Malays. J. Anal. Sci.
Volume 29 Number 4 (2025): 1535
Review
Article
Sorbent based extraction for pre-concentration of
antidepressant drugs: A review
Khirtana Raveendran1, ‘Aina Dayana Mohd Roslan1,
Hedy Ng Siew Mei1, Nurul Syamimi Ahmad
Sidi1, Saw Hong Loh1, and Wan Mohd Afiq Wan Mohd Khalik1,2*
1Faculty of Science and
Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
2Water Analysis Research
Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor, Malaysia
*Correspondence:
wan.afiq@umt.edu.my
Received: 15 February 2025;
Revised: 5 June 2025; Accepted: 18 June 2025; Published: 22 August 2025
Abstract
The detection and quantification of
antidepressant drugs in biological and environmental samples are crucial for
therapeutic drug monitoring, forensic analysis, and environmental safety.
Sorbent-based extraction techniques have emerged as effective methods for the
pre-concentration of these drugs, offering advantages such as high sensitivity,
minimal solvent consumption, and improved selectivity. Over the decade (2015 to
2025), 92 publications have documented progress in the development and
application of sorbent materials for the detection and quantification of
antidepressants in various environmental and biological matrices. This review
provides a comprehensive overview of various sorbent materials, including
carbon-based, polymeric, and magnetic sorbents, emphasizing their extraction
mechanisms, efficiency, and compatibility with different analytical techniques.
Additionally, the integration of novel nanomaterials and functionalized
sorbents has significantly enhanced extraction performance, enabling better
analyte recovery and lower detection limits. The article also discusses recent
advancements, optimization strategies, and the potential of sorbent-based
techniques in pharmaceutical and environmental applications. Finally, current
challenges, including sorbent stability, reusability, and matrix effects, are
examined, along with future perspectives to further improve the efficiency and
sustainability of these extraction methods.
Keywords: emerging
contaminant, functionalise materials, microextraction, psychoactive drugs, solid-phase
extraction
References
1.
Melchor-Martínez,
E. M., Jiménez-Rodríguez, M. G., Martínez-Ruiz, M., Peña-Benavides, S. A.,
Iqbal, H. M., Parra-Saldívar, R., and Sosa-Hernández, J. E. (2021).
Antidepressants surveillance in wastewater: overview extraction and
detection. Case Studies in Chemical and Environmental Engineering, 3:
100074.
2.
Soares,
S., Rosado, T., Barroso, M., and Gallardo, E. (2023). Solid phase-based
microextraction techniques in therapeutic drug monitoring. Pharmaceutics, 15(4):
1055.
3.
Arghavani-Beydokhti,
S., Rajabi, M., Asghari, A., and Hosseini-Bandegharaei, A. (2023). Highly
efficient preconcentration of anti-depressant drugs in biological matrices by
conducting supramolecular solvent-based microextraction after dispersive micro
solid phase extraction technique. Microchemical Journal, 190:
108703.
4.
Silva,
B. J. G., Lanças, F. M., and Queiroz, M. E. C. (2008). In-tube solid-phase
microextraction coupled to liquid chromatography (in-tube SPME/LC) analysis of
nontricyclic antidepressants in human plasma. Journal of Chromatography
B, 862(1-2): 181-188.
5.
Kumar,
S., Darshan, S., and Baggi, T. R. (2023). Recent advances in analytical
techniques for antidepressants determination in complex biological matrices: a
review. International Journal of Toxicology, 42(4): 352-364.
6.
Soares,
S., Barroso, M., and Gallardo, E. (2021). A review of current bioanalytical
approaches in sample pretreatment techniques for the determination of
antidepressants in biological specimens. Reviews in Analytical
Chemistry, 40(1): 12-32.
7.
Pietracci, E., Bermejo, A. M., Álvarez, I., Cabarcos, P.,
Balduini, W., and Tabernero, M. J. (2013). Simultaneous determination of
new-generation antidepressants in plasma by gas chromatography–mass
spectrometry. Forensic Toxicology, 31: 124-132.
8.
Zheng,
M. M., Wang, S. T., Hu, W. K., and Feng, Y. Q. (2010). In-tube solid-phase
microextraction based on hybrid silica monolith coupled to liquid
chromatography–mass spectrometry for automated analysis of ten antidepressants
in human urine and plasma. Journal of Chromatography A, 1217(48):
7493-7501.
9.
Roszkowska, A., Plenis, A., Kowalski, P., Bączek, T.,
and Olędzka, I. (2022). Recent advancements in techniques for analyzing
modern, atypical antidepressants in complex biological matrices and their
application in biomedical studies. TrAC Trends in Analytical Chemistry, 152:
116609.
10.
Mahdavijalal, M., Petio, C., Staffilano, G., Mandrioli, R.,
and Protti, M. (2024). Innovative solid-phase extraction strategies for
improving the advanced chromatographic determination of drugs in challenging
biological samples. Molecules, 29(10): 2278.
11.
Moghadam,
A. G., Rajabi, M., and Asghari, A. (2018). Efficient and relatively safe
emulsification microextraction using a deep eutectic solvent for influential
enrichment of trace main anti-depressant drugs from complicated samples. Journal
of Chromato-graphy B, 1072: 50-59.
12.
Sarıkaya,
M., Ulusoy, H. I., Morgul, U., Ulusoy, S., Tartaglia, A., Yılmaz, E., ...
and Kabir, A. (2021). Sensitive determination of fluoxetine and citalopram
antidepressants in urine and wastewater samples by liquid chromatography
coupled with photodiode array detector. Journal of Chromatography A,
1648: 462215.
13.
Chaves, A. R., Leandro, F. Z., Carris, J. A., and Queiroz, M.
E. C. (2010). Microextraction in packed sorbent for analysis of antidepressants
in human plasma by liquid chromatography and spectrophotometric
detection. Journal of Chromatography B, 878(23): 2123-2129.
14.
Halvorsen, T. G., Pedersen-Bjergaard, S., and Rasmussen, K.
E. (2001). Liquid-phase microextraction and capillary electrophoresis of
citalopram, an antidepressant drug. Journal of Chromatography A, 909(1):
87-93.
15.
