Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1478
Research Article
Optimising dazomet fungicide loading in calcium-based
metal-organic frameworks: A solvent screening approach using high-performance
liquid chromatography
Nurul Farhana Ahmad Aljafree1,2, Umar Abd Aziz1,
Mohamad Firdaus Ahmad3, Adila Jaafar4, Norhayu Asib3,
and Mohd Basyaruddin Abdul Rahman1,2*
1Foundry of Reticular Materials for Sustainability, Institute of
Nanoscience and Nanotechnology
3Department of Plant Protection, Faculty of Agriculture, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Centre of Foundation Studies for Agricultural Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Corresponding author:
basya@upm.edu.my
Received: 12 February 2025;
Revised: 11 June 2025; Accepted: 18 June 2025; Published: 22 August 2025
Abstract
Fungicides are essential
for plants to combat plant pathogens that cause severe diseases, leading to
significant yield losses and quality deterioration. Since
the majority of fungicide active ingredients are unstable, inert additives like
organic solvents must be used to create stable formulations for agrochemical
products. To address this challenge, calcium L‑lactate framework (MOF-1201)
was synthesised using the solvothermal method.
Powder X-ray diffraction confirmed that the framework exhibited a pattern similar
to the simulated MOF-1201. The field emission scanning electron microscopy image
showed that MOF-1201 displayed a rod-like morphology
with a size range between 60.1 and 72.1 μm. In addition, MOF-1201
exhibited high thermal stability up to 400 °C. The encapsulation efficiency (EE)
and loading capacity (LC) of the dazomet fungicide with different solvent concentrations
were determined using high-performance liquid chromatography. The highest EE
and LC values of dazomet were observed when ethanol was used as the solvent. MOF-1201
retained its crystallinity even after the incorporation of dazomet in its
framework. In conclusion, the loading of dazomet
fungicide strongly depends on solvent properties, highlighting the
importance of solvent selection in optimising fungicide delivery systems.
Keywords: MOF-1201, stability, encapsulation, crystallinity, fungicide
References
1.
Ahmad, M. F., Ahmad, F. A.,
Alsayegh, A. A., Zeyaullah, M., AlShahrani, A. M., Muzammil, K., Saati, A. A.,
Wahab, S., Elbendary, E. Y., Kambal, N., Abdelrahman, M. H., and Hussain, S.
(2024). Pesticides impacts on human health and the environment with their
mechanisms of action and possible counter measures. Heliyon, 10(7):
e29128.
2.
Yusuf, V. F., Malek, N. I., and
Kailasa, S. K. (2022). Review on metal–organic framework classification,
synthetic approaches, and influencing factors: Applications in energy, drug
delivery, and wastewater treatment. ACS Omega, 7(49):
44507-44531.
3.
Lin, Y., Li, M., Dai, C.,
Liu, Y., Zhang, W., Yang, Q., Cui, X., and Yang, Y. (2024). Dazomet fumigation
modification of the soil microorganism community and promotion of Panax notoginseng growth. Frontiers in Microbiology, 15:
1443526.
4.
Pacheco, A., Attard, T.,
Calvert, D., Bullock, J., Clark, J. H., Sherwood, J., and McElroy, C. R.
(2023). Green solvent selection for emulsifiable concentrate agrochemical
formulations. Organic Process Research & Development, 28(1):
132-136.
5.
Zhi, J., Huang, S., Zhu, X.,
Adra, H. J., Luo, K., and Kim, Y. (2023). Impact of solvent polarity on the
morphology, physicochemical properties, and digestibility of A-type resistant
starch particles. Food Chemistry, 418:135942.
6.
Norton, A. E., Brabec, D.
L., Tilley, M., Yeater, K. M., and Scheff, D. S. (2022). Quantification of
methoprene aerosol deposition using reversed-phase high-performance liquid
chromato graphy. Journal of Stored Products Research, 99: 102039.
7.
Yang, J., Trickett, C. A.,
Alahmadi, S. B., Alshammari, A. S., and Yaghi, O. M. (2017). Calcium l-lactate
frameworks as naturally degradable carriers for pesticides. Journal of
the American Chemical Society, 139(24):
8118-8121.
