Malays. J. Anal. Sci.
Volume 29 Number 4 (2025): 1529
Research Article
Studying the remedial action of zinc oxide
nanoparticles on Salmonella typhimurium
1Department
of Biomedical Science, Faculty of Science, Universiti
Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
2Faculty
of Health and Life Sciences, INTI International University, Persiaran Perdana
BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
3Department of Pharmacology, Saveetha
Medical College and Hospital, Saveetha Institute of Medical and Technical
Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nadu, India
4Department of Life Sciences, Sharda
School of Basic Sciences and Research, Sharda University, Greater Noida 201310,
Uttar Pradesh, India
5Department of Biotechnology, Graphic
Era Deemed to Be University, Dehradun 248002, Uttarakhand, India
6Biomedical Research Unit Lab Animal
Research Centre, Saveetha Dental College, Saveetha Institute of Medical and
Technical Sciences, Chennai, 602 105 India
7Faculty
of Bioeconomics and Health sciences, Universiti Geomatika Malaysia,
Kuala Lumpur 54200, Malaysia
*Correspondence: sinouvassane@utar.edu.my
Received:
8 April 2025; Revised: 20 June 2025; Accepted: 3 July 2025; Published: 25
August 2025
Abstract
In recent years, zinc
oxide nanoparticles (ZnO NPs) have become the main
research attention due to their wide range of applications, including
incorporation into cosmetics products and wound dressings. The present study aimed to determine the antibacterial
properties of ZnO NPs on the Gram-negative, foodborne
pathogen, Salmonella
typhimurium by investigating the growth
inhibition assay, surface interaction on bacterial cell wall and morphological
analysis of bacteria. The surface morphology and elemental composition of the ZnO NPs were characterized using a scanning electron
microscope (SEM) with energy dispersive X-ray (EDX) spectroscopy. The binding
of ZnO NPs to the bacterial cell wall was evaluated
by Fourier transform infrared (FTIR) spectroscopy. The results of the
present study demonstrate that ZnO NPs exhibit a
dose-dependent growth inhibitory effect on S. typhimurium. FTIR analysis
revealed the involvement of functional groups such as alcohols, amide I,
carboxylic acids, and phosphates in the interaction between ZnO
NPs and the bacterial cell surface. SEM-EDX analysis confirmed membrane rupture
and the accumulation of ZnO NPs on the bacterial
surface. These findings suggest that ZnO NPs inhibit
bacterial growth by inducing membrane deformities, ultimately leading to cell
death. Based on these results, ZnO NPs hold promise
for future applications in antimicrobial coatings for medical devices and other
healthcare-related products to control bacterial infections.
Keywords: zinc oxide nanoparticle, Salmonella
typhimurium, growth inhibition,
anti-bacterial
References
1.
Sinouvassane, D., Wong, L. S.,
Mooi, L. Y., and Lee, P. F. (2016). A review on bio-distribution and toxicity
of silver, titanium dioxide and zinc oxide nanoparticles in aquatic
environment. Pollution Research, 935: 701-712.
2.
Kabeerdass, N., Murugesan,
K., Arumugam, N., Almansour, A. I., Kumar, R. S., Djearamane,
S., Kumaravel, A. K., Velmurugan, P., Mohanavel, V., and
Kumar, S. S. (2022). Biomedical and textile applications of Alternanthera sessilis leaf extract mediated synthesis of colloidal
silver nanoparticle. Nanomaterials, 12(16): 2759.
3.
Malik, S.,
Muhammad, K., and Waheed, Y. (2023). Nanotechnology: A revolution in modern
industry. Molecules, 28(2): 661.
4.
Altemimi, A. B., Farag, H.
A. M., Salih, T. H., Awlqadr, F. H., Al-Manhel, A. J. A., Vieira, I. R. S., and Conte-Junior, C. A.
(2024). Application of nanoparticles in human nutrition: A review. Nutrients,
16(5): 636.
5.
Alfei, S., and
Zuccari, G. (2025). Last fifteen years of nanotechnology application with our
contribute. Nanomaterials, 15(4): 265.
6.
Makhluf, S., Dror,
R., Nitzan, Y., Abramovich, Y., Jelinek, R., and Gedanken, A. (2005).
