Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1535

 

Review Article

Sorbent based extraction for pre-concentration of antidepressant drugs: A review

Khirtana Raveendran1, ‘Aina Dayana Mohd Roslan1, Hedy Ng Siew Mei1, Nurul Syamimi Ahmad Sidi1, Saw Hong Loh1, and Wan Mohd Afiq Wan Mohd Khalik1,2*

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Water Analysis Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Correspondence: wan.afiq@umt.edu.my

Received: 15 February 2025; Revised: 5 June 2025; Accepted: 18 June 2025; Published: 22 August 2025

Abstract

The detection and quantification of antidepressant drugs in biological and environmental samples are crucial for therapeutic drug monitoring, forensic analysis, and environmental safety. Sorbent-based extraction techniques have emerged as effective methods for the pre-concentration of these drugs, offering advantages such as high sensitivity, minimal solvent consumption, and improved selectivity. Over the decade (2015 to 2025), 92 publications have documented progress in the development and application of sorbent materials for the detection and quantification of antidepressants in various environmental and biological matrices. This review provides a comprehensive overview of various sorbent materials, including carbon-based, polymeric, and magnetic sorbents, emphasizing their extraction mechanisms, efficiency, and compatibility with different analytical techniques. Additionally, the integration of novel nanomaterials and functionalized sorbents has significantly enhanced extraction performance, enabling better analyte recovery and lower detection limits. The article also discusses recent advancements, optimization strategies, and the potential of sorbent-based techniques in pharmaceutical and environmental applications. Finally, current challenges, including sorbent stability, reusability, and matrix effects, are examined, along with future perspectives to further improve the efficiency and sustainability of these extraction methods.

Keywords: emerging contaminant, functionalise materials, microextraction, psychoactive drugs, solid-phase extraction

References

1.        Melchor-Martínez, E. M., Jiménez-Rodríguez, M. G., Martínez-Ruiz, M., Peña-Benavides, S. A., Iqbal, H. M., Parra-Saldívar, R., and Sosa-Hernández, J. E. (2021). Antidepressants surveillance in wastewater: overview extraction and detection. Case Studies in Chemical and Environmental Engineering, 3: 100074.

2.        Soares, S., Rosado, T., Barroso, M., and Gallardo, E. (2023). Solid phase-based microextraction techniques in therapeutic drug monitoring. Pharmaceutics, 15(4): 1055.

3.        Arghavani-Beydokhti, S., Rajabi, M., Asghari, A., and Hosseini-Bandegharaei, A. (2023). Highly efficient preconcentration of anti-depressant drugs in biological matrices by conducting supramolecular solvent-based microextraction after dispersive micro solid phase extraction technique. Microchemical Journal, 190: 108703.

4.        Silva, B. J. G., Lanças, F. M., and Queiroz, M. E. C. (2008). In-tube solid-phase microextraction coupled to liquid chromatography (in-tube SPME/LC) analysis of nontricyclic antidepressants in human plasma. Journal of Chromatography B, 862(1-2): 181-188.

5.        Kumar, S., Darshan, S., and Baggi, T. R. (2023). Recent advances in analytical techniques for antidepressants determination in complex biological matrices: a review. International Journal of Toxicology, 42(4): 352-364.

6.        Soares, S., Barroso, M., and Gallardo, E. (2021). A review of current bioanalytical approaches in sample pretreatment techniques for the determination of antidepressants in biological specimens. Reviews in Analytical Chemistry, 40(1): 12-32.

7.        Pietracci, E., Bermejo, A. M., Álvarez, I., Cabarcos, P., Balduini, W., and Tabernero, M. J. (2013). Simultaneous determination of new-generation antidepressants in plasma by gas chromatography–mass spectrometry. Forensic Toxicology, 31: 124-132.

8.        Zheng, M. M., Wang, S. T., Hu, W. K., and Feng, Y. Q. (2010). In-tube solid-phase microextraction based on hybrid silica monolith coupled to liquid chromatography–mass spectrometry for automated analysis of ten antidepressants in human urine and plasma. Journal of Chromatography A, 1217(48): 7493-7501.

9.        Roszkowska, A., Plenis, A., Kowalski, P., Bączek, T., and Olędzka, I. (2022). Recent advancements in techniques for analyzing modern, atypical antidepressants in complex biological matrices and their application in biomedical studies. TrAC Trends in Analytical Chemistry, 152: 116609.

10.     Mahdavijalal, M., Petio, C., Staffilano, G., Mandrioli, R., and Protti, M. (2024). Innovative solid-phase extraction strategies for improving the advanced chromatographic determination of drugs in challenging biological samples. Molecules, 29(10): 2278.

11.     Moghadam, A. G., Rajabi, M., and Asghari, A. (2018). Efficient and relatively safe emulsification microextraction using a deep eutectic solvent for influential enrichment of trace main anti-depressant drugs from complicated samples. Journal of Chromato-graphy B, 1072: 50-59.

12.     Sarıkaya, M., Ulusoy, H. I., Morgul, U., Ulusoy, S., Tartaglia, A., Yılmaz, E., ... and Kabir, A. (2021). Sensitive determination of fluoxetine and citalopram antidepressants in urine and wastewater samples by liquid chromatography coupled with photodiode array detector. Journal of Chromatography A, 1648: 462215.

13.     Chaves, A. R., Leandro, F. Z., Carris, J. A., and Queiroz, M. E. C. (2010). Microextraction in packed sorbent for analysis of antidepressants in human plasma by liquid chromatography and spectrophotometric detection. Journal of Chromatography B, 878(23): 2123-2129.

14.     Halvorsen, T. G., Pedersen-Bjergaard, S., and Rasmussen, K. E. (2001). Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug. Journal of Chromatography A, 909(1): 87-93.

