Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1472
Review Article
100 years of
thiosemicarbazone: A bibliometric study using scopus
database
Uwaisulqarni M. Osman1,2*, W. M. Zulhilmi W. M. Kharul Anwar1, Mohd Sabri Mohd
Ghazali1,2, Mohd Hasmizam Razali1,2, Mohd Zul
Helmi Rozaini3, Yusnita Juahir4 & Mohamad Wafiuddin
Ismail5 and Wan Izhan Nawawi Wan Ismail6
1Faculty of Science
and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Advanced Nano
Materials Research Group (ANOMA), Ionic State Analysis (ISA) Laboratory, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Faculty of Fisheries and Aquacultures, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
4Department of
Chemistry, Faculty of Science and Mathematics, Universiti
Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
5Department of
Chemistry, Kulliyyah of Science, International Islamic University of Malaysia,
Kuantan, Pahang 25200, Malaysia
6Faculty of Applied Science, Universiti
Teknologi MARA, 02600, Arau, Perlis, Malaysia
*Corresponding
author: uwais@umt.edu.my
Received: 8 February 2025; Revised: 18 June 2025;
Accepted: 30 June 2025; Published: 22 August 2025
Abstract
Thiosemicarbazones
(TSC) have received much attention in the scientific community due to their
potential therapeutic applications, particularly in cancer and infectious
disease treatment. This study aims to provide a comprehensive analysis of the
global research trends, key contributors, and collaboration networks in TSC
research. The bibliometric analysis utilizes a refined dataset of 6287 articles
sourced from the Scopus database, covering the extensive period from 1922 to
2022. Based on the collected data, it can be determined that significant growth
has occurred for the past century in TSC-related publications, especially in
recent decades, with India, China, and the United States have emerged as major
contributors to a substantial portion of the research output. In brief, this
study provides valuable insights into global research dynamics, highlighting
major contributors and emerging trends. Three most emerging trends discovered
by this analysis are shift toward multifunctional therapeutic applications; development of metal complexes for enhanced
bioactivity and globalization of research with growing contributions and
collaborations. The implications of these findings underscore the importance of
strategic partnerships and interdisciplinary approaches in propelling TSC
research forward in the coming years. This study provides the first comprehensive,
century-long analysis of global research trends on thiosemicarbazone (TSC),
revealing its growing importance in therapeutic applications such as cancer and
antimicrobial treatment. It identifies key contributors, emerging topics, and
international collaborations, offering a valuable roadmap for future research.
By visualizing data through bibliometric tools, the study supports evidence based decision making for researchers and
institutions.
Keywords: thiosemicarbazone, bibliometric, research trends, scopus database
References
1.
Gupta, S., Singh, N., Khan, T., and Joshi, S. (2022).
Thiosemicarbazone derivatives of transition metals as multi-target drugs: A
review. Results in Chemistry, 4: 100459.
2.
Zarei, M., and Jarrahpour,
A. (2011). Green and efficient synthesis of azo Schiff bases. Iranian
Journal of Science and Technology (Sciences), 35(3): 235-242.
3.
Matesanz, A. I., Herrero, J. M., and Quiroga, A. G. (2021).
Chemical and biological evaluation of Thiosemicarbazone-Bearing heterocyclic
metal complexes. Current Topics in Medicinal Chemistry, 21(1): 59-72.
4.
Scarim, C. B., and Chin, C. M. (2021). Recent trends in drug
development for the treatment of adenocarcinoma breast cancer: thiazole,
triazole, and thiosemicarbazone analogues as efficient scaffolds. Anti-Cancer
Agents in Medicinal Chemistry, 22(12): 2204-2240.
5.
Stefani, C., Jansson, P. J., Gutierrez, E., Bernhardt,
P. V., Richardson, D. R., and Kalinowski, D. S. (2013). Alkyl substituted
2′-benzoylpyridine thiosemicarbazone chelators with potent and selective
anti-neoplastic activity: Novel ligands that limit methemoglobin formation. Journal
of Medicinal Chemistry, 56(1): 357-370.
6.
Summers, K. L. (2019). A structural chemistry
perspective on the antimalarial properties of thiosemicarbazone metal
complexes. Mini-Reviews in Medicinal Chemistry, 19(7): 569-590.
7.
Dharmasivam, M., Azad,
M. G., Afroz, R., Richardson, V., Jansson, P. J., and Richardson, D. R. (2022).
The thiosemicarbazone, DpC, broadly synergizes with
multiple anti-cancer therapeutics and demonstrates temperature- and
energy-dependent uptake by tumor cells. Biochimica
Et Biophysica Acta (BBA) - General Subjects, 1866(8):
130152.
8.
Maqbool, S. N., Lim, S. C., Park, K. C., Hanif, R.,
Richardson, D. R., Jansson, P. J., and Kovacevic, Z. (2020). Overcoming
tamoxifen resistance in oestrogen
receptor‐positive breast cancer using the novel thiosemicarbazone
anti‐cancer agent, DpC. British Journal of
Pharmacology, 177(10): 2365-2380.
9.
Lovejoy, D. B., Sharp, D. M., Seebacher, N., Obeidy, P., Prichard, T., Stefani, C., Basha, M. T.,
Sharpe, P. C., Jansson, P. J., Kalinowski, D. S., Bernhardt, P. V., and
Richardson, D. R. (2012). Novel second-generation di-2-pyridylketone
thiosemicarbazones show synergism with standard chemotherapeutics and
demonstrate potent activity against lung cancer xenografts after oral and
intravenous administration in vivo. Journal of Medicinal Chemistry,
55(16): 7230-7244.