Microwave-assisted synthesis of nanocrystalline MgO and its use as bactericide.
Advanced Functional Materials, 15(10): 01708-1715.
7.
Jiang, J., Oberdörster, G., and Biswas, P. (2009). Characterization of
size, surface charge, and agglomeration state of nanoparticle dispersions for
toxicological studies. Journal of Nanoparticle Research, 11(1): 77-89.
8.
Abebe, B., Zereffa, E. A., Tadesse, A., and Murthy, H. C. A. (2020). A
review on enhancing the antibacterial activity of ZnO:
Mechanisms and microscopic investigation. Nanoscale Research Letters, 15(1):190.
9.
Tan, E. P., Djearamane, S., Wong, L. S., Rajamani, R., Antony, A. C.
T., Subbaih, S. K., Janakiraman, A. K., Aminuzzaman,
M., Subramaniyan, V., and Sekar, M. (2022). An in-vitro study of the antifungal
efficacy of zinc oxide nanoparticles against Saccharomyces cerevisiae. Coatings,
12(12): 1988.
10.
Song, Z., Kelf, T. A., Sanchez, W. H., Roberts, M. S., Rička,
J., Frenz, M., and Zvyagin, A. V. (2011). Characterization of optical
properties of ZnO nanoparticles for quantitative
imaging of transdermal transport. Biomedical Optics Express, 2(12):
3321–3333.
11.
Sinouvassane, D., Wong, L. S., Lim, Y. M., and Lee, P. F. (2019).
Short-term cytotoxicity of zinc oxide nanoparticles on Chlorella vulgaris.
Sains Malaysiana, 48(1): 69–73.
12.
Mutukwa,
D., Taziwa, R. T., & Khotseng,
L. (2024). A review of plant-mediated ZnO
nanoparticles for photodegradation and antibacterial applications. Nanomaterials,
14(14):1182.
13.
Raguvaran, R.,
Manuja, B. K., Chopra, M., Thakur, R., Anand, T., Kalia, A., and Manuja, A.
(2017). Sodium alginate and gum acacia hydrogels of ZnO
nanoparticles show wound healing effect on fibroblast cells. International
Journal of Biological Macromolecules, 96: 185-191.
14.
Sheferov,
I., Balakireva, A., Panteleev, D., Spitskaya, I., Orekhov, S., Kazantsev, O., Solovyeva, A., Novopoltsev, D., and Melnikova, N. (2022). The effect of
zinc oxide nanoparticles on properties and burn wound healing activity of
thixotropic xymedone gels. Science Pharmaceuticals,
90(4): 61.
15.
Sangnim, T., Puri, V., Dheer, D., Venkatesh,
D. N., Huanbutta, K., and Sharma, A. (2024).
Nanomaterials in the wound healing process: New insights and advancements. Pharmaceutics,
16(3): 300.
16.
Sinouvassane, D., Wong, L. S., Lim, Y. M., and Lee, P. F. (2019).
Cytotoxic effects of zinc oxide nanoparticles on Chlorella vulgaris. Pollution
Research, 38(2): 479-484.
17.
Djearamane, S., Xiu, L. J., Wong, L. S., Rajamani, R., Bharathi,
D., Kayarohanam, S., De Cruz, A. E., Tey, L. H.,
Janakiraman, A. K., Aminuzzaman, M. (2022).
Antifungal properties of zinc oxide nanoparticles on Candida albicans. Coatings,
12(12): 1864.
18.
Khalil, M. A., Alzaidi, T. M., Alsharbaty, M. H.
M., Ali, S. S., Schagerl, M., Elhariry,
H. M., and Aboshady, T. A. (2025). Synergistic
antibacterial and antibiofilm effects of clindamycin and zinc oxide
nanoparticles against pathogenic oral Bacillus species. Pathogens, 14(2):
138.
19.
Centers for Disease Control and Prevention. (2020). Outbreaks
of Salmonella infections linked to backyard poultry. Access
from https://www.cdc.gov/salmonella/backyardpoultry-05-20/index.html
20.
Pelgrift, R. Y., and Friedman, A. J. (2013). Nanotechnology as
a therapeutic tool to combat microbial resistance. Advanced Drug Delivery
Reviews, 65(13–14): 1803-1815.
