Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1529

 

Research Article

 

Studying the remedial action of zinc oxide nanoparticles on Salmonella typhimurium

 

Chiu Kai Yuan1, Sinouvassane Djearamane1,6*, Wong Ling Shing2, Ranjithkumar Rajamani3, Piyush Kumar Gupta4,5, and Saminathan Kayarohanam7

 

1Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

2Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

3Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nadu, India

4Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India

5Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun 248002, Uttarakhand, India

6Biomedical Research Unit Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105 India

7Faculty of Bioeconomics and Health sciences, Universiti Geomatika Malaysia, Kuala Lumpur 54200, Malaysia

 

*Correspondence: sinouvassane@utar.edu.my

 

Received: 8 April 2025; Revised: 20 June 2025; Accepted: 3 July 2025; Published: 25 August 2025

Abstract

In recent years, zinc oxide nanoparticles (ZnO NPs) have become the main research attention due to their wide range of applications, including incorporation into cosmetics products and wound dressings. The present study aimed to determine the antibacterial properties of ZnO NPs on the Gram-negative, foodborne pathogen, Salmonella typhimurium by investigating the growth inhibition assay, surface interaction on bacterial cell wall and morphological analysis of bacteria. The surface morphology and elemental composition of the ZnO NPs were characterized using a scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectroscopy. The binding of ZnO NPs to the bacterial cell wall was evaluated by Fourier transform infrared (FTIR) spectroscopy. The results of the present study demonstrate that ZnO NPs exhibit a dose-dependent growth inhibitory effect on S. typhimurium. FTIR analysis revealed the involvement of functional groups such as alcohols, amide I, carboxylic acids, and phosphates in the interaction between ZnO NPs and the bacterial cell surface. SEM-EDX analysis confirmed membrane rupture and the accumulation of ZnO NPs on the bacterial surface. These findings suggest that ZnO NPs inhibit bacterial growth by inducing membrane deformities, ultimately leading to cell death. Based on these results, ZnO NPs hold promise for future applications in antimicrobial coatings for medical devices and other healthcare-related products to control bacterial infections.

Keywords: zinc oxide nanoparticle, Salmonella typhimurium, growth inhibition, anti-bacterial


References

1.        Sinouvassane, D., Wong, L. S., Mooi, L. Y., and Lee, P. F. (2016). A review on bio-distribution and toxicity of silver, titanium dioxide and zinc oxide nanoparticles in aquatic environment. Pollution Research, 935: 701-712.

2.        Kabeerdass, N., Murugesan, K., Arumugam, N., Almansour, A. I., Kumar, R. S., Djearamane, S., Kumaravel, A. K., Velmurugan, P., Mohanavel, V., and Kumar, S. S. (2022). Biomedical and textile applications of Alternanthera sessilis leaf extract mediated synthesis of colloidal silver nanoparticle. Nanomaterials, 12(16): 2759.

3.        Malik, S., Muhammad, K., and Waheed, Y. (2023). Nanotechnology: A revolution in modern industry. Molecules, 28(2): 661.

4.        Altemimi, A. B., Farag, H. A. M., Salih, T. H., Awlqadr, F. H., Al-Manhel, A. J. A., Vieira, I. R. S., and Conte-Junior, C. A. (2024). Application of nanoparticles in human nutrition: A review. Nutrients, 16(5): 636.

5.        Alfei, S., and Zuccari, G. (2025). Last fifteen years of nanotechnology application with our contribute. Nanomaterials, 15(4): 265.

6.        Makhluf, S., Dror, R., Nitzan, Y., Abramovich, Y., Jelinek, R., and Gedanken, A. (2005). Microwave-assisted synthesis of nanocrystalline MgO and its use as bactericide. Advanced Functional Materials, 15(10): 01708-1715.

7.        Jiang, J., Oberdörster, G., and Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11(1): 77-89.

8.        Abebe, B., Zereffa, E. A., Tadesse, A., and Murthy, H. C. A. (2020). A review on enhancing the antibacterial activity of ZnO: Mechanisms and microscopic investigation. Nanoscale Research Letters, 15(1):190.

9.        Tan, E. P., Djearamane, S., Wong, L. S., Rajamani, R., Antony, A. C. T., Subbaih, S. K., Janakiraman, A. K., Aminuzzaman, M., Subramaniyan, V., and Sekar, M. (2022). An in-vitro study of the antifungal efficacy of zinc oxide nanoparticles against Saccharomyces cerevisiae. Coatings, 12(12): 1988.

