Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1392

 

Review Article

 

The potential of natural adsorbents for ammoniacal nitrogen removal in Malaysia’s industrial wastewater: A mini review

 

Nurul Izzah Adnan1, Mohammad Arif Budiman Pauzan1*, Syazwan Hanani Meriam Suhaimy1, Noorul Hudai Abdullah2, and Norfadhilatuladha Abdullah3

 

1Department of Physics and Chemistry, Faculty of Applied Sciences and Technology (FAST), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, 84600 Pagoh, Muar, Johor, MALAYSIA

2Centre of Diploma Studies, Faculty of Engineering Technology (FTK), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, 84600 Pagoh, Muar, Johor, MALAYSIA

3Kinematic Resources Sdn Bhd, 25-3, Jalan PJS 5/30, 46150 Petaling Jaya, Selangor, MALAYSIA

 

*Corresponding author: arifp@uthm.edu.my

 

Received: 17 October 2024; Revised: 28 March 2025; Accepted: 13 April 2025; Published: 31 August 2025

 

Abstract

Ammonia pollution in wastewater poses a significant environmental challenge thus adversely affecting both water quality and public health especially in developing countries like Malaysia. This review seeks to highlight the potential of various natural adsorbents for effective ammonia removal, focusing specifically on their suitability within the Malaysian context. The findings reveal that locally available materials such as coconut husk, palm oil biomass, biochar and algae possess substantial ammonia adsorption capacities which employ mechanisms like ion exchange and other physicochemical interactions. Notably, modified coconut husk and activated carbon produced from agricultural waste have shown impressive ammonia removal efficiencies reaching up to 88.6%. The implications of this research are considerable. Incorporating these natural adsorbents into wastewater treatment strategies not only improves ammonia removal but also supports sustainability by utilizing agricultural and industrial by-products, thus addressing both pollution and waste management issues. Additionally, this review underscores the importance of aligning these practices with environmental regulations of Malaysia. Future research should concentrate on optimizing adsorption conditions, investigating the regeneration capabilities of these natural materials, and developing hybrid treatment systems to enhance nitrogen removal efficiency in various wastewater contexts. By leveraging local resources and promoting environmentally friendly solutions, Malaysia can advance towards a more sustainable approach to managing industrial wastewater and mitigating the effects of ammonia pollution on sensitive ecosystems.

 

Keywords: ammonia removal, wastewater treatment, natural adsorbents, coconut husk, palm oil biomass



Reference

1.      Gaur, V. K., Sharma, P., Sirohi, R., Awasthi, M. K., Dussap, C.-G., and Pandey, A. (2020). Assessing the impact of industrial waste on environment and mitigation strategies: a comprehensive review. Journal of Hazardous Materials, 398: 123019.

2.      Singh, A. (2021). A review of wastewater irrigation: environmental implications. Resources, Conservation and Recycling, 168: 105454.

3.      Shah, S. N. (2022). Impact of industrial pollution on our society. Pakistan Journal of Science, 73(1): 646.

4.      Ehigiamusoe, K. U., Lean, H. H., and Somasundram, S. (2024). Analysis of the environmental impacts of the agricultural, industrial, and financial sectors in Malaysia. Energy & Environment, 35(5): 2329-2356.

5.      Nawawi, M. N. B., Samsudin, H. B., Saputra, J., Szczepańska-Woszczyna, K., and Kot, S. (2022). The effect of formal and informal regulations on industrial effluents and firm compliance behavior in Malaysia. Production Engineering Archives, 28(2): 193-200.

6.      Kurniawan, S. B., Ahmad, A., Rahim, N. F. M., Said, N. S. M., Alnawajha, M. M., Imron, M. F., Abdullah, S. R. S., Othman, A. R., Ismail, N. ‘., and Hasan, H. A. (2021). Aquaculture in Malaysia: Water-related environmental challenges and opportunities for cleaner production. Environmental Technology & Innovation, 24: 101913.

7.      Malone, T. C., and Newton, A. (2020). The globalization of cultural eutrophication in the coastal ocean: Causes and consequences. Frontiers in Marine Science, 7: 670.

8.      Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical, and biological techniques for mitigation strategies. Environmental Challenges, 12: 100733.

9.      Department of Environment Malaysia. (2010). Environmental Requirements: A guide for Investors. Ministry of Natural Resources and Environment.

10.   Vadysinghe, A. N., Attygalle, U., Ekanayake, E. M. K. B., and Dharmasena, E. G. I. A. (2021). Ammonia exposure. American Journal of Forensic Medicine & Pathology, 42(4): 373-378.

11.   Umi, W. A. D., Yusoff, F. M., Aris, A. Z., Sharip, Z., and Sinev, A. Y. (2020). Planktonic Microcrustacean community structure varies with trophic status and environmental variables in tropical shallow lakes in Malaysia. Diversity, 12(9): 322.

12.   Chee, S. Y., Firth, L. B., Then, A. Y., Yee, J. C., Mujahid, A., Affendi, Y. A., Amir, A. A., Lau, C. M., Ooi, J. L. S., Quek, Y. A., Tan, C. E., Yap, T. K., Yeap, C. A., and McQuatters-Gollop, A. (2021). Enhancing uptake of nature-based solutions for informing coastal sustainable development policy and planning: A Malaysia case study. Frontiers in Ecology and Evolution, 9: 708507.