15.     Ghaedi, H., Afkhami, A., Madrakian, T., and Soltani-Felehgari, F. (2016). Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. Materials Science and Engineering: C, 59: 847-854.

16.     Snow, N. H. (2000). Solid-phase micro-extraction of drugs from biological matrices. Journal of Chromatography A, 885(1-2): 445-455.

17.     Wille, S. M., Cooreman, S. G., Neels, H. M., and Lambert, W. E. (2008). Relevant issues in the monitoring and the toxicology of antidepressants. Critical Reviews in Clinical Laboratory Sciences, 45(1): 25-89.

18.     Cardoso, A. T., Martins, R. O., and Lanças, F. M. (2024). Advances and applications of hybrid graphene-based materials as sorbents for solid phase microextraction techniques. Molecules, 29(15), 3661.

19.     García-Atienza, P., Martínez-Pérez-Cejuela, H., Herrero-Martínez, J. M., and Armenta, S. (2024). Current trends in the sorbent-based extraction of illegal drugs from biofluids: Solid sorbents and configurations. TrAC Trends in Analytical Chemistry, 2024: 17599.

20.     Şentürk, Z., Saka, C., and Teğin, İ. (2011). Analytical methods for determination of selective serotonin reuptake inhibitor antidepressants. Reviews in Analytical Chemistry, 30(2): 87-122.

21.     Shetty, S. R., Rathore, S. S., and Leno Jenita, J. (2024). Analytical methods for tetracyclic antidepressants: A comprehensive review. Separation Science Plus7(10): e202400157.

22.     Alves, C., Santos‐Neto, A. J., Fernandes, C., Rodrigues, J. C., and Lanças, F. M. (2007). Analysis of tricyclic antidepressant drugs in plasma by means of solid‐phase microextraction‐liquid chromatography‐mass spectrometry. Journal of Mass Spectrometry, 42(10): 1342-1347.

23.     Xu, R., and Lee, H. K. (2014). Application of electro-enhanced solid phase microextraction combined with gas chromatography–mass spectrometry for the determination of tricyclic antidepressants in environmental water samples. Journal of Chromatography A, 1350: 15-22.

24.     Santos, M. G., Tavares, I. M. C., Barbosa, A. F., Bettini, J., and Figueiredo, E. C. (2017). Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification /quantification. Talanta, 163: 8-16.

25.     Saito, Y., Kawazoe, M., Hayashida, M., and Jinno, K. (2000). Direct coupling of microcolumn liquid chromatography with in-tube solid-phase microextraction for the analysis of antidepressant drugs. Analyst, 125(5) : 807-809.

26.     Yuan, J., Huang, W., Tong, W., Chen, Z., Li, H., Chen, J., and Lin, Z. (2023). In-situ growth of covalent organic framework on stainless steel needles as solid-phase microextraction probe coupled with electrospray ionization mass spectrometry for rapid and sensitive determination of tricyclic antidepressants in biosamplesJournal of Chromatography A, 1695: 463955.

27.     Saka, C. (2017). An overview of analytical methods for the determination of monoamine oxidase inhibitors in pharmaceutical formulations and biological fluids. Critical Reviews in Analytical Chemistry47(1), 1-23.

28.     Unceta, N., Gómez-Caballero, A., Sánchez, A., Millán, S., Sampedro, M. C., Goicolea, M. A., ... and Barrio, R. J. (2008). Simultaneous determination of citalopram, fluoxetine and their main metabolites in human urine samples by solid-phase microextraction coupled with high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 46(4): 763-770.

29.     Catai, A. P. F., Picheli, F. P., Carrilho, E., and Queiroz, M. E. C. (2013). Assessing stir bar sorptive extraction and microextraction by packed sorbent for determination of selective serotonin reuptake inhibitor antidepressants in plasma sample by non-aqueous capillary electrophoresis. Journal of the Brazilian Chemical Society, 24: 1635-1641.

30.     Samanidou, V., and Kourti, P. (2009). Modern bioanalytical methods for the rapid detection of antidepressants: SNRIs and SSRIs in human biological samples. Bioanalysis, 1(2): 451-488.

31.     Ahmadi, M., Elmongy, H., Madrakian, T., and Abdel-Rehim, M. (2017). Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Analytica Chimica Acta, 958, 1-21.

32.     Almeida-Naranjo, C. E., Guerrero, V. H., and Villamar-Ayala, C. A. (2023). Emerging contaminants and their removal from aqueous media using conventional/non-conventional adsorbents: a glance at the relationship between materials, processes, and technologies Water, 15(8): 1626.

33.     Barreto, F. C., Mounienguet, N. K., Ito, E. Y., He, Q., and Cesarino, I. (2024). Coffee biomass-based carbon material for the electrochemical determination of antidepressant in synthetic urine. Chemosensors, 12(10).

34.     Jha, M. K., Joshi, S., Sharma, R. K., Kim, A. A., Pant, B., Park, M., and Pant, H. R. (2021). Surface modified activated carbons: Sustainable bio-based materials for environmental remediation. Nanomaterials, 11(11): 3140.

35.     Mahgoub, S. M., Essam, D., Eldin, Z. E., Moaty, S. A., Shehata, M. R., Farghali, A., ... and Mahmoud, R. (2024). Carbon supported ternary layered double hydroxide nanocomposite for Fluoxetine removal and subsequent utilization of spent adsorbent as antidepressant. Scientific Reports, 14(1): 3990.

36.     Maršálek, R., and Švidrnoch, M. (2020). The adsorption of amitriptyline and nortriptyline on activated carbon, diosmectite and titanium dioxide. Environmental Challenges, 1: 100005.

37.     Soares, S., Rosado, T., Barroso, M., and Gallardo, E. (2024). Quantification of antidepressants in oral fluid and plasma samples using microextraction by packed sorbent and analysis by gas chromatography-tandem mass spectrometry. Microchemical Journal, 2024: 111031.