Ghaedi, H., Afkhami, A.,
Madrakian, T., and Soltani-Felehgari,
F. (2016). Construction of novel sensitive electrochemical sensor for
electro-oxidation and determination of citalopram based on zinc oxide
nanoparticles and multi-walled carbon nanotubes. Materials Science and
Engineering: C, 59: 847-854.
16.
Snow, N. H. (2000). Solid-phase micro-extraction of drugs
from biological matrices. Journal of Chromatography A, 885(1-2):
445-455.
17.
Wille, S. M., Cooreman, S. G., Neels, H. M., and Lambert, W.
E. (2008). Relevant issues in the monitoring and the toxicology of
antidepressants. Critical Reviews in Clinical Laboratory Sciences, 45(1):
25-89.
18.
Cardoso, A. T., Martins, R. O., and Lanças, F. M. (2024).
Advances and applications of hybrid graphene-based materials as sorbents for
solid phase microextraction techniques. Molecules, 29(15), 3661.
19.
García-Atienza,
P., Martínez-Pérez-Cejuela, H., Herrero-Martínez, J. M., and Armenta, S.
(2024). Current trends in the sorbent-based extraction of illegal
drugs from biofluids: Solid sorbents and configurations. TrAC Trends in
Analytical Chemistry, 2024: 17599.
20.
Şentürk, Z., Saka, C., and Teğin, İ. (2011).
Analytical methods for determination of selective serotonin reuptake inhibitor
antidepressants. Reviews in Analytical Chemistry, 30(2):
87-122.
21.
Shetty, S. R., Rathore, S. S., and Leno Jenita, J. (2024).
Analytical methods for tetracyclic antidepressants: A comprehensive review. Separation
Science Plus, 7(10): e202400157.
22.
Alves,
C., Santos‐Neto, A. J., Fernandes, C., Rodrigues, J. C., and Lanças, F.
M. (2007). Analysis of tricyclic antidepressant drugs in plasma by means
of solid‐phase microextraction‐liquid chromatography‐mass
spectrometry. Journal of Mass Spectrometry, 42(10): 1342-1347.
23.
Xu,
R., and Lee, H. K. (2014). Application of electro-enhanced solid phase
microextraction combined with gas chromatography–mass spectrometry for the
determination of tricyclic antidepressants in environmental water
samples. Journal of Chromatography A, 1350: 15-22.
24.
Santos,
M. G., Tavares, I. M. C., Barbosa, A. F., Bettini, J., and Figueiredo, E. C.
(2017). Analysis of tricyclic antidepressants in human plasma using
online-restricted access molecularly imprinted solid phase extraction followed
by direct mass spectrometry identification /quantification. Talanta, 163: 8-16.
25.
Saito,
Y., Kawazoe, M., Hayashida, M., and Jinno, K. (2000).
Direct coupling of microcolumn liquid chromatography with in-tube solid-phase
microextraction for the analysis of antidepressant drugs. Analyst, 125(5) :
807-809.
26.
Yuan,
J., Huang, W., Tong, W., Chen, Z., Li, H., Chen, J., and Lin, Z. (2023).
In-situ growth of covalent organic framework on stainless steel needles as
solid-phase microextraction probe coupled with electrospray ionization mass
spectrometry for rapid and sensitive determination of tricyclic antidepressants
in biosamples. Journal of Chromatography A, 1695:
463955.
27.
Saka,
C. (2017). An overview of analytical methods for the determination of monoamine
oxidase inhibitors in pharmaceutical formulations and biological fluids. Critical
Reviews in Analytical Chemistry, 47(1), 1-23.
28.
Unceta, N., Gómez-Caballero, A., Sánchez, A., Millán, S.,
Sampedro, M. C., Goicolea, M. A., ... and Barrio, R. J. (2008). Simultaneous
determination of citalopram, fluoxetine and their main metabolites in human
urine samples by solid-phase microextraction coupled with high-performance
liquid chromatography. Journal of Pharmaceutical and Biomedical
Analysis, 46(4): 763-770.
29.
Catai, A. P. F., Picheli,
F. P., Carrilho, E., and Queiroz, M. E. C. (2013). Assessing stir bar sorptive extraction and microextraction by packed sorbent
for determination of selective serotonin reuptake inhibitor antidepressants in
plasma sample by non-aqueous capillary electrophoresis. Journal of the
Brazilian Chemical Society, 24: 1635-1641.
30.
Samanidou, V., and Kourti, P. (2009). Modern bioanalytical
methods for the rapid detection of antidepressants: SNRIs and SSRIs in human
biological samples. Bioanalysis, 1(2): 451-488.
31.
Ahmadi,
M., Elmongy, H., Madrakian,
T., and Abdel-Rehim, M. (2017). Nanomaterials as
sorbents for sample preparation in bioanalysis: A review. Analytica Chimica Acta, 958, 1-21.
32.
Almeida-Naranjo,
C. E., Guerrero, V. H., and Villamar-Ayala, C. A. (2023). Emerging contaminants
and their removal from aqueous media using conventional/non-conventional
adsorbents: a glance at the relationship between materials, processes, and
technologies Water, 15(8): 1626.
33.
Barreto, F. C., Mounienguet, N. K., Ito, E. Y., He, Q., and
Cesarino, I. (2024). Coffee biomass-based carbon material for the
electrochemical determination of antidepressant in synthetic urine. Chemosensors, 12(10).
34.
Jha,
M. K., Joshi, S., Sharma, R. K., Kim, A. A., Pant, B., Park, M., and Pant, H.
R. (2021). Surface modified activated carbons: Sustainable bio-based materials
for environmental remediation. Nanomaterials, 11(11): 3140.
35.
Mahgoub,
S. M., Essam, D., Eldin, Z. E., Moaty, S. A.,
Shehata, M. R., Farghali, A., ... and Mahmoud, R.
(2024). Carbon supported ternary layered double hydroxide nanocomposite for
Fluoxetine removal and subsequent utilization of spent adsorbent as
antidepressant. Scientific Reports, 14(1): 3990.
36.
Maršálek, R., and Švidrnoch, M. (2020). The adsorption of amitriptyline and
nortriptyline on activated carbon, diosmectite and
titanium dioxide. Environmental Challenges, 1: 100005.