13.   ​Blanton, A., Ewane, E. B., McTavish, F., Watt, M. S., Rogers, K., Daneil, R., Vizcaino, I., Gomez, A. N., Arachchige, P. S. P., King, S. A. L., Galgamuwa, G. A. P., Peńaranda, M. L. P., al-Musawi, L., Montenegro, J. F., Broadbent, E. N., Zambrano, A. M. A., Hudak, A. T., Swangjang, K., Valasquez-Camacho, L. F., Vorenberg, J. H. P., Srinivasan, S., Abdullah, M. M., Charabi, Y. A. R., Wan Mohd Jaafar, W. S., Musa, F., Sidik, F., Al-Awadhi, T., Ali, T., Doaemo, W., and Mohan, M. (2024). Ecotourism and mangrove conservation in Southeast Asia: Current trends and perspectives. Journal of Environmental Management, 365: 121529.

14.   Abas, A., Aiyub, K., and Idris, N. A. (2021). Systematic review on ecosystem services (ES) of ecotourism in South-East Asia (ASEAN). Problemy Ekorozwoju, 16(1): 113-121.

15.   Hewitt, C. N., MacKenzie, A. R., Di Carlo, P., Di Marco, C. F., Dorsey, J. R., Evans, M., Fowler, D., Gallagher, M. W., Hopkins, J. R., Jones, C. E., Langford, B., Lee, J. D., Lewis, A. C., Lim, S. F., McQuaid, J., Misztal, P., Moller, S. J., Monks, P. S., Nemitz, E., Oram, D. E., Owen, S. M., Phillips, G. J., Pugh, T. A. M., Pyle, J. A., Reeves, C. E., Ryder, J., Siong, J., Skiba, U., and Stewart, D. J. (2009). Nitrogen management is essential to prevent tropical oil palm from causing ground-level ozone pollution. Proceedings of the National Academy of Sciences, 106(44): 18447-18451.

16.   Ma, A. N., and Ong, A. S. H. (1985). Pollution control in palm oil mills in Malaysia. Journal of the American Oil Chemists' Society, 62(2): 261–266.

17.   Habib, A., Yusoff, F. M., Phang, S.-M., Kamarudin, M. S., and Mohmed S. (1998). Chemical characteristics and essential nutrients of agro-industrial effluents in Malaysia. Asian Fisheries Science, 11: 279-286.

18.   Hamilton, R. L., Trimmer, M., Bradley, C., and Pinay, G. (2016). Deforestation for oil palm alters the fundamental balance of the soil N cycle. Soil Biology and Biochemistry, 95: 223-232.

19.   Salahudin, N., Abdullah, M. M. B., and Shahrul, N. A. N. (2013). Emissions: Sources, Policies, and Development in Malaysia.

20.   Ramli, S., Jaafar, J., and Mohamad, R. B. R. (2022). Study on nitrogen removal capability of selected regional sewage treatment plants in Klang Valley, Malaysia. In Proceedings of the 2nd International Conference on Environmental Sustainability and Climate Change (pp. 1385–1396).

21.   Sellan, G., Majalap, N., Thompson, J., Dise, N. B., Field, C. D., Pappalardo, S. E., Codato, D., Robert, R., and Brearley, F. Q. (2023). Assessment of wet inorganic nitrogen deposition in an oil palm plantation-forest matrix environment in Borneo. Atmosphere, 14(2): 297.

22.   Nishina, K., Melling, L., Toyoda, S., Itoh, M., Terajima, K., Waili, J. W., Wong, G. X., Kiew, F., Aeries, E. B., Hirata, R., Takahashi, Y., and Onodera, T. (2023). Dissolved N2O concentrations in oil palm plantation drainage in a peat swamp of Malaysia. Science of The Total Environment, 872: 162062.

23.   Othman, N., Alpandi, R. M., Din, N., and Benalywa, Z. A. (2023). Palm oil export and environmental pollution in Malaysia: Evidence from ARDL approach. Environment-Behaviour Proceedings Journal, 8(26): 45-50.

24.   Wae AbdulKadir, W. A. F., Che Omar, R., Roslan, R., and Baharuddin, I. N. Z. (2023). Landfill leachate treatment in Malaysia: Continuous circulation motion using mixed agricultural wastes with an open grid-like Luffa’s configuration. Journal of Water Process Engineering, 56: 104532.

25.   Suhani, N., Mohamed, R. M. S. R., Latiff, A. A., Nasir, N., Ahmad, B., Oyekanmi, A. A., Awang, H., and Daud, Z. (2020). Removal of COD and ammoniacal nitrogen by banana trunk fiber with chitosan adsorbent. Malaysian Journal of Fundamental and Applied Sciences, 16(2): 243-247.

26.   Lestariningsih, D., Nuryoto, and Kurniawan, T. (2021). Ammonium adsorption from wastewater using Malang natural zeolites. AIP Conference Proceedings, 2021: 020017.

27.   Vikas, Y. (2021). Removal of ammonia from water using natural zeolite adsorbent. SGS-Engineering & Sciences, 1(1): 10.

28.   Subarim, F., Sheikh Abdullah, S. R., Abu Hasan, H., and Abd. Rahman, N. (2018). Biological Removal of ammonia by naturally grown bacteria in sand biofilter. Malaysian Journal of Analytical Science, 22(2): 346-352.