38.     D’Ovidio, C., Bonelli, M., Rosato, E., Tartaglia, A., Ulusoy, H. İ., Samanidou, V., ... and de Grazia, U. (2022). Novel applications of microextraction techniques focused on biological and forensic analyses. Separations,  9(1): 18.

39.     Yahyazadeh, F., Ghazanfari, D., Ahmadi, S. A., and Akhgar, M. R. (2024). Adsorption of Nefazodone on single-wall carbon nanotube as an antidepressant drug delivery: A DFT study. Carbon Trends, 16:100394.

40.     Janas, D. (2020). From bio to nano: A review of sustainable methods of synthesis of carbon nanotubes. Sustainability, 12(10): 4115.

41.     Herrera-Herrera, A., Hernández-Borges, J., Asensio-Ramos, M., Àngel Rodríguez-Delgado, M., and Fanali, S. (2013). Carbon nanotubes: applications in chromatography and sample preparation. LCGC International, 31(10): 882-892.

42.     Fresco-Cala, B., Mompó-Roselló, Ó., Simó-Alfonso, E. F., Cárdenas, S., and Herrero-Martínez, J. M. (2018). Carbon nanotube-modified monolithic polymethacrylate pipette tips for (micro) solid-phase extraction of antidepressants from urine samples. Microchimica Acta, 185(2): 127.

43.     Gao, G., Pan, M., and Vecitis, C. D. (2015). Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance. Journal of Materials Chemistry A3(14): 7575-7582.

44.     Duarte, E. H., dos Santos, W. P., Hudari, F. F., Neto, J. L. B., Sartori, E. R., Dall, L. H., ... and Tarley, C. R. T. (2014). A highly improved method for sensitive determination of amitriptyline in pharmaceutical formulations using an unmodified carbon nanotube electrode in the presence of sulfuric acid. Talanta, 127: 26-32.

45.     Hamidi, F., Hadjmohammadi, M. R., and Aghaie, A. B. (2017). Ultrasound-assisted dispersive magnetic solid phase extraction based on amino-functionalized Fe3O4 adsorbent for recovery of clomipramine from human plasma and its determination by high performance liquid chromatography: Optimization by experimental design. Journal of Chromatography B, 1063: 18-24.

46.     Ajiboye, T. O., Oladoye, P. O., and Omotola, E. O. (2024). Adsorptive reclamation of pharmaceuticals from wastewater using carbon-based materials: A review. Kuwait Journal of Science, 2024: 100225.

47.     Nie, W., Li, Y., Chen, L., Zhao, Z., Zuo, X., Wang, D., ... and Feng, X. (2020). Interaction between multi-walled carbon nanotubes and propranolol. Scientific Reports, 10(1): 10259.

48.     Jung, C., Son, A., Her, N., Zoh, K. D., Cho, J., and Yoon, Y. (2015). Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. Journal of Industrial and Engineering Chemistry, 27: 1-11.

49.     Han, Y., Zhang, X., Yu, X., Zhao, J., Li, S., Liu, F., ... and Li, Q. (2015). Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites. Scientific Reports, 5(1): 11533.

50.     Abbas, Q., Shinde, P. A., Abdelkareem, M. A., Alami, A. H., Mirzaeian, M., Yadav, A., and Olabi, A. G. (2022). Graphene synthesis techniques and environmental applications. Materials, 15(21): 7804.

51.     Sahu, P. S., Verma, R. P., Tewari, C., Sahoo, N. G., and Saha, B. (2023). Facile fabrication and application of highly efficient reduced graphene oxide (rGO)-wrapped 3D foam for the removal of organic and inorganic water pollutants. Environmental Science and Pollution Research, 30(40): 93054-93069.

52.     Al‐Bermany, E., and Chen, B. (2023). Effect of the functional groups of polymers on their adsorption behavior on graphene oxide nanosheets. Macromolecular Chemistry and Physics, 224(16): 2300101.

53.     Borsatto, J. V., and Lanças, F. M. (2023). Recent trends in graphene-based sorbents for LC analysis of food and environmental water samples. Molecules, 28(13): 5134.

54.     Cardoso, A. T., Martins, R. O., and Lanças, F. M. (2024). Advances and applications of hybrid graphene-based materials as sorbents for solid phase microextraction techniques. Molecules, 29(15): 3661.

55.     Lanças, F. M., Medina, D. A. V., Pereira Dos Santos, N. G., and Sinisterra, M. J. (2021). Graphene-based sorbents for modern magnetic solid-phase extraction techniques. Analytical applications of functionalized magnetic nanoparticles. Royal Society of Chemistry: pp. 606.

56.     Fahimirad, B., Rajabi, M., and Elhampour, A. (2019). A rapid and simple extraction of anti-depressant drugs by effervescent salt-assisted dispersive magnetic micro solid-phase extraction method using new adsorbent Fe3O4@SiO2@ N3Analytica Chimica Acta, 1047: 275-284.

57.     Rajabi, A. A., Yamini, Y., Faraji, M., and Seidi, S. (2013). Solid-phase microextraction based on cetyltrimethylammonium bromide-coated magnetic nanoparticles for determination of antidepressants from biological fluids. Medicinal Chemistry Research, 22: 1570-1577.

58.     Cui, L., Ren, X., Sun, M., Liu, H., and Xia, L. (2021). Carbon dots: Synthesis, properties and applications. Nanomaterials, 11(12): 3419.

59.     Fawaz, W., Hasian, J., and Alghoraibi, I. (2023). Synthesis and physicochemical characterization of carbon quantum dots produced from folic acid. Scientific Reports, 13(1): 18641.