37.
Soares,
S., Rosado, T., Barroso, M., and Gallardo, E. (2024). Quantification of
antidepressants in oral fluid and plasma samples using microextraction by
packed sorbent and analysis by gas chromatography-tandem mass
spectrometry. Microchemical Journal, 2024: 111031.
38.
D’Ovidio,
C., Bonelli, M., Rosato, E., Tartaglia, A., Ulusoy, H. İ., Samanidou, V., ... and de Grazia, U. (2022). Novel
applications of microextraction techniques focused on biological and forensic
analyses. Separations, 9(1): 18.
39.
Yahyazadeh, F., Ghazanfari, D., Ahmadi, S. A., and Akhgar, M.
R. (2024). Adsorption of Nefazodone on single-wall carbon nanotube as an
antidepressant drug delivery: A DFT study. Carbon Trends, 16:100394.
40.
Janas,
D. (2020). From bio to nano: A review of sustainable methods of synthesis of
carbon nanotubes. Sustainability, 12(10): 4115.
41.
Herrera-Herrera,
A., Hernández-Borges, J., Asensio-Ramos, M., Àngel Rodríguez-Delgado, M., and Fanali, S. (2013). Carbon nanotubes: applications in
chromatography and sample preparation. LCGC International, 31(10):
882-892.
42.
Fresco-Cala, B., Mompó-Roselló, Ó., Simó-Alfonso, E. F.,
Cárdenas, S., and Herrero-Martínez, J. M. (2018). Carbon nanotube-modified
monolithic polymethacrylate pipette tips for (micro) solid-phase extraction of
antidepressants from urine samples. Microchimica Acta, 185(2): 127.
43.
Gao,
G., Pan, M., and Vecitis, C. D. (2015). Effect of the
oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance. Journal of
Materials Chemistry A, 3(14): 7575-7582.
44.
Duarte, E. H., dos
Santos, W. P., Hudari, F. F., Neto, J. L. B.,
Sartori, E. R., Dall, L. H., ... and Tarley, C. R. T. (2014). A highly
improved method for sensitive determination of amitriptyline in pharmaceutical
formulations using an unmodified carbon nanotube electrode in the presence of
sulfuric acid. Talanta, 127: 26-32.
45.
Hamidi, F., Hadjmohammadi, M. R., and Aghaie, A. B. (2017).
Ultrasound-assisted dispersive magnetic solid phase extraction based on
amino-functionalized Fe3O4 adsorbent for recovery of
clomipramine from human plasma and its determination by high performance liquid
chromatography: Optimization by experimental design. Journal of
Chromatography B, 1063: 18-24.
46.
Ajiboye, T. O., Oladoye, P. O., and Omotola, E. O. (2024).
Adsorptive reclamation of pharmaceuticals from wastewater using carbon-based
materials: A review. Kuwait Journal of Science, 2024: 100225.
47.
Nie, W., Li, Y.,
Chen, L., Zhao, Z., Zuo, X., Wang, D., ... and Feng, X.
(2020). Interaction between multi-walled carbon nanotubes and
propranolol. Scientific Reports, 10(1): 10259.
48.
Jung, C., Son, A., Her, N., Zoh, K. D., Cho, J., and Yoon, Y.
(2015). Removal of endocrine disrupting compounds, pharmaceuticals, and
personal care products in water using carbon nanotubes: A review. Journal
of Industrial and Engineering Chemistry, 27: 1-11.
49.
Han, Y., Zhang, X., Yu, X., Zhao, J., Li, S., Liu, F., ...
and Li, Q. (2015). Bio-inspired aggregation control of carbon nanotubes for
ultra-strong composites. Scientific Reports, 5(1): 11533.
50.
Abbas,
Q., Shinde, P. A., Abdelkareem, M. A., Alami, A. H., Mirzaeian,
M., Yadav, A., and Olabi, A. G. (2022). Graphene
synthesis techniques and environmental applications. Materials, 15(21):
7804.
51.
Sahu, P. S., Verma, R. P., Tewari, C., Sahoo, N. G., and
Saha, B. (2023). Facile fabrication and application of highly efficient reduced
graphene oxide (rGO)-wrapped 3D foam for the removal of organic and inorganic
water pollutants. Environmental Science and Pollution Research, 30(40):
93054-93069.
52.
Al‐Bermany, E., and Chen, B. (2023). Effect of the functional
groups of polymers on their adsorption behavior on
graphene oxide nanosheets. Macromolecular Chemistry and Physics, 224(16):
2300101.
53.
Borsatto, J. V., and Lanças, F. M. (2023). Recent trends in graphene-based
sorbents for LC analysis of food and environmental water samples. Molecules, 28(13):
5134.
54.
Cardoso,
A. T., Martins, R. O., and Lanças, F. M. (2024).
Advances and applications of hybrid graphene-based materials as sorbents for
solid phase microextraction techniques. Molecules, 29(15): 3661.
55.
Lanças,
F. M., Medina, D. A. V., Pereira Dos Santos, N. G., and Sinisterra, M. J.
(2021). Graphene-based sorbents for modern magnetic solid-phase
extraction techniques. Analytical applications of functionalized magnetic
nanoparticles. Royal Society of Chemistry: pp. 606.
56.
Fahimirad, B., Rajabi, M.,
and Elhampour, A. (2019). A rapid and simple
extraction of anti-depressant drugs by effervescent salt-assisted dispersive
magnetic micro solid-phase extraction method using new adsorbent Fe3O4@SiO2@
N3. Analytica Chimica Acta, 1047:
275-284.
57.
Rajabi,
A. A., Yamini, Y., Faraji, M., and Seidi, S. (2013). Solid-phase
microextraction based on cetyltrimethylammonium bromide-coated magnetic
nanoparticles for determination of antidepressants from biological fluids. Medicinal
Chemistry Research, 22: 1570-1577.
58.
Cui, L., Ren, X.,
Sun, M., Liu, H., and Xia, L. (2021). Carbon dots: Synthesis, properties and
applications. Nanomaterials, 11(12): 3419.
59.