29.   Aguirre, J. (2023). Nitrogen compounds. In The Kjeldahl Method: 140 Years (pp. 35–52). Cham: Springer Nature Switzerland.

30.   Georg-August-University Göttingen. (2023). Rhenium mediated formation of n-containing organic compounds by nitride transfer.  Doctoral thesis.

31.   Basaraba, I., and Sukhodolska, I. (2023). The nitrogen compounds concentration in water ecosystems of different types. Biology & Ecology, 9(1): 75-84.

32.   Ji, W., Tian, Y., Cai, M., Jiang, B., Cheng, S., Li, Y., Zhou, Q., Li, B., Chen, B., Zheng, X., Li, W., and Li, A. (2022). Simultaneous determination of dissolved organic nitrogen, nitrite, nitrate, and ammonia using size exclusion chromatography coupled with nitrogen detector. Journal of Environmental Sciences, 125: 309-318.

33.   Ryu, H., Thompson, D., Huang, Y., Li, B., and Lei, Y. (2020). Electrochemical sensors for nitrogen species: A review. Sensors and Actuators Reports, 2(1): 100022.

34.   Zhou, L., Al-Dhabi, N. A., Zhang, X., Gao, B., Zhu, Z., Ruth, G., Zhang, X., Tang, W., and Wu, P. (2024). Advanced nitrogen removal from municipal wastewater by autotrophy-heterotrophy coupled anammox system in a novel simultaneous microaerobic/limited-oxygen SBR: Interspecific correlation network. Chemical Engineering Journal, 485: 150092.

35.   Tang, X., Wang, Y., Zhang, Y., Liu, J., Fu, Y., Chen, R., Wang, X., and Xing, B. (2024). Research progress, problems, and future prospects of a new combined anaerobic ammonia oxidation and nitrogen removal process. Frontiers of Chinese Water Sciences, 2(1): 4-15.

36.   Wu, L., Zhang, Y., Yin, J., Luo, A., Tian, Y., Liu, Y., Xu, J., and Peng, Y. (2024). Achieving advanced nitrogen removal from mature landfill leachate in continuous flow system involving partial nitrification-anammox and denitrification. Bioresource Technology, 399: 130553.

37.   Huang, L., Li, W., Chen, Z., Chen, Y., Li, Y., Wang, X., and Yuan, Y. (2024). Enhancing nitrogen removal of real industrial nitrogen-containing wastewater by a simultaneous partial denitrification-anammox process with exogenous glycine betaine adding. Journal of Water Process Engineering, 58: 104855.

38.   Ubaidillah, M. F., Mohamed Kutty, S. R., and Shekh Imaduddin Hakmi, S. N. (2021). Extended aeration activated sludge process in treating ammonia-nitrogen by-products from petrochemical plant. AIP Conference Proceedings, 2339(1): 020169.

39.   Ramli, S., Jaafar, J., and Mohamad, R. B. R. (2022). Study on nitrogen removal capability of selected regional sewage treatment plants in Klang Valley, Malaysia. In Proceedings of the 2nd International Conference on Environmental Sustainability and Climate Change (pp. 1385–1396).

40.   Ibrahim, I., and Izzati, R. H. (2013). Study of Aeration Rate Effects on Total Nitrogen Removal from Domestic Wastewater. Bachelor thesis. Universiti Tun Hussein Onn Malaysia.

41.   Anggoro, D. D., Prayoga, B. N., Salsabiil, N., and Buchori, L. (2023). Study of adsorption capacity on textile dyes and heavy metal (Pb2+) using modified natural zeolite. AIP Conference Proceedings, 2023: 050009.

42.   Gutiérrez-Sánchez, P., Hrichi, A., Garrido-Zoido, J. M., Álvarez-Torrellas, S., Larriba, M., Gil, M. V., Amor, H. B., and García, J. (2023). Natural clays as adsorbents for the efficient removal of antibiotic ciprofloxacin from wastewaters: Experimental and theoretical studies using DFT method. Journal of Industrial and Engineering Chemistry, 134: 137-151.

43.   Al-Najar, J. A., Al-Humairi, S. T., Lutfee, T., Balakrishnan, D., Veza, I., Soudagar, M. E. M., and Fattah, I. M. R. (2023). Cost-effective natural adsorbents for remediation of oil-contaminated water. Water (Basel), 15(6): 1186.

44.   Alorabi, A. Q., Hassan, M. S., Alam, M. M., Zabin, S. A., Alsenani, N. I., and Baghdadi, N. E. (2021). Natural clay as a low-cost adsorbent for crystal violet dye removal and antimicrobial activity. Nanomaterials, 11(11): 2789.

45.   Akter, S., Naher, U. H. B., and Sultana, R. (2024). Development of low-cost natural adsorbent for the abatement of pollution from tannery effluent – a green technology. Cleaner Water, 1: 100005.

46.   Tamrakar, S., Verma, R., Sar, S. K., and Verma, C. (2019). Cost-effective natural adsorbents for the removal of fluoride: A green approach. Rasayan Journal of Chemistry, 12(2): 455-463.

47.   Gin, N., Buteh, D., Manga, P., Daniel, S., Ranga, Y., Abdulmumini, H., SarkinNoma, A., Dangana, B., and Alhassan, A. (2023). The effectiveness of natural adsorbent for removal of dye using two isotherm models. Science World Journal, 18(3): 332-340.