60.     Wang, X., Zhang, R., Ma, X., Xu, Z., Ma, M., Zhang, T., ... and Shi, F. (2024). Carbon dots@ noble metal nanoparticle composites: research progress report. Analyst, 149(3): 665-688.

61.     Pérez-Mayoral, E., Matos, I., Bernardo, M., and Fonseca, I. M. (2019). New and advanced porous carbon materials in fine chemical synthesis. Emerging precursors of porous carbons. Catalysts, 9(2): 133.

62.     Manousi, N., and Zacharis, C. K. (2025). Metal-organic framework-based microextraction. In Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis (pp. 229-253). Elsevier.

63.     Cai, L. F., Zhan, J. M., Liang, J., Yang, L., and Yin, J. (2022). Structural control of a novel hierarchical porous carbon material and its adsorption properties. Scientific Reports, 12(1): 3118.

64.     Liu, Z., Yang, Q., Cao, L., Li, S., Zeng, X., Zhou, W., and Zhang, C. (2023). Synthesis and application of porous carbon nanomaterials from pomelo peels: a review. Molecules, 28(11): 4429.

65.     Ni, M., Zhou, L., Liu, Y., and Ni, R. (2023). Advances in the synthesis and applications of porous carbon materials. Frontiers in Chemistry, 11: 1205280.

66.     Murtada, K., de Andrés, F., Ríos, A., and Zougagh, M. (2018). Determination of antidepressants in human urine extracted by magnetic multiwalled carbon nanotube poly (styrene‐co‐divinylbenzene) composites and separation by capillary electrophoresis. Electrophoresis, 39(14): 1808-1815.

67.     Bitas, D., and Samanidou, V. (2018). Carbon nanotubes as sorbent materials for the extraction of pharmaceutical products followed by chromatographic analysis. In Fullerens, Graphenes and Nanotubes (pp. 135-168). William Andrew Publishing.

68.     Ng, S. M. H., Raveendran, K., Azman, W. N. A. S. W., Loh, S. H., Ariffin, M. M., and Khalik, W. M. A. W. M. (2025). Carbonaceous materials-based aloe vera leaf waste as magnetic adsorbents for pre-concentration selective serotonin reuptake inhibitor antidepressant drugs from aqueous solutions. Green Analytical Chemistry, 12: 100192.

69.     Wang, B., Chen, Y., Li, W., Liu, Y., Xia, X., Xu, X., ... and Chen, D. (2024). Magnetic phytic acid-modified kapok fiber biochar as a novel sorbent for magnetic solid-phase extraction of antidepressants in biofluids. Analytica Chimica Acta, 1296: 342295.

70.     Calisto, V., Ferreira, C. I., Santos, S. M., Gil, M. V., Otero, M., and Esteves, V. I. (2014). Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water. Bioresource Technology, 166: 335-344.

71.     Fahmy, L. M., Mohamed, D., Nebsen, M., and Nadim, A. H. (2024). Eco-friendly tea waste magnetite nanoparticles for enhanced adsorptive removal of norfloxacin and paroxetine from water. Microchemical Journal206: 111619.

72.     Abedi, H., Ebrahimzadeh, H., and Ghasemi, J. B. (2015). Solid phase headspace microextraction of tricyclic antidepressants using a directly prepared nanocomposite consisting of graphene, CTAB and polyaniline. Microchimica Acta, 182: 633-641.

73.     Lioupi, A., Kabir, A., Furton, K. G., and Samanidou, V. (2019). Fabric phase sorptive extraction for the isolation of five common antidepressants from human urine prior to HPLC-DAD analysis. Journal of Chromato graphy B, 1118: 171-179.

74.     Koltsakidou, A., Maroulas, K. N., Evgenidou, E., Bikiaris, D. N., Kyzas, G. Z., and Lambropoulou, D. A. (2025). Removal of the antidepressants bupropion and sertraline from aqueous solutions by using graphene oxide: A complete adsorption/desorption evaluation for single-component and binary mixtures. Journal of Molecular Liquids, 2025: 127147.

75.     Farajzadeh, M. A., Barazandeh, S., Pezhhanfar, S., and Mogaddam, M. R. A. (2023). Facile preparation of graphene-modified magnetic nanoparticles and their application in the analysis of four anti-depressant drugs in plasma and urine. ImmunoAnalysis, 3(1): 4-4.

76.     Nunes, F. B., da Silva Bruckmann, F., Viana, A. R., da Rosa Salles, T., Zancanaro, L. V., Rhoden, D. S. B., ... and Rhoden, C. R. B. (2024). Removal of selective serotonin reuptake inhibitor using magnetic graphene oxide derivatives: Adsorption study in low drug concentration using HPLC quantification, in vitro safety, and phytotoxicity. Journal of Environmental Chemical Engineering, 12(2): 112336.

77.     Zamani, R., and Yamini, Y. (2023). On-chip electromembrane surrounded solid phase microextraction for determination of tricyclic antidepressants from biological fluids using poly (3, 4-ethylenedioxythiophene) graphene oxide nanocomposite as a fiber coating. Biosensors, 13(1): 139.

78.     Bigdelifam, D., Mirzaei, M., Hashemi, M., Amoli-Diva, M., Rahmani, O., Zohrabi, P., ... and Turkjokar, M. (2014). Sensitive spectrophotometric determination of fluoxetine from urine samples using charge transfer complex formation after solid phase extraction by magnetic multiwalled carbon nanotubes. Analytical Methods, 6(21): 8633-8639.

79.     Ghorbani, M., Esmaelnia, M., Aghamohammadhasan, M., Akhlaghi, H., Seyedin, O., and Azari, Z. A. (2019). Preconcentration and determination of fluoxetine and norfluoxetine in biological and water samples with β-cyclodextrin multi-walled carbon nanotubes as a suitable hollow fiber solid phase microextraction sorbent and high performance liquid chromatography. Journal of Analytical Chemistry, 74: 540-549.