Fawaz,
W., Hasian, J., and Alghoraibi,
I. (2023). Synthesis and physicochemical characterization of carbon quantum
dots produced from folic acid. Scientific Reports, 13(1): 18641.
60.
Wang,
X., Zhang, R., Ma, X., Xu, Z., Ma, M., Zhang, T., ... and Shi, F. (2024). Carbon dots@ noble metal nanoparticle
composites: research progress report. Analyst, 149(3): 665-688.
61.
Pérez-Mayoral,
E., Matos, I., Bernardo, M., and Fonseca, I. M. (2019). New and advanced porous
carbon materials in fine chemical synthesis. Emerging precursors of porous
carbons. Catalysts, 9(2): 133.
62.
Manousi, N., and Zacharis, C. K. (2025). Metal-organic
framework-based microextraction. In Green Analytical Methods and
Miniaturized Sample Preparation techniques for Forensic Drug Analysis (pp.
229-253). Elsevier.
63.
Cai,
L. F., Zhan, J. M., Liang, J., Yang, L., and Yin, J. (2022). Structural control
of a novel hierarchical porous carbon material and its adsorption properties. Scientific
Reports, 12(1): 3118.
64.
Liu,
Z., Yang, Q., Cao, L., Li, S., Zeng, X., Zhou, W., and Zhang, C. (2023).
Synthesis and application of porous carbon nanomaterials from pomelo peels: a
review. Molecules, 28(11): 4429.
65.
Ni, M., Zhou, L.,
Liu, Y., and Ni, R. (2023). Advances in the synthesis and applications of porous
carbon materials. Frontiers in Chemistry, 11: 1205280.
66.
Murtada, K., de Andrés, F., Ríos, A., and Zougagh, M. (2018).
Determination of antidepressants in human urine extracted by magnetic
multiwalled carbon nanotube poly (styrene‐co‐divinylbenzene)
composites and separation by capillary electrophoresis. Electrophoresis, 39(14):
1808-1815.
67.
Bitas, D., and Samanidou, V. (2018). Carbon nanotubes as
sorbent materials for the extraction of pharmaceutical products followed by
chromatographic analysis. In Fullerens, Graphenes and Nanotubes (pp.
135-168). William Andrew Publishing.
68.
Ng, S. M. H., Raveendran, K., Azman, W. N. A. S. W., Loh, S.
H., Ariffin, M. M., and Khalik, W. M. A. W. M. (2025). Carbonaceous
materials-based aloe vera leaf waste as magnetic adsorbents for
pre-concentration selective serotonin reuptake inhibitor antidepressant drugs
from aqueous solutions. Green Analytical Chemistry, 12: 100192.
69.
Wang, B., Chen, Y., Li, W., Liu, Y., Xia, X., Xu, X., ... and
Chen, D. (2024). Magnetic phytic acid-modified kapok fiber biochar as a novel
sorbent for magnetic solid-phase extraction of antidepressants in
biofluids. Analytica Chimica Acta, 1296: 342295.
70.
Calisto,
V., Ferreira, C. I., Santos, S. M., Gil, M. V., Otero, M., and Esteves, V. I.
(2014). Production of adsorbents by pyrolysis of paper mill sludge and
application on the removal of citalopram from water. Bioresource
Technology, 166: 335-344.
71.
Fahmy,
L. M., Mohamed, D., Nebsen, M., and Nadim, A. H.
(2024). Eco-friendly tea waste magnetite nanoparticles for enhanced adsorptive
removal of norfloxacin and paroxetine from water. Microchemical Journal, 206: 111619.
72.
Abedi, H., Ebrahimzadeh, H., and Ghasemi, J. B. (2015). Solid
phase headspace microextraction of tricyclic antidepressants using a directly
prepared nanocomposite consisting of graphene, CTAB and polyaniline. Microchimica
Acta, 182: 633-641.
73.
Lioupi, A., Kabir, A.,
Furton, K. G., and Samanidou, V. (2019). Fabric phase
sorptive extraction for the isolation of five common
antidepressants from human urine prior to HPLC-DAD analysis. Journal of
Chromato graphy B, 1118:
171-179.
74.
Koltsakidou, A., Maroulas, K. N., Evgenidou, E., Bikiaris, D.
N., Kyzas, G. Z., and Lambropoulou, D. A. (2025). Removal of the
antidepressants bupropion and sertraline from aqueous solutions by using
graphene oxide: A complete adsorption/desorption evaluation for
single-component and binary mixtures. Journal of Molecular Liquids,
2025: 127147.
75.
Farajzadeh, M. A., Barazandeh, S., Pezhhanfar, S., and
Mogaddam, M. R. A. (2023). Facile preparation of
graphene-modified magnetic nanoparticles and their application in the analysis
of four anti-depressant drugs in plasma and urine. ImmunoAnalysis, 3(1):
4-4.
76.
Nunes,
F. B., da Silva Bruckmann, F., Viana, A. R., da Rosa Salles, T., Zancanaro, L. V., Rhoden, D. S. B., ... and Rhoden, C. R.
B. (2024). Removal of selective serotonin reuptake inhibitor using magnetic
graphene oxide derivatives: Adsorption study in low drug concentration using
HPLC quantification, in vitro safety, and phytotoxicity. Journal of
Environmental Chemical Engineering, 12(2): 112336.
77.
Zamani,
R., and Yamini, Y. (2023). On-chip electromembrane
surrounded solid phase microextraction for determination of tricyclic
antidepressants from biological fluids using poly (3, 4-ethylenedioxythiophene)
graphene oxide nanocomposite as a fiber coating. Biosensors, 13(1):
139.
78.
Bigdelifam, D., Mirzaei, M.,
Hashemi, M., Amoli-Diva, M., Rahmani, O., Zohrabi, P., ... and Turkjokar, M. (2014). Sensitive spectrophotometric
determination of fluoxetine from urine samples using charge transfer complex
formation after solid phase extraction by magnetic multiwalled carbon
nanotubes. Analytical Methods, 6(21): 8633-8639.
79.
Ghorbani,
M., Esmaelnia, M., Aghamohammadhasan,
M., Akhlaghi, H., Seyedin, O., and Azari, Z. A.