21.
Mubeen,
B., Ansar, A. N., Rasool, R., Ullah, I., Imam, S. S., Alshehri, S., Ghoneim, M.
M., Alzarea, S. I., Nadeem, M. S., and Kazmi, I.
(2021). Nanotechnology as a novel approach in combating microbes providing an
alternative to antibiotics. Antibiotics, 10(12): 1473.
22.
Yılmaz,
G. E., Göktürk, I., Ovezova, M., Yılmaz, F.,
Kılıç, S., and Denizli, A. (2023).
Antimicrobial nanomaterials: A review. Hygiene, 3(3): 269-290.
23.
Hetta,
H. F., Ramadan, Y. N., Al-Harbi, A. I., Ahmed, E., Battah, B., Abd Ellah, N.
H., Zanetti, S., and Donadu, M. G. (2023).
Nanotechnology as a promising approach to combat multidrug resistant bacteria:
A comprehensive review and future perspectives. Biomedicines, 11(2):
413.
24.
Muteeb, G. (2023). Nanotechnology- A light
of hope for combating antibiotic resistance. Microorganisms, 11(6): 1489.
25.
Ioannou,
P., Baliou, S., and Samonis, G. (2024).
Nanotechnology in the diagnosis and treatment of antibiotic-resistant
infections. Antibiotics, 13(2): 121.
26.
Zeinab,
B., Buthaina, J., and Rafik, K. (2020). Resistance of
Gram-negative bacteria to current antibacterial agents and approaches to
resolve it. Molecules, 25(6): 1340.
27.
Tayel, A. A., El-Tras, W. F., Moussa, S., El-Baz, A. F., Mahrous, H., Salem,
M. F., and Brimer, L. (2010). Antibacterial action of zinc oxide nanoparticles
against foodborne pathogens. Journal of Foodborne Pathogens, 31(2):
211–218.
28.
Chikkanna, M. M., Neelagund, S. E., and
Rajashekarappa, K. K. (2018). Green synthesis of zinc
oxide nanoparticles (ZnO NPs) and their biological
activity. SN Applied Sciences, 1: 117.
29.
Duffy, L. L.,
Osmond-McLeod, M. J., Judy, J., and King, T. (2018). Investigation into the
antibacterial activity of silver, zinc oxide and copper oxide nanoparticles
against poultry-relevant isolates of Salmonella and Campylobacter.
Food Control, 92: 293-300.
30.
Akbar, A., Sadiq,
M. B., Ali, I., Muhammad, N., Rehman, Z., Khan, M. N., Muhammad, J., Khan, S.
A., Rehman, F. U., and Anal, A. K. (2019). Synthesis and antimicrobial activity
of zinc oxide nanoparticles against foodborne pathogens Salmonella
typhimurium and Staphylococcus aureus. Biocatalysis and
Agricultural Biotechnology, 17: 36-42.
31.
Garip, S., Gozen, A. C., and Severcan, F.
(2009). Use of Fourier transform infrared spectroscopy for rapid comparative
analysis of Bacillus and Micrococcus isolates. Food Chemistry,
113(4): 1301–1307.
32.
Martinez-Felipe,
A., Fraser, B., Daniel, Z., Alberto, C., Sara, A., Milagros, P., and Luis, O.
(2018). Molecular recognition via hydrogen bonding in supramolecular complexes:
A Fourier transform infrared spectroscopy study. Molecules, 23(9): 2278.
33.
Lin, M., Al-Holy,
M., Huang, Y., Cavinato, A. G., Kang, D. H., and Rasco, B. A. (2005). Rapid
discrimination of Alicyclobacillus strains in apple juice by Fourier
transform infrared spectroscopy. International Journal of Food Microbiology,
105(3): 369–376.
34.
Xu, H., Lee, H.
Y., and Ahn, J. (2010). Growth and virulence properties of biofilm-forming Salmonella
enterica serovar Typhimurium under different acidic conditions. Applied
and Environmental Microbiology, 76(24): 7910-7917.
35.