48.   Tymchuk, A. F., Streltsova, O. O., and Purich, A. D. (2023). Sorption of apolar liquids by natural high molecular compounds. Odesa National University Herald. Chemistry, 28(1): 58-65.

49.   Du, P., Xu, L., Ke, Z., Liu, J., Wang, T., Chen, S., Mei, M., Li, J., and Zhu, S. (2022). A highly efficient biomass-based adsorbent fabricated by graft copolymerization: Kinetics, isotherms, mechanism and coadsorption investigations for cationic dye and heavy metal. Journal of Colloid and Interface Science, 616: 12-22.

50.   Helard, D., Indah, S., Sari, C. M., and Mariesta, H. (2018). The adsorption and regeneration of natural pumice as low-cost adsorbent for nitrate removal from water. Journal of Geoscience, Engineering, Environment, and Technology, 3(2): 86.

51.   Khelifi, S., Choukchou-Braham, A., Oueslati, M. H., Sbihi, H. M., and Ayari, F. (2020). Identification and use of local iron-ores deposit as adsorbent: Adsorption study and photochemical regeneration. Desalination and Water Treatment, 206: 429-438.

52.   Dutta, T., Kim, T., Vellingiri, K., Tsang, D. C., Shon, J., Kim, K., and Kumar, S. (2019). Recycling and regeneration of carbonaceous and porous materials through thermal or solvent treatment. Chemical Engineering Journal, 364: 514-529.

53.   Maia, L., Da Silva, A., Zanini, N., Carvalho, L., Pereira, P., Medeiros, S., Rosa, D., and Mulinari. (2024). Natural fiber-based adsorbents for heavy metals and dyes removal. In Materials from Natural Sources (pp. 46–92).

54.   Benettayeb, A., Ahamadi, S., Ghosh, S., Malbenia John, M., Mitchel, C. R., and Haddou, B. (2024). Natural adsorbents for the removal of emerging pollutants and its adsorption mechanisms. In Sustainable Technologies for Remediation of Emerging Pollutants from Aqueous Environment (pp. 63–78).

55.   Bostan, R., Glevitzky, M., Varvara, S., Dumitrel, G., Rusu, G. I., Popa, M., Glevitzky, I., and Vică, M. L. (2024). Utilization of natural adsorbents in the purification of used sunflower and palm cooking oils. Applied Sciences, 14(11): 4417.

56.   Zhao, Y., Wang, W., and Yi, H. (2020). Mineral adsorbents and characteristics. In Adsorption at natural minerals/water interfaces (pp. 1-54).

57.   Kozera-Sucharda, B., Gworek, B., Kondzielski, I., and Chojnicki, J. (2021). The comparison of the efficacy of natural and synthetic aluminosilicates, including zeolites, in concurrent elimination of lead and copper from multi-component aqueous solutions. Processes, 9(5): 812.

58.   Kordala, N., and Wyszkowski, M. (2024). Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules, 29(5): 1069.

59.   Vasconcelos, A. A., Len, T., De Nazaré De Oliveira, A., Da Costa, A. A. F., Da Silva Souza, A. R., Da Costa, C. E. F., Luque, R., Da Rocha Filho, G. N., Noronha, R. C. R., and Nascimento, L. a. S. D. (2023). Zeolites: A theoretical and practical approach with uses in (bio)chemical processes. Applied Sciences, 13(3): 1897.

60.   Muscarella, S. M., Badalucco, L., Cano, B., Laudicina, V. A., and Mannina, G. (2021). Ammonium adsorption, desorption, and recovery by acid and alkaline treated zeolite. Bioresource Technology, 341:125812.

61.   Jiang, N., Shang, R., Heijman, S. G. J., and Rietveld, L. C. (2020). Adsorption of triclosan, trichlorophenol, and phenol by high-silica zeolites: adsorption efficiencies and mechanisms. Separation and Purification Technology, 235: 116152

62.   Tang, H., Xu, X., Wang, B., Lv, C., and Shi, D. (2020). Removal of ammonium from swine wastewater using synthesized zeolite from fly ash. Sustainability, 12(8): 3423.

63.   Qin, Y., Zhu, X., Su, Q., Anumah, A., Gao, B., Lyu, W., Zhou, X., Xing, Y., and Wang, B. (2019). Enhanced removal of ammonium from water by ball-milled biochar. Environmental Geochemistry and Health, 42(6): 1579-1587.

64.   Kamyab, S. M., and Williams, C. D. (2021). Pure Zeolite LTJ synthesis from kaolinite under hydrothermal conditions and its ammonium removal efficiency. Microporous and Mesoporous Materials, 318: 111006.

65.   Guida, S., Potter, C., Jefferson, B., and Soares, A. (2020). Preparation and evaluation of zeolites for ammonium removal from municipal wastewater through ion exchange process. Scientific Reports, 10(1): 12426.

66.   Pauzan, M. A. B., Puteh, M. H., Yuzir, A., Othman, M. H. D., Wahab, R. A., and Abideen, M. Z. (2019). Optimizing ammonia removal from landfill leachate using natural and synthetic zeolite through statically designed experiment. Arabian Journal for Science and Engineering, 45(5): 3657-3669.

67.   Ismail, M. H. S., Dalang, S., Syam, S., and Izhar, S. (2013). A study on zeolite performance in waste treating ponds for treatment of palm oil mill effluent. Journal of Water Resource and Protection, 5(7): 18-27.