(2019). Preconcentration and determination of fluoxetine and norfluoxetine in
biological and water samples with β-cyclodextrin multi-walled carbon
nanotubes as a suitable hollow fiber solid phase
microextraction sorbent and high performance liquid
chromatography. Journal of Analytical Chemistry, 74: 540-549.
80.
Ghorbani,
M., Chamsaz, M., and Rounaghi,
G. H. (2016). Glycine functionalized multiwall carbon nanotubes as a novel
hollow fiber solid-phase microextraction sorbent for
pre-concentration of venlafaxine and o-desmethylvenlafaxine
in biological and water samples prior to determination by high-performance
liquid chromatography. Analytical and Bioanalytical Chemistry, 408:
4247-4256.
81.
Khoshnood, M., Naimi-Joubani, M., Chahkandi, B., and
Ebrahimi, M. (2018). Determination of fluoxetine in hospital wastewater using
solid-phase microextraction fiber coated with SWCNT. Avicenna Journal
of Environmental Health Engineering, 5(2): 67-72.
82.
Ibrahim,
W. N. W., Sanagi, M. M., Hanapi,
N. S. M., Hadzir, N. M., Yahaya, N., and Kamaruzaman,
S. (2020). Agarose-chitosan-intergrated multiwalled
carbon nanotubes film solid phase microextraction combined with high
performance liquid chromatography for the determination of tricyclic
antidepressant drugs in aqueous samples. Malaysian Journal of
Analytical Sciences, 24(1): 33-41.
83.
Aladaghlo, Z., Javanbakht, S., Fakhari, A. R., and Shaabani, A. (2021). Gelatin microsphere coated Fe3O4@graphene
quantum dots nanoparticles as a novel magnetic sorbent for ultrasound-assisted
dispersive magnetic solid-phase extraction of tricyclic antidepressants in
biological samples. Microchimica Acta, 188: 1-9.
84.
Madani-Nejad,
E., Shokrollahi, A., and Shahdost-Fard, F. (2024).
Central composite design-assisted visual and non-invasive detection of
sertraline by sweet lemon waste-derived core-shell AuNPs@ CDs. Analytica
Chimica Acta, 1312: 342721.
85.
Enyoh, C. E., and Wang, Q. (2025).
Box–Behnken design and machine learning optimization of PET fluorescent carbon
quantum dots for removing fluoxetine and ciprofloxacin with molecular dynamics
and docking studies as potential antidepressant and antibiotic. Separation
and Purification Technology, 131975.
86.
Safari,
M., Shahlaei, M., Yamini, Y., Shakorian,
M., and Arkan, E. (2018). Magnetic framework composite as sorbent for magnetic
solid phase extraction coupled with high performance liquid chromatography for
simultaneous extraction and determination of tricyclic antidepressants. Analytica Chimica Acta, 1034 : 204-213.
87.
Aghakhani, A., Ghanbari, A., Asl, A. H., and Khanlarkhani, A.
(2021). Thin‐film solid‐phase microextraction of fluoxetine using a
novel sorbent prepared by direct decoration of zeolitic imidazolate frameworks
on the surface of polyacrylonitrile electrospun nanofibers. Separation
Science Plus, 4(1): 36-44.
88.
Li, Z., Deng, B., Chen, J., Feng, R., Wang, S., Li, S., ... and
Hua, L. (2025). One-pot synthesis of magnetic adsorbent with integrated pH
regulation for convenient and rapid determination of antidepressant in
biofluids. Microchemical Journal, 209: 112834.
89.
Moosavi, N. S., and Yamini, Y. (2023). Growth of bimetallic
Ni-Co MOFs on a skeleton of electrospun PAN nanofibers and coating on a thin
film for SPME of amitriptyline and nortriptyline in urine and plasma
samples. Journal of Pharmaceutical and Biomedical Analysis, 236:
115755.
90.
Godage, N. H., and
Gionfriddo, E. (2020). Use of natural sorbents as alternative and green
extractive materials: A critical review. Analytica Chimica
Acta, 1125: 187-200.
91.
Köse, K., Yalçın Kehribar, D., Goodarzi, V., and Uzun,
L. (2024). Strategies for the detection, removal and elimination of
antidepressants. International Journal of Environmental Analytical Chemistry, 104(2):
323-354.
92.
Darmenbayeva, A., Rajasekharan, R., Massalimova, B.,
Bektenov, N., Taubayeva, R., Bazarbaeva, K., ... and Ungarbayeva, A. (2024).
Cellulose-based sorbents: A comprehensive review of current advances in water
remediation and future prospects. Molecules, 29(24): 5969.
93.
Alves, C.,
Santos‐Neto, A. J., Fernandes, C., Rodrigues, J. C., and Lanças, F. M.
(2007). Analysis
of tricyclic antidepressant drugs in plasma by means of solid‐phase
microextraction‐liquid chromatography‐mass spectrometry. Journal
of Mass Spectrometry, 42(10): 1342-1347.
94.
Feizbakhsh, A., Sarrafi, A. H. M., and Ehteshami,
S. (2016). Polythiophene‐chitosan magnetic nanocomposite as a highly
efficient medium for isolation of fluoxetine from aqueous and biological
samples. Journal of Analytical Methods in Chemistry, 2016(1):
2921706.
95.
Eltaweil, A. S., Abd El-Monaem, E. M., Elshishini, H. M.,
El-Aqapa, H. G., Hosny, M., Abdelfatah, A. M., ... and Omer, A. M. (2022).
Recent developments in alginate-based adsorbents for removing phosphate ions
from wastewater: a review. RSC Advances, 12(13): 8228-8248.
96.
Guzella, C. S., Souto, D. E., and Silva, B. J. (2022).
Alginate-based hydrogel fiber as a restricted access material for
microextraction of drugs in biological samples. Carbohydrate Polymers, 294:
119810.
97.
Fakhri,
V., Jafari, A., Vahed, F. L., Su, C. H., and Pirouzfar, V. (2023). Polysaccharides
as eco-friendly bio-adsorbents for wastewater remediation: Current state and
future perspective. Journal of Water Process Engineering, 54: 103980.
98.
Wang, X., Huang, L., Zhang, C., Deng, Y., Xie, P., Liu, L., and
Cheng, J. (2020). Research advances in chemical modifications of starch for
hydrophobicity and its applications: A review. Carbohydrate Polymers, 240:
116292.
