-functionalised chrysin as adsorbent in
dispersive micro-solid phase extraction of selected heavy metal ions from
stingless bee honey. Journal of Food
Composition and Analysis, 123: 105561.
31. Dutta, A., Nayak, M., Nag, R., Bera, A., Bhaumik, S., Akhtar, A. J.,
and Saha, S. K. (2024). Precipitation-assisted, low-temperature-annealed TiO2
and its nanocomposites-based photoanode for DSSCs. Journal of Materials Science: Materials in Electronics, 35 (4): 292.
32. Keshri, K. S., Bhattacharjae, S., Singha, A., Bhaumik, A., and
Chowdhury, B. (2022). Synthesis of cyclic carbonates of different epoxides using
CO2 as a C1 building block over Ag/TUD-1 mesoporous silica catalyst:
A solvent free approach. Molecular
Catalysis, 522: 112234.
33. Garg, A., Singhania, T., Singh, A., Sharma, S., Rani, S., Neogy, A.,
Yadav, S. R., Sangal, V. K., and Garg, N. (2019). Photocatalytic degradation of
bisphenol-A using N, Co codoped TiO2 catalyst under solar light. Scientific Reports, 9(1): 765.
34. Ballestas-Barrientos, A. R., Xia, Q., Masters, A. F., Ling, C. D., and
Maschmeyer, T. (2020). Interfacial reactions between lithium and grain
boundaries from anatase TiO2-TUD-1 electrodes in lithium-ion
batteries with enhanced capacity retention. ACS
Omega, 5
(13), 7584-7592.
35. Klinyod, S., Yomthong, K., Suttipat, D., Pornsetmetakul, P.,
Kidkhunthod, P., Choojun, K., Namuangruk, S., Sooknoi, T., and Wattanakit, P.
C. (2025). Tailoring the first coordination shell of isolated Ti(IV) active
sites in zeolite frameworks boosting catalytic activity in epoxidation. ChemCatChem, 17 (9):
e202401862.
36. Ekhsan, J. M., Lee, S. L., and Nur, H. (2014). Niobium oxide and
phosphoric acid impregnated silica-titania as oxidative-acidic bifunctional
catalyst. Applied Catalysis A: General, 471: 142-148.
37. Koh, P. W., Leong, C. Y., Yuliati, L., Nur, H., and Lee, S. L.
(2020). Role of vanadia and titania phases in the removal of methylene blue by
adsorption and photocatalytic degradation. Malaysian
Journal of Analytical Sciences,
24 (6), 1045-1060.
38. Ling, C. M., Yuliati, L., Lintang, H. O., and Lee, S. L. (2020).
TUD-C supported tungsten oxide doped titania catalysts for cyclohexane
oxidation. Malaysian Journal of Chemistry, 22 (2): 29-36.
39. Guettaıa, D., Zazoua, H., Bacharı, K., and Boudjemaa, A.
(2022). A facile fabrication a novel photocatalyst (Fe-TUD-1) with enhanced
photocatalytic degradation of ibuprofen. Reaction Kinetics, Mechanisms and Catalysis, 135 (6): 3359-3374.
40. Liu, L., Chen, Z., Zhang, J., Shan, D., Wu, Y., Bai, L., and Wang,
B. (2021). Treatment of industrial dye wastewater and pharmaceutical residue
wastewater by advanced oxidation processes and its combination with
nanocatalysts: A review. Journal of Water
Process Engineering, 42: 102122.
41. Peramune, D., Manatunga, D. C., Dassanayake, R. S., Premalal, V.,
Liyanage, R. N., Gunathilake, C., and Abidi, N. (2022). Recent advances in
biopolymer-based advanced oxidation processes for dye removal applications: A review.
Environmental Research, 215: 114242.
42. Targhan, H., Evans, P., and Bahrami, K. (2021). A review of the role
of hydrogen peroxide in organic transformations. Journal of Industrial and Engineering Chemistry, 104: 295-332.
43. Xue, G., Wang, Q., Qian, Y., Gao, P., Su, Y., Liu, Z., Chen, H., Li,
X., and Chen, J. (2019). Simultaneous removal of aniline, antimony and chromium
by ZVI coupled with H2O2: Implication for textile
wastewater treatment. Journal of
Hazardous Materials, 368: 840-848.
44. Liu, Z., Wang, T., Yu, X., Geng, Z., Sang, Y., and Liu, H. (2017). In
situ alternative switching between Ti4+ and Ti3+ driven
by H2O2 in TiO2 nanostructures: Mechanism of pseudo-fenton
reaction. Materials Chemistry Frontiers, 1 (10): 1989-1994.
45. Badvi, K., and Javanbakht, V. (2021). Enhanced photocatalytic
degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite
modified with nickel nanoparticles. Journal
of Cleaner Production, 280:
124518.