68.   Farraji, H., Mohammadpour, R., and Zaman, N. Q. (2021). Post-treatment of palm oil mill effluent using zeolite and wastewater. Journal of Oil Palm Research, 33(1): 103-118.

69.   Yatim, N. N. I., Ishak, N. N. A., Mohamad, N. N. A., Abuabdou, N. S. M. A., and Hamzah, N. S. (2023). Heat-treated zeolite as an effective adsorbent for final treatment of palm oil mill effluent. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 110(1): 1-16.

70.   Vaičiukynienė, D., Mikelionienė, A., Baltušnikas, A., Kantautas, A., and Radzevičius, A. (2020). Removal of ammonium ion from aqueous solutions by using unmodified and H₂O₂-modified zeolitic waste. Scientific Reports, 10(1): 352.

71.   Inglezakis, V. J. (2005). The concept of capacity in zeolite ion-exchange systems. Journal of Colloid and Interface Science, 281(1): 68-79.

72.   Castro, C., Shyu, H., Xaba, L., Bair, R., and Yeh, D. (2021). Performance and onsite regeneration of natural zeolite for ammonium removal in a field-scale non-sewered sanitation system. Science of the Total Environment, 776: 145938.

73.   Techkem Water Technologies Sdn Bhd. (n.d.). Top Wastewater Chemical Treatment Company in Malaysia. Techkem Water Technologies.

74.   Millati, R., Cahyono, R. B., Ariyanto, T., Azzahrani, I. N., Putri, R. U., and Taherzadeh, M. J. (2019). Agricultural, industrial, municipal, and forest wastes. In sustainable resource recovery and zero waste approaches (pp. 1–22).

75.   Othmani, A., Magdouli, S., Kumar, P. S., Kapoor, A., Chellam, P. V., and Gökkuş, Ö. (2021). Agricultural waste materials for adsorptive removal of phenols, chromium (vi), and cadmium (II) from wastewater: A review. Environmental Research, 204: 111916.

76.   Asadu, C. O., Anthony, E. C., Elijah, O. C., Ike, I. S., Onoghwarite, O. E., and Okwudili, U. E. (2021). Development of an adsorbent for the remediation of crude oil-polluted water using stearic acid grafted coconut husk (Cocos Nucifera) composite. Applied Surface Science Advances, 6: 100179.

77.   James, A., and Yadav, D. (2021). Valorization of coconut waste for facile treatment of contaminated water: A comprehensive review (2010–2021). Environmental Technology & Innovation, 24: 102075.

78.   Nallakukkala, S., Lal, B., and Shaik, F. (2021). Kinetic and isothermal investigations in elimination of iron metal from aqueous mixture by using natural adsorbent. International Journal of Environmental Science and Technology, 18(7): 1761-1772.

79.   Azreen, I., Lija, Y., and Zahrim, A. Y. (2017, June). Ammonia nitrogen removal from aqueous solution by local agricultural wastes. IOP Conference Series: Materials Science and Engineering, 206: 012077.

80.   Huang, X., Bai, J., Li, K., Zhao, Y., Tian, W., and Hu, C. (2020, June). Preparation of Clay/Biochar Composite Adsorption Particle and Performance for Ammonia Nitrogen Removal from Aqueous Solution. Journal of Ocean University of China, 19(3): 729-739.

81.   Oyekanmi, A. A., Abdurahman, N. H., Yunus, R. M., Rabe, W., Altaee, A., and Atilhan, M. (2019). Adsorption of pollutants from palm oil mill effluent using natural adsorbents: Optimization and isotherm studies. Desalination and Water Treatment, 169, 181–190.

82.   Mariana, M., Nasir, M. S. M., Abdullah, M. H. R. O., Kadir, W. N. A., and Yusop, Z. (2021). Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. Journal of Water Process Engineering, 40: 102221.

83.   Wang, N., Huang, D., Shao, M., Sun, R., and Xu, Q. (2022). Use of activated carbon to reduce ammonia emissions and accelerate humification in composting digestate from food waste. Bioresource Technology, 347: 126701.

84.   Zhang, F., Liang, M., Ye, C., and Zhang, C. (2020). Removal of ammonia and hydrogen sulfide from livestock farm by copper modified activated carbon. Global Nest Journal, 22(2): 165-172.

85.   Liu, Z., Lompe, K. M., Mohseni, M., Bérubé, P. R., Sauvé, S., and Barbeau, B. (2020). Biological ion exchange as an alternative to biological activated carbon for drinking water treatment. Water Research, 168: 115148.

86.   Alves, A. T., Lasmar, D. J., de Andrade Miranda, I. P., da Silva Chaar, J., and dos Santos Reis, J. (2021). The potential of activated carbon in the treatment of water for human consumption: A study of the state of the art and its techniques used for its development. Advances in Bioscience and Biotechnology, 12(6): 143-153.

87.   Sinha, P., Banerjee, S., and Kar, K. K. (2020). Characteristics of activated carbon. In activated carbon for polymer-filled composites (pp. 125–154).

88.   Ani, J. U., Akpomie, K. G., Okoro, U. C., Aneke, L. E., Onukwuli, O. D., and Ujam, O. T. (2020). Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Applied Water Science, 10(2): 69.