99.
Kepekci-Tekkeli, S. E., and Durmus, Z. (2019). Magnetic solid
phase extraction applications combined with analytical methods for
determination of drugs in different matrices review. Journal of the
Chilean Chemical Society, 64(2): 4448-4458.
100.
Yousatit, S., Rungruangwattanachot, W., Yuwawanitchakorn, N.,
Nuntang, S., Punyapalakul, P., and Ngamcharussrivichai, C. (2023). Amine-functionalized
natural rubber/mesostructured silica nanocomposites for adsorptive removal of
clofibric acid in aqueous phase. Molecules, 28(5): 2330.
101.
Chaowamalee, S., Yan, N., and Ngamcharussrivichai, C. (2022).
Propylsulfonic acid-functionalized mesostructured natural rubber/silica
nanocomposites as promising hydrophobic solid catalysts for alkyl levulinate
synthesis. Nanomaterials, 12(4): 604.
102.
Bekchanov, D., Mukhamediev, M., Yarmanov, S., Lieberzeit, P.,
and Mujahid, A. (2024). Functionalizing natural polymers to develop green
adsorbents for wastewater treatment applications. Carbohydrate Polymers, 323:
121397.
103.
Bi, M., Qin, Q., Deng, B., and Chen, D. (2024). Natural
fibers as sustainable and renewable materials for green sample
preparation. TrAC Trends in Analytical Chemistry, 2024: 117894.
104.
Guzella, C. S., Souto,
D. E., and Silva, B. J. (2022). Alginate-based hydrogel fiber as a restricted access material for microextraction
of drugs in biological samples. Carbohydrate Polymers, 294: 119810.
105.
González-Bermúdez, M., López-Lorente, Á.
I., Lucena, R., and Cárdenas, S. (2024). Sustainable beeswax modified cellulose
paper for the determination of tricyclic antidepressants in biofluids. Talanta, 273: 125860.
106.
Ulusoy,
H. I., Şahin, E., Polat, Ü., Ulusoy, S., Locatelli, M., and Kabir, A.
(2024). Development a green analytical methodology for the sensitive
determination of antidepressant drugs using fabric phase sorptive
extraction as a simple sample pretreatment procedure. Microchemical Journal, 197,
109807.
107.
Jain, B., Jain, R., Kaur, S., Haque, S. M., Sharma, S.,
Ghoneim, M. M., and Al-Khateeb, L. A. (2024). Multi-drug extraction using
octanol supported rotating cellulose paper disc (RPD) device from complex
biological matrices: Fabrication and application in forensic case work. Sustainable
Chemistry and Pharmacy, 41: 101724.
108.
Matin, P., Ayazi, Z., and Jamshidi-Ghaleh,
K. (2022). Montmorillonite
reinforced polystyrene nanocomposite supported on cellulose as a novel layered
sorbent for microextraction by packed sorbent for determination of fluoxetine
followed by spectrofluorimetry based on multivariate
optimisation. International Journal of Environmental Analytical
Chemistry, 102(17): 5150-5165.
109.
Tartaglia, A., Covone, S., Rosato, E., Bonelli, M., Savini,
F., Furton, K. G., ... and Locatelli, M. (2022). Fabric phase sorptive
extraction (FPSE) as an efficient sample preparation platform for the
extraction of antidepressant drugs from biological fluids. Advances in
Sample Preparation, 3: 100022.
110.
Gan,
Y., Hua, L., Zheng, Y., Wang, B., and Chen, D. (2024). Natural kapok fiber as a green and efficient adsorbent for in-syringe
solid-phase extraction in the determination of antidepressants in
biofluids. Microchemical Journal, 201: 110638.
111.
Abniki, M., and Moghimi,
A. (2024). Nanomagnetic chitosan/β-cyclodextrin for dispersive solid phase
extraction of trace desipramine drug. Materials Chemistry and Physics, 316:
129117.
112.
Amin,
A., and Moghimi, A. (2024). Preconcentration and measurement of trace
Amitriptyline hydrochloride in water samples using magnetic nanoparticles with
dispersive solid‐phase extraction. Micro & Nano Letters, 19(1):
e12184.
113.
Feizbakhsh, A., Sarrafi, A. H. M., and Ehteshami, S. (2016).
Polythiophene‐chitosan magnetic nanocomposite as a highly efficient
medium for isolation of fluoxetine from aqueous and biological samples. Journal
of Analytical Methods in Chemistry, 2016(1): 2921706.
114.
Ayazi, Z., Saei, S. F., and Sarnaghi, S. P. (2023). A novel self-supportive thin film based on
graphene oxide reinforced chitosan nano-biocomposite
for thin film microextraction of fluoxetine in biological and environmental
samples. Journal of Pharmaceutical and Biomedical Analysis, 236:
115678.
115.
Barati,
A., Kazemi, E., Dadfarnia, S., and Shabani, A. M. H.
(2017). Synthesis/ characterization of molecular imprinted polymer based on
magnetic chitosan/graphene oxide for selective separation/preconcentration of
fluoxetine from environmental and biological samples. Journal of Industrial
and Engineering Chemistry, 46: 212-221.
116.
Chaves, A. R., Moura,
B. H., Caris, J. A., Rabelo, D., and Queiroz, M. E. C. (2015). The development of a new disposable
pipette extraction phase based on polyaniline composites for the determination
of levels of antidepressants in plasma samples. Journal of
Chromatography A, 1399: 1-7.
117.
Melo,
L. P., Nogueira, A. M., Lanças, F. M., & Queiroz, M. E. C. (2009). Polydimethyl
siloxane/polypyrrole stir bar sorptive extraction and liquid chromatography
(SBSE/LC-UV) analysis of antidepressants in plasma samples. Analytica
Chimica Acta, 633(1): 57-64.
118.
Xu, R., and Lee, H. K. (2014). Application of
electro-enhanced solid phase microextraction combined with gas
chromatography–mass spectrometry for the determination of tricyclic
antidepressants in environmental water samples. Journal of
Chromatography A, 1350: 15-22.
119.
