Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1472

 

Review Article

 

100 years of thiosemicarbazone: A bibliometric study using scopus database

 

Uwaisulqarni M. Osman1,2*, W. M. Zulhilmi W. M. Kharul Anwar1, Mohd Sabri Mohd Ghazali1,2, Mohd Hasmizam Razali1,2, Mohd Zul Helmi Rozaini3, Yusnita Juahir4 & Mohamad Wafiuddin Ismail5 and Wan Izhan Nawawi Wan Ismail6

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Advanced Nano Materials Research Group (ANOMA), Ionic State Analysis (ISA) Laboratory, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Faculty of Fisheries and Aquacultures, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

4Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia

5Department of Chemistry, Kulliyyah of Science, International Islamic University of Malaysia, Kuantan, Pahang 25200, Malaysia

6Faculty of Applied Science, Universiti Teknologi MARA, 02600, Arau, Perlis, Malaysia

 

*Corresponding author:  uwais@umt.edu.my

 

Received: 8 February 2025; Revised: 18 June 2025; Accepted: 30 June 2025; Published: 22 August 2025

 

Abstract

Thiosemicarbazones (TSC) have received much attention in the scientific community due to their potential therapeutic applications, particularly in cancer and infectious disease treatment. This study aims to provide a comprehensive analysis of the global research trends, key contributors, and collaboration networks in TSC research. The bibliometric analysis utilizes a refined dataset of 6287 articles sourced from the Scopus database, covering the extensive period from 1922 to 2022. Based on the collected data, it can be determined that significant growth has occurred for the past century in TSC-related publications, especially in recent decades, with India, China, and the United States have emerged as major contributors to a substantial portion of the research output. In brief, this study provides valuable insights into global research dynamics, highlighting major contributors and emerging trends. Three most emerging trends discovered by this analysis are shift toward multifunctional therapeutic applications; development of metal complexes for enhanced bioactivity and globalization of research with growing contributions and collaborations. The implications of these findings underscore the importance of strategic partnerships and interdisciplinary approaches in propelling TSC research forward in the coming years. This study provides the first comprehensive, century-long analysis of global research trends on thiosemicarbazone (TSC), revealing its growing importance in therapeutic applications such as cancer and antimicrobial treatment. It identifies key contributors, emerging topics, and international collaborations, offering a valuable roadmap for future research. By visualizing data through bibliometric tools, the study supports evidence based decision making for researchers and institutions.

 

Keywords: thiosemicarbazone, bibliometric, research trends, scopus database



References

1.        Gupta, S., Singh, N., Khan, T., and Joshi, S. (2022). Thiosemicarbazone derivatives of transition metals as multi-target drugs: A review. Results in Chemistry, 4: 100459.

2.        Zarei, M., and Jarrahpour, A. (2011). Green and efficient synthesis of azo Schiff bases. Iranian Journal of Science and Technology (Sciences), 35(3): 235-242.

3.        Matesanz, A. I., Herrero, J. M., and Quiroga, A. G. (2021). Chemical and biological evaluation of Thiosemicarbazone-Bearing heterocyclic metal complexes. Current Topics in Medicinal Chemistry, 21(1): 59-72.

4.        Scarim, C. B., and Chin, C. M. (2021). Recent trends in drug development for the treatment of adenocarcinoma breast cancer: thiazole, triazole, and thiosemicarbazone analogues as efficient scaffolds. Anti-Cancer Agents in Medicinal Chemistry, 22(12): 2204-2240.

5.        Stefani, C., Jansson, P. J., Gutierrez, E., Bernhardt, P. V., Richardson, D. R., and Kalinowski, D. S. (2013). Alkyl substituted 2′-benzoylpyridine thiosemicarbazone chelators with potent and selective anti-neoplastic activity: Novel ligands that limit methemoglobin formation. Journal of Medicinal Chemistry, 56(1): 357-370.

6.        Summers, K. L. (2019). A structural chemistry perspective on the antimalarial properties of thiosemicarbazone metal complexes. Mini-Reviews in Medicinal Chemistry, 19(7): 569-590.

7.        Dharmasivam, M., Azad, M. G., Afroz, R., Richardson, V., Jansson, P. J., and Richardson, D. R. (2022). The thiosemicarbazone, DpC, broadly synergizes with multiple anti-cancer therapeutics and demonstrates temperature- and energy-dependent uptake by tumor cells. Biochimica Et Biophysica Acta (BBA) - General Subjects, 1866(8): 130152.

8.        Maqbool, S. N., Lim, S. C., Park, K. C., Hanif, R., Richardson, D. R., Jansson, P. J., and Kovacevic, Z. (2020). Overcoming tamoxifen resistance in oestrogen receptor‐positive breast cancer using the novel thiosemicarbazone anti‐cancer agent, DpC. British Journal of Pharmacology, 177(10): 2365-2380.

9.        Lovejoy, D. B., Sharp, D. M., Seebacher, N., Obeidy, P., Prichard, T., Stefani, C., Basha, M. T., Sharpe, P. C., Jansson, P. J., Kalinowski, D. S., Bernhardt, P. V., and Richardson, D. R. (2012). Novel second-generation di-2-pyridylketone thiosemicarbazones show synergism with standard chemotherapeutics and demonstrate potent activity against lung cancer xenografts after oral and intravenous administration in vivo. Journal of Medicinal Chemistry, 55(16): 7230-7244.