89.   Gan, Y. X. (2021). Activated carbon from biomass sustainable sources. C (Basel), 7(2): 39.

90.   Joseph, J., Sajeesh, A. K., Nagashri, K., Gladis, E. H. E., Sharmila, T. M., and Dhanaraj, C. J. (2021). Determination of ammonia content in various drinking water sources in Malappuram District, Kerala, and its removal by adsorption using agricultural waste materials. Materials Today: Proceedings, 45: 811-819.

91.   Rungrodnimitchai, S., and Hiranphinyophat, S. (2020). The modification of charcoal for ammonia removal. Key Engineering Materials, 834, 3–9.

92.   Elhetawy, A. I. G., Abdel-Rahim, M. M., Sallam, A. E., Shahin, S. A., Lotfy, A. M. A., and El Basuini, M. F. (2023). Dietary wood and activated charcoal improved ammonium removal, heavy metals detoxification, growth performance, blood biochemistry, carcass traits, and histopathology of European seabass. Aquaculture Nutrition, 2023: 1-17.

93.   Gaouar Yadi, M., Benguella, B., Gaouar-Benyelles, N., and Tizaoui, K. (2016). Adsorption of ammonia from wastewater using low-cost bentonite/chitosan beads. Desalination and Water Treatment, 57(45): 21444-21454.

94.   Angelidaki, I., and Ahring, B. K. (1993). Effect of the clay mineral bentonite on ammonia inhibition of anaerobic thermophilic reactors degrading animal waste. Biodegradation, 3(4): 240362

95.   Zhao, M., Zhang, X., Han, Y., Li, H., and Yang, J. (2020). Mechanisms of Pb and/or Zn adsorption by different biochars: biochar characteristics, stability, and binding energies. Science of the Total Environment, 717: 136894.

96.   Zhang, X., Wang, Y., Liu, H., Li, Z., and Chen, G. (2022). Microalgae-derived nanoporous biochar for ammonia removal in sustainable wastewater treatment. Journal of Environmental Chemical Engineering, 10(6): 108514.

97.   Pantoja, F., Beszédes, S., Gyulavári, T., Illés, E., Kozma, G., and László, Z. (2024). Ammonium ion removal from aqueous solutions in the presence of organic compounds, using biochar from banana leaves: Competitive isotherm models. Heliyon, 10(10): e31495.

98.   Ahmad, T., Sethupathi, S., Bashir, M. J. K., and Tan, S. Y. (2021). Evaluation of various preparation methods of oil palm fiber (OPF) biochar for ammonia-nitrogen (NH3-N) removal. IOP Conference Series: Earth and Environmental Science, 945: 012020).

99.   Sohaimi, K. S. A., Aziz, N., Yusoff, N. A., Zainol, N. A., Rohaizad, N. M., and Sharuddin, S. S. N. (2023). Ammonium adsorption-desorption by using rice straw biochar. AIP Conference Proceedings: 070003.

100. Ismail, N. M., Safie, N. N., Subramaniam, M., Junaidi, N. S., and Yaser, A. Z. (2022). Comparison between fresh and degraded biochar for ammonium ion (NH₄⁺) removal from wastewater. In waste management, processing and valorisation (pp. 119-133).

101. Ahmad, R., Sohaimi, K. S. A., Mohamed, A. R., Zailani, S. N., Salleh, N. H. M., and Azizan, N. H. (2021). Kinetic and isotherm studies of empty fruit bunch biochar on ammonium adsorption. IOP Conference Series: Earth and Environmental Science, 646(1): 012052.

102. Panwar, N. L., Pawar, A., and Salvi, B. L. (2019). Comprehensive review on production and utilization of biochar. SN Applied Sciences, 1(2): 168.

103. Sakhiya, A. K., Anand, A., and Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2(3): 253-285.

104. Gayathiri, M., Pulingam, T., Lee, K. T., and Sudesh, K. (2022). Activated carbon from biomass waste precursors: factors affecting production and adsorption mechanism. Chemosphere, 294: 133764.

105. Vilén, A., Laurell, P., and Vahala, R. (2022). Comparative life cycle assessment of activated carbon production from various raw materials. Journal of Environmental Management, 324: 116356.

106. Feng, L., Yan, B., Wang, C., Zhang, Q., Jiang, S., and He, S. (2022). Preparation of porous activated carbon materials and their application in supercapacitors. Springer, 587-612.

107. Sevilla, M., Díez, N., and Fuertes, A. B. (2021). More sustainable chemical activation strategies for the production of porous carbons. ChemSusChem, 14(1): 94-117.

108. Jawad, A. H., Bardhan, M., Islam, M. A., Islam, M. A., Syed-Hassan, S. S. A., Surip, S., ALOthman, Z. A., and Khan, M. R. (2020). Insights into the modeling, characterization, and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H₃PO₄ Activation. Surfaces and Interfaces, 21: 100688.

109. Ren, Z., Jia, B., Zhang, G., Fu, X., Wang, Z., Wang, P., and Lv, L. (2020). Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low-temperature wastewater. Chemosphere, 262: 127895.

110. Feng, D., Guo, D., Zhang, Y., Sun, S., Zhao, Y., Chang, G., Guo, Q., and Qin, Y. (2020). Adsorption-enrichment characterization of CO₂ and dynamic retention of free nh₃ in functionalized biochar with H₂O/NH₃·H₂O activation for promotion of new ammonia-based carbon capture. Chemical Engineering Journal, 409: 128193.