46. Al-Shehri, B. M., Mohamed, S. K., Alzahly, S., and Hamdy, M. S.
(2021). A significant improvement in adsorption behavior of mesoporous TUD-1 silica
through neodymium incorporation. Journal
of Rare Earths, 39 (4): 469-476.
47. Wang, N., Chen, J., Wang, J., Feng, J., and Yan, W. (2019). Removal
of methylene blue by polyaniline/TiO2 hydrate: Adsorption kinetic,
isotherm and mechanism studies. Powder Teachology, 347: 93-102.
48. Rajagopal, S., Paramasivam, B., and Muniyasamy, K. (2020).
Photocatalytic removal of cationic and anionic dyes in the textile wastewater by
H2O2 assisted TiO2 and micro-cellulose composites.
Separation and Purification Technology, 252: 117444.
49. Tichapondwa, S. M., Newman, J. P., and Kubheka, O. (2020). Effect of
TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts
A/B/C, 118: 102900.
50. Wei, X., Wang, Y., Feng, Y., Xie, X., Li, X., and Yang, S. (2019).
Different adsorption-degradation behavior of methylene blue and congo red in
nanoceria/H2O2 system under alkaline conditions. Scientific Reports, 9 (1): 4964.
51. Muthamilarasu, A., Sivakumar, S., Divya, G., Sivakumar, M., and
Sakthi, D. (2022). NiO/CuO/TiO2 ternary composites: Development, physicochemical
characterization and photocatalytic degradation study over reactive orange 30
solutions under solar light irradiation. Advances
in Materials Science, 22 (1): 36-54.
52. Somsesta, N., Sricharoenchaikul, V., and Aht-Ong, D. (2020).
Adsorption removal of methylene blue onto activated carbon/cellulose
biocomposite films: Equilibrium and kinetic studies. Materials Chemistry and Physics, 240: 122221.
53. Igwegbe, C. A., Mohmmadi, L., Ahmadi, S., Rahdar, A., Khadkhodaiy,
D., and Dehghani, R. (2019). Modeling of adsorption of methylene blue dye on Ho-CaWO4
Nanoparticles using response surface methodology (RSM) and Artificial Neural
Network (ANN) Techniques. MethodsX, 6: 1779-1797.
54. Priatmoko, S., Widhihastuti, E., Widiarti, N., and Subagja, D.
(2021). Synthesis of Ni/NiO-TiO2 using sol-gel method and its
activity in blue methylene degradation. Journal
of Physics: Conference Series, 1918 (3): 032013.
55. Mohammed, W., Matalkeh, M., Soubaihi, R. M. A., Elzatahry, A., and
Saoud, K. M. (2023). Visible light photocatalytic degradation of methylene blue
dye and pharmaceutical wastes over ternary NiO/Ag/TiO2 heterojunction.
ACS Omega, 8 (43):
40063-40077.
56. Kurokawa, Y., Nguyen, D. T., and Taguchi, K.
(2020). Enhancing the photocatalytic activity of commercial P25 TiO2
powder by combining with handmade Ni-doped TiO2 powder. International Journal of Electrical and
Computer Engineering, 10 (2): 1782-1790.
57. Gnanasekaran, L., Hemamalini, R., Rajendran, S., Naushad, M., Qin,
J., Gracia, F., and Cornejo, L. (2020). Photocatalytic degradation of organic
dyes using nickel oxide incorporated titania nanocatalyst. Desalination and Water Treatment,
182: 359-364.
58. Villamayor, A., Pomone, T., Perero, S., Ferraris, M., Barrio, V. L.,
G-Berasategui, E., and Kelly, P. (2023). Development of photocatalytic nanostructured
TiO2 and NiO/TiO2 coatings by DC magnetron sputtering for
photocatalytic applications. Ceramics
International, 49 (11):
19309-19317.
59. Wiedmer, D., Sagstuen, E., Welch, K., Haugen, H. J., and Tiainen, H.
(2016). Oxidative power of aqueous non-irradiated TiO2-H2O2
suspensions: Methylene blue degradation and the role of reactive oxygen
species. Applied Catalysis B:
Environmental, 198: 9-15.
60. Vo, Q. V., Thao, L. T. T., Manh, T. D., Bay, M. V., Truong-Le, B. T.,
Hoa, N. T., and Mechler, A. (2024). Reaction of methylene blue with OH radicals
in the aqueous environment: Mechanism, kinetics, products and risk assessment. RSC Advances, 14 (37):
27265-27273.
61. Mohammed, K. S., Atlabachew, M., Aragaw, B. A., and Asmare, Z. G.
(2024). Synthesis of kaolin-supported nickel oxide composites for the catalytic
oxidative degradation of methylene blue dye. ACS Omega, 9 (4): 4287-4299.
62. Pham, V. L., Kim, D. G., and Ko, S. O. (2020). Mechanisms of methylene
blue degradation by nano-sized β-MnO2. KSCE Journal of Civil Engineering,
24 (5): 1385-1394.