Zoumpopoulou, G., Papadimitriou, K., Polissiou,
M. G., Tarantilis, P. A., and Tsakalidou,
E. (2010). Detection of changes in the cellular composition of Salmonella
enterica serovar Typhimurium in the presence of antimicrobial
compound(s) of Lactobacillus strains using Fourier transform infrared
spectroscopy. International Journal of Food Microbiology, 144(1): 202-207.
36.
Nandiyanto, A., Oktiani, R., and Ragadhita, R. (2019). How to read and interpret FTIR
spectroscope of organic material. Indonesian Journal of Science and
Technology, 4(1): 97–118.
37.
Leone, L., Ferri,
D., Manfredi, C., Persson, P., Shchukarev, A., Sjöberg, S., and Loring, J.
(2007). Modeling the acid–base properties of
bacterial surfaces: A combined spectroscopic and potentiometric study of the
Gram-positive bacterium Bacillus subtilis. Environmental Science
& Technology, 41(18): 6465-6471.
38.
Dhanasegaran, K., Djearamane, S., Liang,
S. X. T., Wong, L. S., Kasivelu, G., Lee, P. F., and Lim,
Y. M. (2021). Antibacterial properties of zinc oxide nanoparticles on Pseudomonas
aeruginosa (ATCC 27853). Scientia Iranica, 28(6),
3806-3815.
39.
Zhang, L., Ding,
Y., Povey, M., and York, D. (2008). ZnO nanofluids a
potential antibacterial agent. Progress in Natural Science, 18(8):
939-944.
40.
Beyth, N.,
Houri-Haddad, Y., Domb, A., Khan, W., and Hazan, R. (2015). Alternative
antimicrobial approach: Nano-antimicrobial materials. Evidence-Based
Complementary and Alternative Medicine, 2015: 246012.
41.
Mendes, C. R., Dilarri, G., Forsan, C. F.,
Sapata, V. M. R., Lopes, P. R. M., De Moraes, P. B., Montagnolli,
R. N., Ferreira, H., and Bidoia, E. D. (2022).
Antibacterial action and target mechanisms of zinc oxide nanoparticles against
bacterial pathogens. Scientific Reports, 12: 2658.
42.
Maruthupandy, M., Rajivgandhi, G., Muneeswaran, T., Song, J. M., and
Manoharan, N. (2018). Biologically synthesized zinc oxide nanoparticles as nanoantibiotics against ESBLs producing gram-negative
bacteria. Microbial Pathogenesis, 121: 224-231.
43.
Yusof, H., Abdul
Rahman, N., Mohamad, R., Zaidan, U., and Samsudin, A. A. (2021). Antibacterial
potential of biosynthesized zinc oxide nanoparticles against poultry-associated
foodborne pathogens: An in vitro study. Animals, 11(7): 2093.
44.
Yusof, J. M.,
Mohamad, R., Zaidan, U., & Abdul Rahman, N. (2019). Microbial synthesis of
zinc oxide nanoparticles and their potential application as an antimicrobial
agent and a feed supplement in animal industry: A review. Journal of Animal
Science and Biotechnology, 10: 57.
45.
Mikhailova, E. O.
(2025). Green silver nanoparticles: An antibacterial mechanism. Antibiotics,
14(1): 5.
46.
Suresh, K. M.,
Sourav, C., Sounik, M., and Santi, M. M. (2024).
Antimicrobial nanoparticles: Current landscape and future challenges. RSC
Pharmaceutics, 1: 388-402.
47.
Shahalaei, M.,
Azad, A. K., Sulaiman, W. M. A. W., Derakhshani, A., Mofakham,
E. B., Mallandrich, M., Kumarasamy, V., &
Subramaniyan, V. (2024). A review of metallic nanoparticles: Present issues and
prospects focused on the preparation methods, characterization techniques, and
their theranostic applications. Frontiers in
Chemistry, 12: 1398979.
48.
Gupta, P. K., Karthik Kumar, D., Thaveena, M., Pandit, S., Sinha, S., Ranjithkumar, R., Alsanie, W. F., & Thakur, V. K. (2022). Synthesis, characterization
and remedial action of biogenic silver nanoparticles and chitosan-silver
nanoparticles against bacterial pathogens. Journal of Renewable Materials,
10(5): 3093-3105.