10.     Onodera, K., Kasuga, N. C., Takashima, T., Hara, A., Amano, A., Murakami, H., and Nomiya, K. (2007). Synthesis, reaction and structure of a highly light-stable silver(i) cluster with an Ag4S4N4 core having a tridentate 4N-morpholyl 2-acetylpyridine thiosemicarbazone ligand: Use of water-soluble silver(I) carboxylates as a silver(I) source. Dalton Transactions, 33: 3646.

11.     Kamaruzzaman, W. M. I. W. M., Nasir, N. A. M., Hamidi, N. A. S. M., Yusof, N., Shaifudin, M. S., Suhaimi, A. M. A. A. M., Badruddin, M. A., Adnan, A., Nik, W. M. N. W., and Ghazali, M. S. M. (2021). 25 years of progress on plants as corrosion inhibitors through a bibliometric analysis using the Scopus database (1995–2020). Arabian Journal of Chemistry, 15(4): 103655.

12.     Shaifudin, M. S., Kamaruzzaman, W. M. I. W. M., Badruddin, M. A., Suhaimi, A. M. A. A. M., Nasir, N. A. M., Hamidi, N. A. S. M., Abdullah, W. R. W., Lee, O. J., and Ghazali, M. S. M. (2022). Exploring the global publications on varistors using the Scopus database through a bibliometric analysis. Journal of Asian Ceramic Societies, 10(2): 438-452.

13.     Van-Eck N.J., and Waltman, L. (2021). Manual for VOSviewer version 1.6.17. Leiden University.

14.     Ratsimamanga, Dechamps G, Bihan, H.L. Binon, F. (1952). The in vivo antitubercular activity of some thiosemicarbazide derivatives. Comptes rendus des seances de la Societe de biologie et de ses filiales 146(5-6): 354-357.

15.     Murren, J., Modiano, M., Clairmont, C., Lambert, P., Savaraj, N., Doyle, T., and Sznol, M. (2003). Phase I and pharmacokinetic study of triapine, a potent ribonucleotide reductase inhibitor, administered daily for five days in patients with advanced solid tumors. Clinical cancer research: An official journal of the American Association for Cancer Research, 9(11): 4092-4100.

16.     West, D. X., Bain, G. A., Butcher, R. J., Jasinski, J. P., Li, Y., Pozdniakiv, R. Y., Valdés-Martínez, J., Toscano, R. A., and Hernández-Ortega, S. (1996). Structural studies of three isomeric forms of heterocyclic N(4)-substituted thiosemicarbazones and two nickel(II) complexes. Polyhedron, 15(4): 665-674.

17.     Refat, M. S., El-Deen, I. M., Anwer, Z. M., and El-Ghol, S. (2009). Bivalent transition metal complexes of coumarin-3-yl thiosemicarbazone derivatives: Spectroscopic, antibacterial activity and thermogravimetric studies. Journal of Molecular Structure, 920(1–3): 149-162.

18.     Ferrari, M. B., Capacchi, S., Pelosi, G., Reffo, G., Tarasconi, P., Albertini, R., Pinelli, S., and Lunghi, P. (1999). Synthesis, structural characterization and biological activity of helicin thiosemicarbazone monohydrate and a copper(II) complex of salicylaldehyde thiosemicarbazone. Inorganica Chimica Acta, 286(2): 134-141.

19.     Wang, M., Wang, LF., and Li, Y.Z. (2001). Antitumour activity of transition metal complexes with the thiosemicarbazone derived from 3-acetylumbelliferone. Transition Metal Chemistry 26: 307-310.

20.     Pavan, F. R., Maia, P. I. S., Leite, S. R., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G., and Leite, C. Q. (2010). Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti – Mycobacterium tuberculosis activity and cytotoxicity. European Journal of Medicinal Chemistry, 45(5): 1898-1905.

21.     Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C., and Nomiya, K. (2003). Synthesis, structural characterization and antimicrobial activities of 12 zinc(II) complexes with four thiosemicarbazone and two semicarbazone ligands. Journal of Inorganic Biochemistry, 96(2–3): 298-310.

22.     Chandra, S., and Kumar, U. (2004). Spectral and magnetic studies on manganese(II), cobalt(II) and nickel(II) complexes with Schiff bases. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy, 61(1–2): 219-224.

23.     Klayman, D. L., Bartosevich, J. F., Griffin, T. S., Mason, C. J., and Scovill, J. P. (1979). 2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents. Journal of Medicinal Chemistry, 22(7): 855-862.

24.     Jain, S. K., and Mishra, P. (2010). Synthesis of some 2-amino-5-aryl-1,3,4-thiadiazoles. Asian Journal of Chemistry, 12(4): 1341-1343.

25.     El-Sawaf, A. K., West, D. X., El-Saied, F. A., and El-Bahnasawy, R. M. (1997). Iron(III), Cobalt(II), Nickel(II), Copper(II) and Zinc(II) complexes of 4-formylantipyrine thiosemi carbazone. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 27(8): 1127-1147.