8.
Ranjbar, M., Pardakhty, A.,
Amanatfard, A., and Asadipour, A. (2018). Efficient drug delivery of
β-estradiol encapsulated in Zn-metal–organic framework nanostructures by
microwave-assisted coprecipitation method. Drug Design, Development and
Therapy, 12: 2635-2643.
9.
MacRae, C. F., Sovago, I.,
Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., … and Wood, P. A.
(2020). Mercury 4.0: From visualization to analysis, design and prediction. Journal
of Applied Crystallography, 53: 226-235.
10. Maluin, F. N., Hussein, M. Z., Yusof, N. A., Fakurazi,
S., Seman, I. A., Hilmi, N. H. Z., and Daim, L. D. J. (2019). Enhanced
fungicidal efficacy on Ganoderma
boninense by simultaneous co-delivery
of hexaconazole and dazomet from their chitosan nanoparticles. RSC
Advances, 9(46): 27083-27095.
11. Saini, K., Joseph, F., Ramanan, A., and Sharma Bhatia,
S. (2017). Electrochemical synthesis of a oxalate-linked copper (II) metal
organic frameworks: X-ray crystallographic structure and its magnetic
properies. Materials Today: Proceedings, 4(9): 9616-9621.
12. Liu, K., Shen, Z. R., Li, Y., Han, S. De, Hu, T. L.,
Zhang, D. S., … and Ruan, W. J. (2014). Solvent induced rapid modulation of
micro/nano structures of metal carboxylates coordination polymers: Mechanism
and morphology dependent magnetism. Scientific Reports, 4: 1-7.
13. Molavi, H. and Salimi, M. S. (2025). Investigation the
effect of exchange solvents on the adsorption performances of Ce-MOFs towards
organic dyes. Scientific
Reports, 15(1): 1-17.
14. Hurd, J. A., Vaidhyanathan, R., Thangadurai, V.,
Ratcliffe, C. I., Moudrakovski, I. L., and Shimizu, G. K. H. (2009). Anhydrous
proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chemistry, 1(9): 705-710.
15. Katritzky, A. R., Fara, D. C., Yang, H., Tämm, K.,
Tamm, T., and Karelson, M. (2004). Quantitative measures of solvent
polarity. Chemical Reviews, 104(1):
175-198.
16. Thode, A. B., Kruse, S. W., Nix, J. C., and Jones, D.
N. (2008). The role of multiple hydrogen-bonding groups in specific alcohol
binding sites in proteins: Insights from structural studies of LUSH. Journal
of Molecular Biology, 376(5): 1360-1376.
17. Wittmann, M., Henze, K., Yan, K., Sharma, V., and
Simmchen, J. (2023). Rod‑shaped microparticles — an overview of synthesis
and properties. Colloid
and Polymer Science, 301: 783-799
18. Naz, H., Ali, R. N., Premlatha, S., Liu, Y., and Zhu,
G. (2024). Recent advances in hydrogen bonded organic frameworks and their
derived materials for electrocatalytic water splitting. Journal of
Environmental Chemical Engineering, 12(3): 112815.
19. Ben, A., Amaro-gahete, J., Esquivel, D.,
Romero-salguero, F. J., and Caballero, Á. (2020). MIL-88A metal-organic
framework as a stable sulfur-host cathode for long-cycle Li-S batteries. Nanomaterials,
10(424): 1-14.
20. Hadjiivanov, K. I., Panayotov, D. A., Mihaylov, M. Y.,
Ivanova, E. Z., Chakarova, K. K., Andonova, S. M., and Drenchev, N. L. (2020).
Power of infrared and raman spectroscopies to characterize metal- organic
frameworks and investigate their interaction with guest molecules. Chemical
Reviews, 121(3): 1286-1424.
21. Dhumal, N. R., Singh, M. P., Anderson, J. A., Kiefer,
J., and Kim, H. J. (2016). Molecular interactions of a Cu-Based Metal–Organic framework
with a confined imidazolium-based ionic liquid: A combined density functional
theory and experimental vibrational spectroscopy study. The Journal of
Physical Chemistry C, 120(6): 3295-3304.