111. Gupta, H., and Rani, M. (2003). Microbial biomass: An economical alternative for removal of heavy metals from wastewater. Indian Journal of Experimental Biology, 9(41): 945–966.

112. Valdman, E., and Leite, S. G. F. (2000). biosorption of Cd, Zn, and Cu by Sargassum sp. waste biomass. Bioprocess Engineering, 22(2): 171-173.

113. Fehrmann, C., and Pohl, P. (1993). Cadmium adsorption by the non-living biomass of microalgae grown in axenic mass culture. Journal of Applied Phycology, 5(6): 555-562.

114. Mishra, P. K., and Mukherji, S. (2012). Biosorption of diesel and lubricating oil on algal biomass. 3 Biotech, 2(4): 301-310.

115. Wang, X., Yu, H., Lv, J., and Changfu, Y. (2013). Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp. Journal of Environmental Biology, 34: 421-425.

116. Ashour, M., Alprol, A. E., Heneash, A. M. M., Saleh, H., Abualnaja, K. M., Alhashmialameer, D., and Mansour, A. T. (2021). Ammonia bioremediation from aquaculture wastewater effluents using Arthrospira Platensis NIOF17/003: Impact of biodiesel residue and potential of ammonia-loaded biomass as rotifer feed. Materials, 14(18):5460.

117. Otero, M., Freire, L., Gómez-Cuervo, S., and Ávila, C. (2024). Ammonium removal in wastewater treatments by adsorbent geopolymer material with granite wastes: Full-scale validation. Clean Technologies, 6(1): 339-364.

118. Alouani, M. E., Aouan, B., Rachdi, Y., Alehyen, S., Herradi, E. H. E., Saufi, H., Mabrouki, J., and Barka, N. (2022). Porous geopolymers as innovative adsorbents for the removal of organic and inorganic hazardous substances: A mini-review. International Journal of Environmental Analytical Chemistry, 1-13.

119. Chan, M. K., and Yeow, A. T. Z. (2021). Kinetic study of ammonia removal using activated rice husk. IOP Conference Series: Materials Science and Engineering, 1092(1): 012073.

120. Zhang, L.-J., Zhang, X., Liang, H.-F., Xie, Y., and Tao, H.-C. (2018). Ammonium removal by a novel magnetically modified excess sludge. Clean Technologies and Environmental Policy, 20(10): 2181-2189.

121. Šmelcerović, M., and Šmelcerović, M. (2018). Adsorption of ammonia by base-activated bentonite clay: Kinetic and equilibrium studies. Knowledge International Journal, 28(4): 1251-1257.

122. Abdelfattah, I., El-Saied, F. A., Almedolab, A. A., and El-Shamy, A. M. (2022). Biosorption as a perfect technique for purification of wastewater contaminated with ammonia. Applied Biochemistry and Biotechnology, 194(9): 4105-4134.

123. Sheikh, M., Vallčs, V., Valderrama, C., Cortina, J. L., and Rezakazemi, M. (2023). A mathematical model for ammonium removal and recovery from real municipal wastewater using a natural zeolite. Journal of Environmental Chemical Engineering, 11(5): 110833.

124. Husin, A., Hotmauli Aruan, F., Huda, A., Herlina, N., and Patumona Manalu, S. (2024). Ammonia adsorption process using sarulla natural zeolite from North Sumatera, Indonesia. E3S Web of Conferences, 519: 03028.

125. Lestariningsih, D., Nuryoto, and Kurniawan, T. (2021). Ammonium adsorption from wastewater using malang natural zeolites. AIP Conference Proceedings: 020017.

126. Abelta, G. A., Qadri, L. A., Febrina, M., Rajak, A., Maulana, S., Asagabaldan, M. A., and Taher, T. (2024). Enhanced ammonium adsorption from aqueous solutions using ethylenediaminetetraacetic acid (EDTA) modified lampung (Indonesia) natural zeolite: Isotherm, kinetic, and thermodynamic studies. Science and Technology Indonesia, 9(2): 224-234.

127. Zangeneh, A., Sabzalipour, S., Takdatsan, A., Yengejeh, R. J., and Khafaie, M. A. (2021). Ammonia removal from municipal wastewater by air stripping process: An experimental study. South African Journal of Chemical Engineering, 36: 134-141.

128. Ulu, F., and Kobya, M. (2020). Ammonia removal from wastewater by air stripping and recovery: Struvite and calcium sulfate precipitations from anesthetic gases manufacturing wastewater. Journal of Water Process Engineering, 38: 101641.

129. Sharghi, E. A., and Davarpanah, L. (2022). Optimization of chemical coagulation–flocculation process of detergent manufacturing plant wastewater treatment for full-scale applications: a case study. Desalination and Water Treatment, 262: 38-53.

130. Upadhyayula, S., and Chaudhary, A. (2021). Advanced Materials and Technologies for Wastewater Treatment. Boca Raton, FL: CRC Press.

131. El-Taweel, R. M., Mohamed, N., Alrefaey, K. A., Husien, S., Abdel-Aziz, A., Salim, A. I., Mostafa, N. G., Said, L. A., Fahim, I. S., and Radwan, A. G. (2023).  A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models, RSM, and ANN. Current Research in Green and Sustainable Chemistry, 6: 100358.