80.     Ghorbani, M., Chamsaz, M., and Rounaghi, G. H. (2016). Glycine functionalized multiwall carbon nanotubes as a novel hollow fiber solid-phase microextraction sorbent for pre-concentration of venlafaxine and o-desmethylvenlafaxine in biological and water samples prior to determination by high-performance liquid chromatography. Analytical and Bioanalytical Chemistry, 408: 4247-4256.

81.     Khoshnood, M., Naimi-Joubani, M., Chahkandi, B., and Ebrahimi, M. (2018). Determination of fluoxetine in hospital wastewater using solid-phase microextraction fiber coated with SWCNT. Avicenna Journal of Environmental Health Engineering5(2): 67-72.

82.     Ibrahim, W. N. W., Sanagi, M. M., Hanapi, N. S. M., Hadzir, N. M., Yahaya, N., and Kamaruzaman, S. (2020). Agarose-chitosan-intergrated multiwalled carbon nanotubes film solid phase microextraction combined with high performance liquid chromatography for the determination of tricyclic antidepressant drugs in aqueous samples. Malaysian Journal of Analytical Sciences, 24(1): 33-41.

83.     Aladaghlo, Z., Javanbakht, S., Fakhari, A. R., and Shaabani, A. (2021). Gelatin microsphere coated Fe3O4@graphene quantum dots nanoparticles as a novel magnetic sorbent for ultrasound-assisted dispersive magnetic solid-phase extraction of tricyclic antidepressants in biological samples. Microchimica Acta188: 1-9.

84.     Madani-Nejad, E., Shokrollahi, A., and Shahdost-Fard, F. (2024). Central composite design-assisted visual and non-invasive detection of sertraline by sweet lemon waste-derived core-shell AuNPs@ CDs. Analytica Chimica Acta, 1312: 342721.

85.     Enyoh, C. E., and Wang, Q. (2025). Box–Behnken design and machine learning optimization of PET fluorescent carbon quantum dots for removing fluoxetine and ciprofloxacin with molecular dynamics and docking studies as potential antidepressant and antibiotic. Separation and Purification Technology, 131975.

86.     Safari, M., Shahlaei, M., Yamini, Y., Shakorian, M., and Arkan, E. (2018). Magnetic framework composite as sorbent for magnetic solid phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of tricyclic antidepressants. Analytica Chimica Acta, 1034 : 204-213.

87.     Aghakhani, A., Ghanbari, A., Asl, A. H., and Khanlarkhani, A. (2021). Thin‐film solid‐phase microextraction of fluoxetine using a novel sorbent prepared by direct decoration of zeolitic imidazolate frameworks on the surface of polyacrylonitrile electrospun nanofibers. Separation Science Plus, 4(1): 36-44.

88.     Li, Z., Deng, B., Chen, J., Feng, R., Wang, S., Li, S., ... and Hua, L. (2025). One-pot synthesis of magnetic adsorbent with integrated pH regulation for convenient and rapid determination of antidepressant in biofluids. Microchemical Journal, 209: 112834.

89.     Moosavi, N. S., and Yamini, Y. (2023). Growth of bimetallic Ni-Co MOFs on a skeleton of electrospun PAN nanofibers and coating on a thin film for SPME of amitriptyline and nortriptyline in urine and plasma samples. Journal of Pharmaceutical and Biomedical Analysis, 236: 115755.

90.     Godage, N. H., and Gionfriddo, E. (2020). Use of natural sorbents as alternative and green extractive materials: A critical review. Analytica Chimica Acta, 1125: 187-200.

91.     Köse, K., Yalçın Kehribar, D., Goodarzi, V., and Uzun, L. (2024). Strategies for the detection, removal and elimination of antidepressants. International Journal of Environmental Analytical Chemistry, 104(2): 323-354.

92.     Darmenbayeva, A., Rajasekharan, R., Massalimova, B., Bektenov, N., Taubayeva, R., Bazarbaeva, K., ... and Ungarbayeva, A. (2024). Cellulose-based sorbents: A comprehensive review of current advances in water remediation and future prospects. Molecules, 29(24): 5969.

93.     Alves, C., Santos‐Neto, A. J., Fernandes, C., Rodrigues, J. C., and Lanças, F. M. (2007). Analysis of tricyclic antidepressant drugs in plasma by means of solid‐phase microextraction‐liquid chromatography‐mass spectrometry. Journal of Mass Spectrometry, 42(10): 1342-1347.

94.     Feizbakhsh, A., Sarrafi, A. H. M., and Ehteshami, S. (2016). Polythiophene‐chitosan magnetic nanocomposite as a highly efficient medium for isolation of fluoxetine from aqueous and biological samples. Journal of Analytical Methods in Chemistry, 2016(1): 2921706.

95.     Eltaweil, A. S., Abd El-Monaem, E. M., Elshishini, H. M., El-Aqapa, H. G., Hosny, M., Abdelfatah, A. M., ... and Omer, A. M. (2022). Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: a review. RSC Advances, 12(13): 8228-8248.

96.     Guzella, C. S., Souto, D. E., and Silva, B. J. (2022). Alginate-based hydrogel fiber as a restricted access material for microextraction of drugs in biological samples. Carbohydrate Polymers, 294: 119810.

97.     Fakhri, V., Jafari, A., Vahed, F. L., Su, C. H., and Pirouzfar, V. (2023). Polysaccharides as eco-friendly bio-adsorbents for wastewater remediation: Current state and future perspective. Journal of Water Process Engineering, 54: 103980.

98.     Wang, X., Huang, L., Zhang, C., Deng, Y., Xie, P., Liu, L., and Cheng, J. (2020). Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydrate Polymers, 240: 116292.