Lamas, J. P.,
Salgado-Petinal, C., García-Jares,
C., Llompart, M., Cela, R., and Gómez, M. (2004). Solid-phase
microextraction–gas chromatography–mass spectrometry for the analysis of
selective serotonin reuptake inhibitors in environmental water. Journal
of Chromatography A, 1046(1-2): 241-247.
120.
Tarley,
C. R. T., Gorla, F. A., de Oliveira, F. M., Nascentes,
C. C., do Prado Ferreira, M., da Costa, M. F., and Segatelli,
M. G. (2022). Investigation of the performance of cross-linked poly (acrylic
acid) and poly (methacrylic acid) as efficient adsorbents in SPE columns for
simultaneous preconcentration of tricyclic antidepressants in water
samples. Analytical Methods, 14(48): 5100-5109.
121.
Asgharinezhad, A. A., Karami,
S., Ebrahimzadeh, H., Shekari, N., and Jalilian, N. (2015).
Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for
dispersive micro-solid-phase extraction of antidepressant drugs from biological
fluids. International journal of pharmaceutics, 494(1):
102-112.
122.
Bagheri,
H., Banihashemi, S., and Zandian,
F. K. (2016). Microextraction of antidepressant drugs into syringes packed with
a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. Microchimica
Acta, 183: 195-202.
123.
Barati,
E., and Alizadeh, N. (2020). Simultaneous determination of sertraline,
imipramine and alprazolam in human plasma samples using headspace solid phase
microextraction based on a nanostructured polypyrrole
fiber coupled to ion mobility spectrometry. Analytical
Methods, 12(7): 930-937.
124.
Silva, B. J. G.,
Lanças, F. M., and Queiroz, M. E. C. (2009). Determination of
fluoxetine and norfluoxetine enantiomers in human plasma by polypyrrole-coated
capillary in-tube solid-phase microextraction coupled with liquid
chromatography-fluorescence detection. Journal of Chromatography A, 1216(49):
8590-8597.
125.
Jafari,
M., Sedghi, R., and Ebrahimzadeh, H. (2016). A platinum wire coated with a
composite consisting of poly pyrrole and poly (ɛ-caprolactone) for solid
phase microextraction of the antidepressant imipramine prior to its
determination via ion mobility spectrometry. Microchimica Acta, 183: 805-812.
126.
Bozyiğit, G. D., Zaman, B.
T., Özdemir, O. K., Kılınç, Y., Chormey, D. S., Bakırdere,
S., and Engin, G. O. (2024). Removal of two antidepressant active
pharmaceutical ingredients from hospital wastewater by polystyrene-coated
magnetite nanoparticles–assisted batch adsorption process. Environmental
Monitoring and Assessment, 196(1): 77.
127.
Bozyiğit, G. D., Zaman, B. T., Özdemir, O. K.,
Kılınç, Y., Chormey, D. S., Engin, G. O., and Bakırdere, S.
(2022). Polystyrene‐coated magnetite nanoparticles based dispersive
micro‐solid phase extraction of active pharmaceutical ingredients of
antidepressant drugs and determination by GC‐MS. ChemistrySelect, 7(10),
e202104435.
128.
Stelmaszczyk, P., Białkowska, K., and Wietecha-Posłuszny,
R. (2024). Paper supported polystyrene membranes for micro-solid phase
extraction of date-rape drugs from urine: a sustainable analytical
approach. Analytica chimica acta, 1316:
342874.
129.
Caris, J. A., Chaves,
A. R., and Queiroz, M. E. C. (2012). Evaluation of
solid-phase microextraction using a polythiophene film and liquid
chromatography with spectrophotometric detection for the determination of
antidepressants in plasma samples. Journal of the Brazilian Chemical
Society, 23: 57-64.
130.
Hosseini,
F. S., Kharazmi, F., Davarani,
S. S. H., and Ebrahimzadeh, H. (2023). Development of electrospun
nanofibers based on Poly (vinyl alcohol) for thin film solid-phase
microextraction of antidepressant drugs in biological samples. Journal
of Chromatography A, 1697: 463984.
131.
Ponce-Rodríguez,
H. D., Verdú-Andrés, J., Herráez-Hernández, R., and Campíns-Falcó, P. (2020). Innovations in extractive phases
for in-tube solid-phase microextraction coupled to miniaturized liquid
chromatography: A critical review. Molecules, 25(10):
2460.
132.
García-Atienza,
P., Martínez-Pérez-Cejuela, H., Herrero-Martínez, J. M., and Armenta, S.
(2024). Current trends in the sorbent-based extraction of illegal
drugs from biofluids: Solid sorbents and configurations. TrAC Trends in
Analytical Chemistry, 2024: 117599.
133.
Gkika, D. A., Tolkou, A. K., Lambropoulou, D. A., Bikiaris,
D. N., Kokkinos, P., Kalavrouziotis, I. K., and Kyzas, G. Z. (2024).
Application of molecularly imprinted polymers (MIPs) as environmental
separation tools. RSC Applied Polymers, 2(2): 127-148.
134.
Nestora, S. (2017). Molecularly imprinted polymers as
selective sorbents for recognition in complex aqueous samples (Doctoral
dissertation, Université de Technologie de Compiègne).
135.
Alkahtani, M. E., Aodah, A. H., Abu Asab, O. A., Basit, A.
W., Orlu, M., and Tawfik, E. A. (2021). Fabrication and characterization of
fast-dissolving films containing escitalopram /quetiapine for the treatment of
major depressive disorder.Pharmaceutics, 13(6): 891.
136.
Yan, X., Zhan, Y., Zhong, D., Li, Y., and Wu, D. (2018).
Electrospun nanofiber cloud for ultrafast solid phase micro-extraction of trace
organics in water samples. Journal of Chromatography A, 1574: 42-49.
137.
Ahamad Said, M. N., Hasbullah, N. A., Rosdi, M. R. H., Musa,
M. S., Rusli, A., Ariffin, A., and Shafiq, M. D. (2022). Polymerization and
applications of poly (methyl methacrylate)–graphene oxide nanocomposites: a
review. ACS omega, 7(51): 47490-47503.
138.
Gao, Y., Zhang, J., Liang, J., Yuan, D., and Zhao, W. (2022).