132. Zahrim, A., Azreen, I., Jie, S., Yoiying, C., Felijia, J., Hasmilah, H., Gloriana, C., and Khairunis, I. (2018). Nanoparticles enhanced coagulation of biologically digested leachate. In nanotechnology in water and wastewater treatment (pp. 205–241).

133. Rył, A., and Owczarz, P. (2021). Thermoinduced aggregation of chitosan systems in perikinetic and orthokinetic regimes. Carbohydrate Polymers, 255: 117377.

134. Siciliano, A., Limonti, C., Curcio, G. M., and Molinari, R. (2020). Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability, 12(18): 7538.

135. Ma, W., Han, R., Zhu, L., Zhang, W., Zhang, H., Jiang, L., and Chen, L. (2023). Peroxymonosulfate enhanced Fe(III) coagulation coupled with membrane distillation for ammonia recovery: Membrane fouling control process and mechanism. Desalination, 565: 116859.

136. Wongcharee, S., Aravinthan, V., and Erdei, L. (2020). Removal of natural organic matter and ammonia from dam water by enhanced coagulation combined with adsorption on powdered composite nano-adsorbent. Environmental Technology & Innovation, 17: 100557.

137. Mohtar, S. S., Sharuddin, S. S. N., Saman, N., Lye, J. W. P., Othman, N. S., and Mat, H. (2020). A simultaneous removal of ammonium and turbidity via an adsorptive coagulation for drinking water treatment process. Environmental Science and Pollution Research, 27(16): 20173-20186.

138. Liu, N., Sun, Z., Zhang, H., Klausen, L. H., Moonhee, R., and Kang, S. (2023). Emerging high-ammonia nitrogen wastewater remediation by biological treatment and photocatalysis techniques. Science of The Total Environment, 875: 162603.

139. John, E. M., Krishnapriya, K., and Sankar, T. V. (2020). Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture, 526: 735390.

140. Wan-Mohtar, W. A. A. Q. I., Khalid, N. I., Rahim, M. H. A., Luthfi, A. A. I., Zaini, N. S. M., Din, N. A. S., and Zaini, N. A. M. (2023). Underutilized malaysian agro-industrial wastes as sustainable carbon sources for lactic acid production. Fermentation, 9(10): 905.

141. Loh, L.-M., Yan, Y.-W., Yap, P.-W., Nadarajan, R., and Ong, A. S.-H. (2019). Palm oil mill effluent as an alternate carbon source for ammonia removal in wastewater treatment. Sains Malaysiana, 48(4): 871-876.

142. Maceiras, R., Feijoo, J., Perez-Rial, L., Alfonsin, V., and Falcon, P. (2024). Study of natural zeolites for hydrogen purification: CO₂ adsorption capacity and kinetic mechanism. Fuel, 376: 132732.

143. Gao, S., Peng, H., Song, B., Zhang, J., Wu, W., Vaughan, J., Zardo, P., Vogrin, J., Tulloch, S., and Zhu, Z. (2022). Synthesis of zeolites from low-cost feeds and its sustainable environmental applications. Journal of Environmental Chemical Engineering, 11(1): 108995.

144. Chia, S. R., Nomanbhay, S., Chew, K. W., Show, P. L., Milano, J., and Shamsuddin, A. H. (2022). Indigenous materials as catalyst supports for renewable diesel production in Malaysia. Energies, 15(8): 2835.

145. Choo, L. N. L. K., Ahmed, O. H., Razak, N. A., and Sekot, S. (2022). Improving nitrogen availability and Ananas Comosus L. Merr var. Moris productivity in a tropical peat soil using clinoptilolite zeolite. Agronomy, 12(11): 2750.

146. Razzak, S. A., Faruque, M. O., Alsheikh, Z., Alsheikhmohamad, L., Alkuroud, D., Alfayez, A., Hossain, S. M. Z., and Hossain, M. M. (2022). A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances, 7: 100168.

147. Tasić, Ž. Z., Bogdanović, G. D., and Antonijević, M. M. (2019). Application of natural zeolite in wastewater treatment: A review. Journal of Mining and Metallurgy A: Mining, 55(1): 67-79.

148. Awoh, E. T., Kiplagat, J., Kimutai, S. K., and Mecha, A. C. (2023). Current trends in palm oil waste management: A comparative review of Cameroon and Malaysia. Heliyon, 9(11): e21410.

149. Malik, M. A. I., Zeeshan, S., Khubaib, M., Ikram, A., Hussain, F., Yassin, H., and Qazi, A. (2024). A review of major trends, opportunities, and technical challenges in biodiesel production from waste sources. Energy Conversion and Management: X, 23: 100675.

150. Carbon Credit (2024). Malaysia’s first industrial biochar facility, carbon plus partners with crystaltrade for carbon removal optimization. Access from https://carboncredits.com/ malaysias-first-industrial-biochar-facility carbon-plus-partners-with-crystaltrade-for-carbon-removal-optimization/

151. Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., and Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790): 1017-1024.

152. Ooi, J., Lee, L. Y., Hiew, B. Y. Z., Thangalazhy-Gopakumar, S., Lim, S. S., and Gan, S. (2017). Assessment of fish scales waste as a low-cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. Bioresource Technology, 245: 656-664.

153. Duarte, E. B., and Rezende, L. C. S. H. (2023). Removal of methylene blue from a residue as a low-cost biosorbent: Peanut hull (Arachis Hypogaea). Periódico Eletrônico Fórum Ambiental da Alta Paulista, 19(1): 3505.