99.     Kepekci-Tekkeli, S. E., and Durmus, Z. (2019). Magnetic solid phase extraction applications combined with analytical methods for determination of drugs in different matrices review. Journal of the Chilean Chemical Society, 64(2): 4448-4458.

100.   Yousatit, S., Rungruangwattanachot, W., Yuwawanitchakorn, N., Nuntang, S., Punyapalakul, P., and Ngamcharussrivichai, C. (2023). Amine-functionalized natural rubber/mesostructured silica nanocomposites for adsorptive removal of clofibric acid in aqueous phase. Molecules, 28(5): 2330.

101.   Chaowamalee, S., Yan, N., and Ngamcharussrivichai, C. (2022). Propylsulfonic acid-functionalized mesostructured natural rubber/silica nanocomposites as promising hydrophobic solid catalysts for alkyl levulinate synthesis. Nanomaterials, 12(4): 604.

102.   Bekchanov, D., Mukhamediev, M., Yarmanov, S., Lieberzeit, P., and Mujahid, A. (2024). Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohydrate Polymers, 323: 121397.

103.   Bi, M., Qin, Q., Deng, B., and Chen, D. (2024). Natural fibers as sustainable and renewable materials for green sample preparation. TrAC Trends in Analytical Chemistry, 2024: 117894.

104.   Guzella, C. S., Souto, D. E., and Silva, B. J. (2022). Alginate-based hydrogel fiber as a restricted access material for microextraction of drugs in biological samples. Carbohydrate Polymers294: 119810.

105.   González-Bermúdez, M., López-Lorente, Á. I., Lucena, R., and Cárdenas, S. (2024). Sustainable beeswax modified cellulose paper for the determination of tricyclic antidepressants in biofluids. Talanta, 273: 125860.

106.   Ulusoy, H. I., Şahin, E., Polat, Ü., Ulusoy, S., Locatelli, M., and Kabir, A. (2024). Development a green analytical methodology for the sensitive determination of antidepressant drugs using fabric phase sorptive extraction as a simple sample pretreatment procedure. Microchemical Journal197, 109807.

107.   Jain, B., Jain, R., Kaur, S., Haque, S. M., Sharma, S., Ghoneim, M. M., and Al-Khateeb, L. A. (2024). Multi-drug extraction using octanol supported rotating cellulose paper disc (RPD) device from complex biological matrices: Fabrication and application in forensic case work. Sustainable Chemistry and Pharmacy, 41: 101724.

108.   Matin, P., Ayazi, Z., and Jamshidi-Ghaleh, K. (2022). Montmorillonite reinforced polystyrene nanocomposite supported on cellulose as a novel layered sorbent for microextraction by packed sorbent for determination of fluoxetine followed by spectrofluorimetry based on multivariate optimisation. International Journal of Environmental Analytical Chemistry, 102(17): 5150-5165.

109.   Tartaglia, A., Covone, S., Rosato, E., Bonelli, M., Savini, F., Furton, K. G., ... and Locatelli, M. (2022). Fabric phase sorptive extraction (FPSE) as an efficient sample preparation platform for the extraction of antidepressant drugs from biological fluids. Advances in Sample Preparation3: 100022.

110.   Gan, Y., Hua, L., Zheng, Y., Wang, B., and Chen, D. (2024). Natural kapok fiber as a green and efficient adsorbent for in-syringe solid-phase extraction in the determination of antidepressants in biofluids. Microchemical Journal201: 110638.

111.   Abniki, M., and Moghimi, A. (2024). Nanomagnetic chitosan/β-cyclodextrin for dispersive solid phase extraction of trace desipramine drug. Materials Chemistry and Physics, 316: 129117.

112.   Amin, A., and Moghimi, A. (2024). Preconcentration and measurement of trace Amitriptyline hydrochloride in water samples using magnetic nanoparticles with dispersive solid‐phase extraction. Micro & Nano Letters, 19(1):  e12184.

113.   Feizbakhsh, A., Sarrafi, A. H. M., and Ehteshami, S. (2016). Polythiophene‐chitosan magnetic nanocomposite as a highly efficient medium for isolation of fluoxetine from aqueous and biological samples. Journal of Analytical Methods in Chemistry, 2016(1): 2921706.

114.   Ayazi, Z., Saei, S. F., and Sarnaghi, S. P. (2023). A novel self-supportive thin film based on graphene oxide reinforced chitosan nano-biocomposite for thin film microextraction of fluoxetine in biological and environmental samples. Journal of Pharmaceutical and Biomedical Analysis, 236: 115678.

115.   Barati, A., Kazemi, E., Dadfarnia, S., and Shabani, A. M. H. (2017). Synthesis/ characterization of molecular imprinted polymer based on magnetic chitosan/graphene oxide for selective separation/preconcentration of fluoxetine from environmental and biological samples. Journal of Industrial and Engineering Chemistry, 46: 212-221.

116.   Chaves, A. R., Moura, B. H., Caris, J. A., Rabelo, D., and Queiroz, M. E. C. (2015). The development of a new disposable pipette extraction phase based on polyaniline composites for the determination of levels of antidepressants in plasma samples. Journal of Chromatography A, 1399: 1-7.

117.   Melo, L. P., Nogueira, A. M., Lanças, F. M., & Queiroz, M. E. C. (2009). Polydimethyl siloxane/polypyrrole stir bar sorptive extraction and liquid chromatography (SBSE/LC-UV) analysis of antidepressants in plasma samples. Analytica Chimica Acta633(1): 57-64.

118.   Xu, R., and Lee, H. K. (2014). Application of electro-enhanced solid phase microextraction combined with gas chromatography–mass spectrometry for the determination of tricyclic antidepressants in environmental water samples. Journal of Chromatography A, 1350: 15-22.

