Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1478

 

Research Article

 

Optimising dazomet fungicide loading in calcium-based metal-organic frameworks: A solvent screening approach using high-performance liquid chromatography

 

Nurul Farhana Ahmad Aljafree1,2, Umar Abd Aziz1, Mohamad Firdaus Ahmad3, Adila Jaafar4, Norhayu Asib3, and Mohd Basyaruddin Abdul Rahman1,2*

 

1Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology

2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

4Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: basya@upm.edu.my

 

Received: 12 February 2025; Revised: 11 June 2025; Accepted: 18 June 2025; Published: 22 August 2025

 

Abstract

Fungicides are essential for plants to combat plant pathogens that cause severe diseases, leading to significant yield losses and quality deterioration. Since the majority of fungicide active ingredients are unstable, inert additives like organic solvents must be used to create stable formulations for agrochemical products. To address this challenge, calcium L‑lactate framework (MOF-1201) was synthesised using the solvothermal method. Powder X-ray diffraction confirmed that the framework exhibited a pattern similar to the simulated MOF-1201. The field emission scanning electron microscopy image showed that MOF-1201 displayed a rod-like morphology with a size range between 60.1 and 72.1 μm. In addition, MOF-1201 exhibited high thermal stability up to 400 °C. The encapsulation efficiency (EE) and loading capacity (LC) of the dazomet fungicide with different solvent concentrations were determined using high-performance liquid chromatography. The highest EE and LC values of dazomet were observed when ethanol was used as the solvent. MOF-1201 retained its crystallinity even after the incorporation of dazomet in its framework. In conclusion, the loading of dazomet fungicide strongly depends on solvent properties, highlighting the importance of solvent selection in optimising fungicide delivery systems.

 

Keywords: MOF-1201, stability, encapsulation, crystallinity, fungicide

 


References

1.        Ahmad, M. F., Ahmad, F. A., Alsayegh, A. A., Zeyaullah, M., AlShahrani, A. M., Muzammil, K., Saati, A. A., Wahab, S., Elbendary, E. Y., Kambal, N., Abdelrahman, M. H., and Hussain, S. (2024). Pesticides impacts on human health and the environment with their mechanisms of action and possible counter measures. Heliyon, 10(7): e29128.

2.        Yusuf, V. F., Malek, N. I., and Kailasa, S. K. (2022). Review on metal–organic framework classification, synthetic approaches, and influencing factors: Applications in energy, drug delivery, and wastewater treatment. ACS Omega7(49): 44507-44531.

3.        Lin, Y., Li, M., Dai, C., Liu, Y., Zhang, W., Yang, Q., Cui, X., and Yang, Y. (2024). Dazomet fumigation modification of the soil microorganism community and promotion of Panax notoginseng growth. Frontiers in Microbiology15: 1443526.

4.        Pacheco, A., Attard, T., Calvert, D., Bullock, J., Clark, J. H., Sherwood, J., and McElroy, C. R. (2023). Green solvent selection for emulsifiable concentrate agrochemical formulations. Organic Process Research & Development28(1): 132-136.

5.        Zhi, J., Huang, S., Zhu, X., Adra, H. J., Luo, K., and Kim, Y. (2023). Impact of solvent polarity on the morphology, physicochemical properties, and digestibility of A-type resistant starch particles. Food Chemistry418:135942.

6.        Norton, A. E., Brabec, D. L., Tilley, M., Yeater, K. M., and Scheff, D. S. (2022). Quantification of methoprene aerosol deposition using reversed-phase high-performance liquid chromato graphy. Journal of Stored Products Research99: 102039.

7.        Yang, J., Trickett, C. A., Alahmadi, S. B., Alshammari, A. S., and Yaghi, O. M. (2017). Calcium l-lactate frameworks as naturally degradable carriers for pesticides. Journal of the American Chemical Society139(24): 8118-8121.

8.        Ranjbar, M., Pardakhty, A., Amanatfard, A., and Asadipour, A. (2018). Efficient drug delivery of β-estradiol encapsulated in Zn-metal–organic framework nanostructures by microwave-assisted coprecipitation method. Drug Design, Development and Therapy, 12: 2635-2643.

9.        MacRae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., … and Wood, P. A. (2020). Mercury 4.0: From visualization to analysis, design and prediction. Journal of Applied Crystallography, 53: 226-235.

10.     Maluin, F. N., Hussein, M. Z., Yusof, N. A., Fakurazi, S., Seman, I. A., Hilmi, N. H. Z., and Daim, L. D. J. (2019). Enhanced fungicidal efficacy on Ganoderma boninense by simultaneous co-delivery of hexaconazole and dazomet from their chitosan nanoparticles. RSC Advances9(46): 27083-27095.

11.     Saini, K., Joseph, F., Ramanan, A., and Sharma Bhatia, S. (2017). Electrochemical synthesis of a oxalate-linked copper (II) metal organic frameworks: X-ray crystallographic structure and its magnetic properies. Materials Today: Proceedings, 4(9): 9616-9621.

12.     Liu, K., Shen, Z. R., Li, Y., Han, S. De, Hu, T. L., Zhang, D. S., … and Ruan, W. J. (2014). Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: Mechanism and morphology dependent magnetism. Scientific Reports, 4: 1-7.

13.     Molavi, H. and Salimi, M. S. (2025). Investigation the effect of exchange solvents on the adsorption performances of Ce-MOFs towards organic dyes. Scientific Reports, 15(1): 1-17.

14.     Hurd, J. A., Vaidhyanathan, R., Thangadurai, V., Ratcliffe, C. I., Moudrakovski, I. L., and Shimizu, G. K. H. (2009). Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chemistry, 1(9): 705-710.

15.     Katritzky, A. R., Fara, D. C., Yang, H., Tämm, K., Tamm, T., and Karelson, M. (2004). Quantitative measures of solvent polarity. Chemical Reviews104(1): 175-198.

16.     Thode, A. B., Kruse, S. W., Nix, J. C., and Jones, D. N. (2008). The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: Insights from structural studies of LUSH. Journal of Molecular Biology376(5): 1360-1376.

17.     Wittmann, M., Henze, K., Yan, K., Sharma, V., and Simmchen, J. (2023). Rod‑shaped microparticles — an overview of synthesis and properties. Colloid and Polymer Science, 301: 783-799

18.     Naz, H., Ali, R. N., Premlatha, S., Liu, Y., and Zhu, G. (2024). Recent advances in hydrogen bonded organic frameworks and their derived materials for electrocatalytic water splitting. Journal of Environmental Chemical Engineering12(3): 112815. 

19.     Ben, A., Amaro-gahete, J., Esquivel, D., Romero-salguero, F. J., and Caballero, Á. (2020). MIL-88A metal-organic framework as a stable sulfur-host cathode for long-cycle Li-S batteries. Nanomaterials, 10(424): 1-14.

20.     Hadjiivanov, K. I., Panayotov, D. A., Mihaylov, M. Y., Ivanova, E. Z., Chakarova, K. K., Andonova, S. M., and Drenchev, N. L. (2020). Power of infrared and raman spectroscopies to characterize metal- organic frameworks and investigate their interaction with guest molecules. Chemical Reviews, 121(3): 1286-1424.

21.     Dhumal, N. R., Singh, M. P., Anderson, J. A., Kiefer, J., and Kim, H. J. (2016). Molecular interactions of a Cu-Based Metal–Organic framework with a confined imidazolium-based ionic liquid: A combined density functional theory and experimental vibrational spectroscopy study. The Journal of Physical Chemistry C, 120(6): 3295-3304.