Research progress of poly (methyl methacrylate) microspheres: preparation,
functionalization and application. European Polymer Journal, 175:
111379.
139.
Jiménez-Holgado,
C., Chrimatopoulos, C., Stathopoulos, V., and Sakkas, V. (2020). Investigating
the utility of fabric phase sorptive extraction and HPLC-UV-Vis/DAD to
determine antidepressant drugs in environmental aqueous samples. Separations, 7(3):
39.
140.
Spietelun, A., Pilarczyk, M., Kloskowski, A., and
Namieśnik, J. (2011). Polyethylene glycol-coated solid-phase
microextraction fibres for the extraction of polar analytes-A review. Talanta, 87:
1-7.
141.
Jian, N. G., Liang, S. H., Cao, J. K., Di, Q. N., Kang, K., and
Xu, Q. (2019). A nanofiber mat prepared from sulfonated polyaniline for
solid-phase extraction of fluoroquinolones from water and biological fluids
prior to their quantitation by UPLC-MS/MS. Microchimica Acta, 186(12):
857.
142.
Nezhadali, A., Ahmadi Bonakdar, G., and Nakhaei, H. (2012).
Electrosynthesis of polypyrrole on steel fiber for solid-phase microextraction
of citalopram in serum. Analytical and Bioanalytical Chemistry, 403(2):
593-600.
143.
Ntorkou, M., and Zacharis, C. K. (2025). Sorbent-based
microextraction combined with GC-MS: A valuable tool in bioanalysis. Chemosensors, 13(2):
71.
144.
Oliveira, M. N., Gonçalves, O. C., Ahmad, S. M., Schneider,
J. K., Krause, L. C., Neng, N. R., ... and Nogueira, J. M. (2021). Application
of bar adsorptive microextraction for the determination of levels of tricyclic
antidepressants in urine samples. Molecules, 26(11):
3101.
145.
Liu, H., and Qiu, H. (2020). Recent advances of 3D
graphene-based adsorbents for sample preparation of water pollutants: A
review. Chemical Engineering Journal, 393: 124691.
146.
Jiang, Q., Zhang, S., and Sun, M. (2023). Recent advances on
graphene and graphene oxide as extraction materials in solid-phase (micro)
extraction. TrAC Trends in Analytical Chemistry, 168: 17283.
147.
Li,
W. K., and Shi, Y. P. (2019). Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase
extraction. TrAc Trends in Analytical
Chemistry, 118: 652-665.
148.
Liu, J., Li, R., and Yang, B. (2020). Carbon dots: a new type
of carbon-based nanomaterial with wide applications. ACS Central
Science, 6(12): 2179-2195.
149.
Owczarzy, A., Kulig, K., Piordas, K., Piśla, P.,
Sarkowicz, P., Rogóż, W., and Maciążek-Jurczyk, M. (2024).
Solid-phase micro extraction–a future technique in pharmacology and coating
trends. Analytical Methods, 16(20): 3164-3178.
150.
Gilart, N., Borrull, F., Fontanals, N., and Marcé, R. M.
(2014). Selective materials for solid-phase extraction in environmental
analysis. Trends in environmental analytical chemistry, 1: e8-e18.
151.
Al-Aqbi, Z. T., Yap, Y. C., Li, F., and Breadmore, M. C.
(2019). Integrated microfluidic devices fabricated in poly (methylmethacrylate)
(PMMA) for on-site therapeutic drug monitoring of aminoglycosides in whole
blood. Biosensors, 9(1): 19.
152.
Samadi, A., Xie, M., Li, J., Shon, H., Zheng, C., and Zhao,
S. (2021). Polyaniline-based adsorbents for aqueous pollutants removal: A
review. Chemical Engineering Journal, 418: 129425.
153.
Beygisangchin, M., Baghdadi, A. H., Kamarudin, S. K., Rashid,
S. A., Jakmunee, J., and Shaari, N. (2024). Recent progress in polyaniline and
its composites; Synthesis, properties, and applications. European
Polymer Journal, 210: 112948.
154.
Verma, R., and Joshi, G. (2024). Xanthium Strumarium based
activated carbon as low cost bioadsorbent for efficient removal of
antidepressant drug Imipramine. In IOP Conference Series: Earth and
Environmental Science, 1382: p. 012009.
155.
Akpomie, K. G., and Conradie, J. (2021). Isotherm, kinetic,
thermodynamics and reusability data on the adsorption of antidepressant onto
silver nanoparticle-loaded biowaste. Data in Brief, 39: 107575.
156.
Zhang, J., Liu, D., Meng, X., Shi, Y., Wang, R., Xiao, D., and
He, H. (2017). Solid phase extraction based on porous magnetic graphene
oxide/β-cyclodextrine composite coupled with high performance liquid
chromatography for determination of antiepileptic drugs in plasma
samples. Journal of Chromatography A, 1524: 49-56.
157.
Liu, X., Cheng, L., Han, Y., Wang, M., and Yan, H. (2025).
Development of a novel second-generation polyester dendritic functionalized
graphene oxide for efficient pipette tip micro solid-phase extraction and
detection of venlafaxine and desvenlafaxine in urine. Journal of
Chromatography A, 1740: 465582.
158.
Silva, A., Stawiński, W., Romacho, J., Santos, L. H.,
Figueiredo, S. A., Freitas, O. M., and Delerue-Matos, C. (2019). Adsorption of
fluoxetine and venlafaxine onto the marine seaweed Bifurcaria bifurcata. Environmental
Engineering Science, 36(5): 573-582.
159.
Fan, L., Yu, Z., Wei, X., Dong, Z., and An, J. (2022).
Polystyrene electrospun nanofibers as effective sorbents for the removal of
atypical antipsychotics: Kinetic and thermodynamic studies. Arabian
Journal of Chemistry, 15(11): 104222.
160.
Khulu, S., Ncube, S., Kgame, T., Mavhunga, E., and Chimuka,
L. (2022). Synthesis, characterization and application of a molecularly
imprinted polymer as an adsorbent for solid-phase extraction of selected
pharmaceuticals from water samples. Polymer Bulletin, 79(2):rko
1287-1307.