10. Onodera, K., Kasuga, N. C., Takashima,
T., Hara, A., Amano, A., Murakami, H., and Nomiya, K. (2007). Synthesis, reaction and structure of a highly
light-stable silver(i) cluster with an Ag4S4N4 core
having a tridentate 4N-morpholyl 2-acetylpyridine thiosemicarbazone ligand: Use
of water-soluble silver(I) carboxylates as a silver(I) source. Dalton
Transactions, 33: 3646.
11. Kamaruzzaman,
W. M. I. W. M., Nasir, N. A. M., Hamidi, N. A. S. M., Yusof, N., Shaifudin, M. S., Suhaimi, A. M. A. A. M., Badruddin, M.
A., Adnan, A., Nik, W. M. N. W., and Ghazali, M. S. M. (2021). 25 years of
progress on plants as corrosion inhibitors through a bibliometric analysis
using the Scopus database (1995–2020). Arabian Journal of Chemistry,
15(4): 103655.
12. Shaifudin, M. S., Kamaruzzaman, W. M. I. W. M., Badruddin, M.
A., Suhaimi, A. M. A. A. M., Nasir, N. A. M., Hamidi, N. A. S. M., Abdullah, W.
R. W., Lee, O. J., and Ghazali, M. S. M. (2022). Exploring the global
publications on varistors using the Scopus database through a bibliometric
analysis. Journal of Asian Ceramic Societies, 10(2): 438-452.
13. Van-Eck
N.J., and Waltman, L. (2021). Manual for VOSviewer
version 1.6.17. Leiden University.
14. Ratsimamanga, Dechamps
G, Bihan, H.L. Binon, F. (1952). The in vivo
antitubercular activity of some thiosemicarbazide
derivatives. Comptes rendus des seances de la
Societe de biologie et de ses filiales 146(5-6): 354-357.
15. Murren, J.,
Modiano, M., Clairmont, C., Lambert, P., Savaraj, N.,
Doyle, T., and Sznol, M. (2003). Phase I and
pharmacokinetic study of triapine, a potent
ribonucleotide reductase inhibitor, administered daily for five days in
patients with advanced solid tumors. Clinical cancer research: An official
journal of the American Association for Cancer Research, 9(11): 4092-4100.
16. West, D. X.,
Bain, G. A., Butcher, R. J., Jasinski, J. P., Li, Y., Pozdniakiv,
R. Y., Valdés-Martínez, J., Toscano, R. A., and Hernández-Ortega, S. (1996).
Structural studies of three isomeric forms of heterocyclic N(4)-substituted
thiosemicarbazones and two nickel(II) complexes. Polyhedron, 15(4): 665-674.
17. Refat, M.
S., El-Deen, I. M., Anwer, Z. M., and El-Ghol, S.
(2009). Bivalent transition metal complexes of coumarin-3-yl thiosemicarbazone
derivatives: Spectroscopic, antibacterial activity and thermogravimetric
studies. Journal of Molecular Structure, 920(1–3): 149-162.
18. Ferrari, M. B., Capacchi, S., Pelosi,
G., Reffo, G., Tarasconi, P., Albertini, R., Pinelli, S., and Lunghi, P.
(1999). Synthesis,
structural characterization and biological activity of helicin
thiosemicarbazone monohydrate and a copper(II) complex of salicylaldehyde
thiosemicarbazone. Inorganica Chimica Acta, 286(2): 134-141.
19. Wang, M.,
Wang, LF., and Li, Y.Z. (2001). Antitumour activity
of transition metal complexes with the thiosemicarbazone derived from
3-acetylumbelliferone. Transition Metal Chemistry 26: 307-310.
20. Pavan, F.
R., Maia, P. I. S., Leite, S. R., Deflon, V. M.,
Batista, A. A., Sato, D. N., Franzblau, S. G., and Leite, C. Q. (2010).
Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti –
Mycobacterium tuberculosis activity and cytotoxicity. European Journal of
Medicinal Chemistry, 45(5): 1898-1905.
21. Kasuga, N.
C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama,
M., Nakano, S., Shimada, N., Koumo, C., and Nomiya,
K. (2003). Synthesis, structural characterization and antimicrobial activities
of 12 zinc(II) complexes with four thiosemicarbazone and two semicarbazone ligands. Journal of Inorganic Biochemistry,
96(2–3): 298-310.
22. Chandra, S.,
and Kumar, U. (2004). Spectral and magnetic studies on manganese(II),
cobalt(II) and nickel(II) complexes with Schiff bases. Spectrochimica
Acta Part a Molecular and Biomolecular Spectroscopy, 61(1–2): 219-224.
23. Klayman, D.
L., Bartosevich, J. F., Griffin, T. S., Mason, C. J.,
and Scovill, J. P. (1979). 2-Acetylpyridine thiosemicarbazones. 1. A new class
of potential antimalarial agents. Journal of Medicinal Chemistry, 22(7):
855-862.
24. Jain, S. K.,
and Mishra, P. (2010). Synthesis of some 2-amino-5-aryl-1,3,4-thiadiazoles. Asian
Journal of Chemistry, 12(4): 1341-1343.
25. El-Sawaf, A. K., West, D. X., El-Saied, F. A., and El-Bahnasawy, R. M. (1997). Iron(III), Cobalt(II), Nickel(II),
Copper(II) and Zinc(II) complexes of 4-formylantipyrine thiosemi
carbazone. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry,
27(8): 1127-1147.