10.     Song, Z., Kelf, T. A., Sanchez, W. H., Roberts, M. S., Rička, J., Frenz, M., and Zvyagin, A. V. (2011). Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomedical Optics Express, 2(12): 3321–3333.

11.     Sinouvassane, D., Wong, L. S., Lim, Y. M., and Lee, P. F. (2019). Short-term cytotoxicity of zinc oxide nanoparticles on Chlorella vulgaris. Sains Malaysiana, 48(1): 69–73.

12.     Mutukwa, D., Taziwa, R. T., & Khotseng, L. (2024). A review of plant-mediated ZnO nanoparticles for photodegradation and antibacterial applications. Nanomaterials, 14(14):1182.

13.     Raguvaran, R., Manuja, B. K., Chopra, M., Thakur, R., Anand, T., Kalia, A., and Manuja, A. (2017). Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. International Journal of Biological Macromolecules, 96: 185-191.

14.     Sheferov, I., Balakireva, A., Panteleev, D., Spitskaya, I., Orekhov, S., Kazantsev, O., Solovyeva, A., Novopoltsev, D., and Melnikova, N. (2022). The effect of zinc oxide nanoparticles on properties and burn wound healing activity of thixotropic xymedone gels. Science Pharmaceuticals, 90(4): 61.

15.     Sangnim, T., Puri, V., Dheer, D., Venkatesh, D. N., Huanbutta, K., and Sharma, A. (2024). Nanomaterials in the wound healing process: New insights and advancements. Pharmaceutics, 16(3): 300.

16.     Sinouvassane, D., Wong, L. S., Lim, Y. M., and Lee, P. F. (2019). Cytotoxic effects of zinc oxide nanoparticles on Chlorella vulgaris. Pollution Research, 38(2): 479-484.

17.     Djearamane, S., Xiu, L. J., Wong, L. S., Rajamani, R., Bharathi, D., Kayarohanam, S., De Cruz, A. E., Tey, L. H., Janakiraman, A. K., Aminuzzaman, M. (2022). Antifungal properties of zinc oxide nanoparticles on Candida albicans. Coatings, 12(12): 1864.

18.     Khalil, M. A., Alzaidi, T. M., Alsharbaty, M. H. M., Ali, S. S., Schagerl, M., Elhariry, H. M., and Aboshady, T. A. (2025). Synergistic antibacterial and antibiofilm effects of clindamycin and zinc oxide nanoparticles against pathogenic oral Bacillus species. Pathogens, 14(2): 138.

19.     Centers for Disease Control and Prevention. (2020). Outbreaks of Salmonella infections linked to backyard poultry. Access from https://www.cdc.gov/salmonella/backyardpoultry-05-20/index.html

20.     Pelgrift, R. Y., and Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13–14): 1803-1815.

21.     Mubeen, B., Ansar, A. N., Rasool, R., Ullah, I., Imam, S. S., Alshehri, S., Ghoneim, M. M., Alzarea, S. I., Nadeem, M. S., and Kazmi, I. (2021). Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics, 10(12): 1473.

22.     Yılmaz, G. E., Göktürk, I., Ovezova, M., Yılmaz, F., Kılıç, S., and Denizli, A. (2023). Antimicrobial nanomaterials: A review. Hygiene, 3(3): 269-290.

23.     Hetta, H. F., Ramadan, Y. N., Al-Harbi, A. I., Ahmed, E., Battah, B., Abd Ellah, N. H., Zanetti, S., and Donadu, M. G. (2023). Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives. Biomedicines, 11(2): 413.

24.     Muteeb, G. (2023). Nanotechnology- A light of hope for combating antibiotic resistance. Microorganisms, 11(6): 1489.

25.     Ioannou, P., Baliou, S., and Samonis, G. (2024). Nanotechnology in the diagnosis and treatment of antibiotic-resistant infections. Antibiotics, 13(2): 121.

26.     Zeinab, B., Buthaina, J., and Rafik, K. (2020). Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6): 1340.

27.     Tayel, A. A., El-Tras, W. F., Moussa, S., El-Baz, A. F., Mahrous, H., Salem, M. F., and Brimer, L. (2010). Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. Journal of Foodborne Pathogens, 31(2): 211–218.

28.     Chikkanna, M. M., Neelagund, S. E., and Rajashekarappa, K. K. (2018). Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Applied Sciences, 1: 117.

29.     Duffy, L. L., Osmond-McLeod, M. J., Judy, J., and King, T. (2018). Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control, 92: 293-300.