119.   Lamas, J. P., Salgado-Petinal, C., García-Jares, C., Llompart, M., Cela, R., and Gómez, M. (2004). Solid-phase microextraction–gas chromatography–mass spectrometry for the analysis of selective serotonin reuptake inhibitors in environmental water. Journal of Chromatography A, 1046(1-2): 241-247.

120.   Tarley, C. R. T., Gorla, F. A., de Oliveira, F. M., Nascentes, C. C., do Prado Ferreira, M., da Costa, M. F., and Segatelli, M. G. (2022). Investigation of the performance of cross-linked poly (acrylic acid) and poly (methacrylic acid) as efficient adsorbents in SPE columns for simultaneous preconcentration of tricyclic antidepressants in water samples. Analytical Methods, 14(48): 5100-5109.

121.   Asgharinezhad, A. A., Karami, S., Ebrahimzadeh, H., Shekari, N., and Jalilian, N. (2015). Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids. International journal of pharmaceutics, 494(1): 102-112.

122.   Bagheri, H., Banihashemi, S., and Zandian, F. K. (2016). Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrroleMicrochimica Acta, 183: 195-202.

123.   Barati, E., and Alizadeh, N. (2020). Simultaneous determination of sertraline, imipramine and alprazolam in human plasma samples using headspace solid phase microextraction based on a nanostructured polypyrrole fiber coupled to ion mobility spectrometry. Analytical Methods, 12(7): 930-937.

124.   Silva, B. J. G., Lanças, F. M., and Queiroz, M. E. C. (2009). Determination of fluoxetine and norfluoxetine enantiomers in human plasma by polypyrrole-coated capillary in-tube solid-phase microextraction coupled with liquid chromatography-fluorescence detection. Journal of Chromatography A, 1216(49): 8590-8597.

125.   Jafari, M., Sedghi, R., and Ebrahimzadeh, H. (2016). A platinum wire coated with a composite consisting of poly pyrrole and poly (ɛ-caprolactone) for solid phase microextraction of the antidepressant imipramine prior to its determination via ion mobility spectrometry. Microchimica Acta183: 805-812.

126.   Bozyiğit, G. D., Zaman, B. T., Özdemir, O. K., Kılınç, Y., Chormey, D. S., Bakırdere, S., and Engin, G. O. (2024). Removal of two antidepressant active pharmaceutical ingredients from hospital wastewater by polystyrene-coated magnetite nanoparticles–assisted batch adsorption process. Environmental Monitoring and Assessment, 196(1): 77.

127.   Bozyiğit, G. D., Zaman, B. T., Özdemir, O. K., Kılınç, Y., Chormey, D. S., Engin, G. O., and Bakırdere, S. (2022). Polystyrene‐coated magnetite nanoparticles based dispersive micro‐solid phase extraction of active pharmaceutical ingredients of antidepressant drugs and determination by GC‐MS. ChemistrySelect, 7(10), e202104435.

128.   Stelmaszczyk, P., Białkowska, K., and Wietecha-Posłuszny, R. (2024). Paper supported polystyrene membranes for micro-solid phase extraction of date-rape drugs from urine: a sustainable analytical approach. Analytica chimica acta, 1316: 342874.

129.   Caris, J. A., Chaves, A. R., and Queiroz, M. E. C. (2012). Evaluation of solid-phase microextraction using a polythiophene film and liquid chromatography with spectrophotometric detection for the determination of antidepressants in plasma samples. Journal of the Brazilian Chemical Society, 23: 57-64.

130.   Hosseini, F. S., Kharazmi, F., Davarani, S. S. H., and Ebrahimzadeh, H. (2023). Development of electrospun nanofibers based on Poly (vinyl alcohol) for thin film solid-phase microextraction of antidepressant drugs in biological samples. Journal of Chromatography A, 1697: 463984.

131.   Ponce-Rodríguez, H. D., Verdú-Andrés, J., Herráez-Hernández, R., and Campíns-Falcó, P. (2020). Innovations in extractive phases for in-tube solid-phase microextraction coupled to miniaturized liquid chromatography: A critical review. Molecules25(10): 2460.

132.   García-Atienza, P., Martínez-Pérez-Cejuela, H., Herrero-Martínez, J. M., and Armenta, S. (2024). Current trends in the sorbent-based extraction of illegal drugs from biofluids: Solid sorbents and configurations. TrAC Trends in Analytical Chemistry, 2024: 117599.

133.   Gkika, D. A., Tolkou, A. K., Lambropoulou, D. A., Bikiaris, D. N., Kokkinos, P., Kalavrouziotis, I. K., and Kyzas, G. Z. (2024). Application of molecularly imprinted polymers (MIPs) as environmental separation tools. RSC Applied Polymers2(2): 127-148.

134.   Nestora, S. (2017). Molecularly imprinted polymers as selective sorbents for recognition in complex aqueous samples (Doctoral dissertation, Université de Technologie de Compiègne).

135.   Alkahtani, M. E., Aodah, A. H., Abu Asab, O. A., Basit, A. W., Orlu, M., and Tawfik, E. A. (2021). Fabrication and characterization of fast-dissolving films containing escitalopram /quetiapine for the treatment of major depressive disorder.Pharmaceutics, 13(6): 891.

136.   Yan, X., Zhan, Y., Zhong, D., Li, Y., and Wu, D. (2018). Electrospun nanofiber cloud for ultrafast solid phase micro-extraction of trace organics in water samples. Journal of Chromatography A, 1574: 42-49.

137.   Ahamad Said, M. N., Hasbullah, N. A., Rosdi, M. R. H., Musa, M. S., Rusli, A., Ariffin, A., and Shafiq, M. D. (2022). Polymerization and applications of poly (methyl methacrylate)–graphene oxide nanocomposites: a review. ACS omega7(51): 47490-47503.