30.     Akbar, A., Sadiq, M. B., Ali, I., Muhammad, N., Rehman, Z., Khan, M. N., Muhammad, J., Khan, S. A., Rehman, F. U., and Anal, A. K. (2019). Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatalysis and Agricultural Biotechnology, 17: 36-42.

31.     Garip, S., Gozen, A. C., and Severcan, F. (2009). Use of Fourier transform infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates. Food Chemistry, 113(4): 1301–1307.

32.     Martinez-Felipe, A., Fraser, B., Daniel, Z., Alberto, C., Sara, A., Milagros, P., and Luis, O. (2018). Molecular recognition via hydrogen bonding in supramolecular complexes: A Fourier transform infrared spectroscopy study. Molecules, 23(9): 2278.

33.     Lin, M., Al-Holy, M., Huang, Y., Cavinato, A. G., Kang, D. H., and Rasco, B. A. (2005). Rapid discrimination of Alicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy. International Journal of Food Microbiology, 105(3): 369–376.

34.     Xu, H., Lee, H. Y., and Ahn, J. (2010). Growth and virulence properties of biofilm-forming Salmonella enterica serovar Typhimurium under different acidic conditions. Applied and Environmental Microbiology, 76(24): 7910-7917.

35.     Zoumpopoulou, G., Papadimitriou, K., Polissiou, M. G., Tarantilis, P. A., and Tsakalidou, E. (2010). Detection of changes in the cellular composition of Salmonella enterica serovar Typhimurium in the presence of antimicrobial compound(s) of Lactobacillus strains using Fourier transform infrared spectroscopy. International Journal of Food Microbiology, 144(1): 202-207.

36.     Nandiyanto, A., Oktiani, R., and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1): 97–118.

37.     Leone, L., Ferri, D., Manfredi, C., Persson, P., Shchukarev, A., Sjöberg, S., and Loring, J. (2007). Modeling the acid–base properties of bacterial surfaces: A combined spectroscopic and potentiometric study of the Gram-positive bacterium Bacillus subtilis. Environmental Science & Technology, 41(18): 6465-6471.

38.     Dhanasegaran, K., Djearamane, S., Liang, S. X. T., Wong, L. S., Kasivelu, G., Lee, P. F., and Lim, Y. M. (2021). Antibacterial properties of zinc oxide nanoparticles on Pseudomonas aeruginosa (ATCC 27853). Scientia Iranica, 28(6), 3806-3815.

39.     Zhang, L., Ding, Y., Povey, M., and York, D. (2008). ZnO nanofluids a potential antibacterial agent. Progress in Natural Science, 18(8): 939-944.

40.     Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., and Hazan, R. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine, 2015: 246012.

41.     Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. M. R., Lopes, P. R. M., De Moraes, P. B., Montagnolli, R. N., Ferreira, H., and Bidoia, E. D. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12: 2658.

42.     Maruthupandy, M., Rajivgandhi, G., Muneeswaran, T., Song, J. M., and Manoharan, N. (2018). Biologically synthesized zinc oxide nanoparticles as nanoantibiotics against ESBLs producing gram-negative bacteria. Microbial Pathogenesis, 121: 224-231.

43.     Yusof, H., Abdul Rahman, N., Mohamad, R., Zaidan, U., and Samsudin, A. A. (2021). Antibacterial potential of biosynthesized zinc oxide nanoparticles against poultry-associated foodborne pathogens: An in vitro study. Animals, 11(7): 2093.

44.     Yusof, J. M., Mohamad, R., Zaidan, U., & Abdul Rahman, N. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. Journal of Animal Science and Biotechnology, 10: 57.

45.     Mikhailova, E. O. (2025). Green silver nanoparticles: An antibacterial mechanism. Antibiotics, 14(1): 5.

46.     Suresh, K. M., Sourav, C., Sounik, M., and Santi, M. M. (2024). Antimicrobial nanoparticles: Current landscape and future challenges. RSC Pharmaceutics, 1: 388-402.

47.     Shahalaei, M., Azad, A. K., Sulaiman, W. M. A. W., Derakhshani, A., Mofakham, E. B., Mallandrich, M., Kumarasamy, V., & Subramaniyan, V. (2024). A review of metallic nanoparticles: Present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Frontiers in Chemistry, 12: 1398979.

48.     Gupta, P. K., Karthik Kumar, D., Thaveena, M., Pandit, S., Sinha, S., Ranjithkumar, R., Alsanie, W. F., & Thakur, V. K. (2022). Synthesis, characterization and remedial action of biogenic silver nanoparticles and chitosan-silver nanoparticles against bacterial pathogens. Journal of Renewable Materials, 10(5): 3093-3105.