138.   Gao, Y., Zhang, J., Liang, J., Yuan, D., and Zhao, W. (2022). Research progress of poly (methyl methacrylate) microspheres: preparation, functionalization and application. European Polymer Journal, 175: 111379.

139.   Jiménez-Holgado, C., Chrimatopoulos, C., Stathopoulos, V., and Sakkas, V. (2020). Investigating the utility of fabric phase sorptive extraction and HPLC-UV-Vis/DAD to determine antidepressant drugs in environmental aqueous samples. Separations7(3): 39.

140.   Spietelun, A., Pilarczyk, M., Kloskowski, A., and Namieśnik, J. (2011). Polyethylene glycol-coated solid-phase microextraction fibres for the extraction of polar analytes-A review. Talanta87: 1-7.

141.   Jian, N. G., Liang, S. H., Cao, J. K., Di, Q. N., Kang, K., and Xu, Q. (2019). A nanofiber mat prepared from sulfonated polyaniline for solid-phase extraction of fluoroquinolones from water and biological fluids prior to their quantitation by UPLC-MS/MS. Microchimica Acta186(12): 857.

142.   Nezhadali, A., Ahmadi Bonakdar, G., and Nakhaei, H. (2012). Electrosynthesis of polypyrrole on steel fiber for solid-phase microextraction of citalopram in serum. Analytical and Bioanalytical Chemistry, 403(2): 593-600.

143.   Ntorkou, M., and Zacharis, C. K. (2025). Sorbent-based microextraction combined with GC-MS: A valuable tool in bioanalysis. Chemosensors, 13(2): 71.

144.   Oliveira, M. N., Gonçalves, O. C., Ahmad, S. M., Schneider, J. K., Krause, L. C., Neng, N. R., ... and Nogueira, J. M. (2021). Application of bar adsorptive microextraction for the determination of levels of tricyclic antidepressants in urine samples. Molecules26(11): 3101.

145.   Liu, H., and Qiu, H. (2020). Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: A review. Chemical Engineering Journal, 393: 124691.

146.   Jiang, Q., Zhang, S., and Sun, M. (2023). Recent advances on graphene and graphene oxide as extraction materials in solid-phase (micro) extraction. TrAC Trends in Analytical Chemistry, 168: 17283.

147.   Li, W. K., and Shi, Y. P. (2019). Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. TrAc Trends in Analytical Chemistry, 118: 652-665.

148.   Liu, J., Li, R., and Yang, B. (2020). Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Central Science, 6(12): 2179-2195.

149.   Owczarzy, A., Kulig, K., Piordas, K., Piśla, P., Sarkowicz, P., Rogóż, W., and Maciążek-Jurczyk, M. (2024). Solid-phase micro extraction–a future technique in pharmacology and coating trends. Analytical Methods, 16(20): 3164-3178.

150.   Gilart, N., Borrull, F., Fontanals, N., and Marcé, R. M. (2014). Selective materials for solid-phase extraction in environmental analysis. Trends in environmental analytical chemistry, 1: e8-e18.

151.   Al-Aqbi, Z. T., Yap, Y. C., Li, F., and Breadmore, M. C. (2019). Integrated microfluidic devices fabricated in poly (methylmethacrylate) (PMMA) for on-site therapeutic drug monitoring of aminoglycosides in whole blood. Biosensors, 9(1): 19.

152.   Samadi, A., Xie, M., Li, J., Shon, H., Zheng, C., and Zhao, S. (2021). Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chemical Engineering Journal, 418: 129425.

153.   Beygisangchin, M., Baghdadi, A. H., Kamarudin, S. K., Rashid, S. A., Jakmunee, J., and Shaari, N. (2024). Recent progress in polyaniline and its composites; Synthesis, properties, and applications. European Polymer Journal, 210: 112948.

154.   Verma, R., and Joshi, G. (2024). Xanthium Strumarium based activated carbon as low cost bioadsorbent for efficient removal of antidepressant drug Imipramine. In IOP Conference Series: Earth and Environmental Science, 1382: p. 012009.

155.   Akpomie, K. G., and Conradie, J. (2021). Isotherm, kinetic, thermodynamics and reusability data on the adsorption of antidepressant onto silver nanoparticle-loaded biowaste. Data in Brief, 39: 107575.

156.   Zhang, J., Liu, D., Meng, X., Shi, Y., Wang, R., Xiao, D., and He, H. (2017). Solid phase extraction based on porous magnetic graphene oxide/β-cyclodextrine composite coupled with high performance liquid chromatography for determination of antiepileptic drugs in plasma samples. Journal of Chromatography A, 1524: 49-56.

157.   Liu, X., Cheng, L., Han, Y., Wang, M., and Yan, H. (2025). Development of a novel second-generation polyester dendritic functionalized graphene oxide for efficient pipette tip micro solid-phase extraction and detection of venlafaxine and desvenlafaxine in urine. Journal of Chromatography A, 1740: 465582.

158.   Silva, A., Stawiński, W., Romacho, J., Santos, L. H., Figueiredo, S. A., Freitas, O. M., and Delerue-Matos, C. (2019). Adsorption of fluoxetine and venlafaxine onto the marine seaweed Bifurcaria bifurcata. Environmental Engineering Science, 36(5): 573-582.

159.   Fan, L., Yu, Z., Wei, X., Dong, Z., and An, J. (2022). Polystyrene electrospun nanofibers as effective sorbents for the removal of atypical antipsychotics: Kinetic and thermodynamic studies. Arabian Journal of Chemistry, 15(11): 104222.

160.   Khulu, S., Ncube, S., Kgame, T., Mavhunga, E., and Chimuka, L. (2022). Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples. Polymer Bulletin79(2):rko 1287-1307.