Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1392
Review
Article
The
potential of natural adsorbents for ammoniacal nitrogen removal in Malaysia’s
industrial wastewater: A mini review
Nurul
Izzah Adnan1, Mohammad Arif Budiman Pauzan1*, Syazwan Hanani Meriam Suhaimy1, Noorul Hudai Abdullah2, and Norfadhilatuladha
Abdullah3
1Department
of Physics and Chemistry, Faculty of Applied Sciences and Technology (FAST), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, 84600 Pagoh,
Muar, Johor, MALAYSIA
2Centre
of Diploma Studies, Faculty of Engineering Technology (FTK), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, 84600 Pagoh,
Muar, Johor, MALAYSIA
3Kinematic
Resources Sdn Bhd, 25-3,
Jalan PJS 5/30, 46150 Petaling Jaya, Selangor,
MALAYSIA
*Corresponding
author: arifp@uthm.edu.my
Received: 17 October
2024; Revised: 28 March 2025; Accepted: 13 April 2025; Published: 31 August 2025
Abstract
Ammonia
pollution in wastewater poses a significant environmental challenge thus
adversely affecting both water quality and public health especially in
developing countries like Malaysia. This review seeks to highlight the
potential of various natural adsorbents for effective ammonia removal, focusing
specifically on their suitability within the Malaysian context. The findings
reveal that locally available materials such as coconut husk, palm oil biomass,
biochar and algae possess substantial ammonia adsorption capacities which
employ mechanisms like ion exchange and other physicochemical interactions.
Notably, modified coconut husk and activated carbon produced from agricultural
waste have shown impressive ammonia removal efficiencies reaching up to 88.6%.
The implications of this research are considerable. Incorporating these natural
adsorbents into wastewater treatment strategies not only improves ammonia
removal but also supports sustainability by utilizing agricultural and
industrial by-products, thus addressing both pollution and waste management
issues. Additionally, this review underscores the importance of aligning these
practices with environmental regulations of Malaysia. Future research should
concentrate on optimizing adsorption conditions, investigating the regeneration
capabilities of these natural materials, and developing hybrid treatment
systems to enhance nitrogen removal efficiency in various wastewater contexts.
By leveraging local resources and promoting environmentally friendly solutions,
Malaysia can advance towards a more sustainable approach to managing industrial
wastewater and mitigating the effects of ammonia pollution on sensitive
ecosystems.
Keywords:
ammonia
removal, wastewater treatment, natural adsorbents, coconut husk, palm oil
biomass
Reference
1.
Gaur, V. K.,
Sharma, P., Sirohi, R., Awasthi, M. K., Dussap,
C.-G., and Pandey, A. (2020). Assessing the impact of industrial waste on
environment and mitigation strategies: a comprehensive review. Journal of
Hazardous Materials, 398: 123019.
2.
Singh, A.
(2021). A review of wastewater irrigation: environmental implications. Resources,
Conservation and Recycling, 168: 105454.
3.
Shah, S. N.
(2022). Impact of industrial pollution on our society. Pakistan Journal of
Science, 73(1): 646.
4.
Ehigiamusoe, K.
U., Lean, H. H., and Somasundram, S. (2024). Analysis
of the environmental impacts of the agricultural, industrial, and financial
sectors in Malaysia. Energy & Environment, 35(5): 2329-2356.
5.
Nawawi, M. N.
B., Samsudin, H. B., Saputra, J., Szczepańska-Woszczyna,
K., and Kot, S. (2022). The effect of formal and informal
regulations on industrial effluents and firm compliance behavior in Malaysia. Production Engineering Archives, 28(2):
193-200.
6.
Kurniawan, S.
B., Ahmad, A., Rahim, N. F. M., Said, N. S. M., Alnawajha,
M. M., Imron, M. F., Abdullah, S. R. S., Othman, A. R., Ismail, N. ‘., and
Hasan, H. A. (2021). Aquaculture in Malaysia: Water-related environmental
challenges and opportunities for cleaner production. Environmental
Technology & Innovation, 24: 101913.
7.
Malone, T. C., and
Newton, A. (2020). The globalization of cultural eutrophication in the coastal
ocean: Causes and consequences. Frontiers in Marine Science, 7: 670.
8.
Akinnawo, S. O. (2023). Eutrophication: Causes, consequences,
physical, chemical, and biological techniques for mitigation strategies. Environmental
Challenges, 12: 100733.
9.
Department of
Environment Malaysia. (2010). Environmental Requirements: A guide for
Investors. Ministry of Natural Resources and Environment.
10.
Vadysinghe, A. N., Attygalle, U., Ekanayake, E. M. K. B., and
Dharmasena, E. G. I. A. (2021). Ammonia exposure. American Journal of
Forensic Medicine & Pathology, 42(4): 373-378.
11.
Umi, W. A. D.,
Yusoff, F. M., Aris, A. Z., Sharip, Z., and Sinev, A. Y. (2020). Planktonic
Microcrustacean community structure varies with trophic status and
environmental variables in tropical shallow lakes in Malaysia. Diversity, 12(9):
322.
12.
Chee, S. Y.,
Firth, L. B., Then, A. Y., Yee, J. C., Mujahid, A., Affendi, Y. A., Amir, A.
A., Lau, C. M., Ooi, J. L. S., Quek, Y. A., Tan, C. E., Yap, T. K., Yeap, C.
A., and McQuatters-Gollop, A. (2021). Enhancing uptake of nature-based
solutions for informing coastal sustainable development policy and planning: A
Malaysia case study. Frontiers in Ecology and Evolution, 9: 708507.
13.
Blanton,
A., Ewane, E. B., McTavish, F., Watt, M. S., Rogers, K., Daneil, R., Vizcaino,
I., Gomez, A. N., Arachchige, P. S. P., King, S. A. L., Galgamuwa,
G. A. P., Peńaranda, M. L. P., al-Musawi, L., Montenegro, J. F., Broadbent, E.
N., Zambrano, A. M. A., Hudak, A. T., Swangjang, K.,
Valasquez-Camacho, L. F., Vorenberg, J. H. P.,
Srinivasan, S., Abdullah, M. M., Charabi, Y. A. R., Wan Mohd Jaafar, W. S.,
Musa, F., Sidik, F., Al-Awadhi, T., Ali, T., Doaemo, W., and Mohan, M. (2024). Ecotourism and mangrove
conservation in Southeast Asia: Current trends and perspectives. Journal of
Environmental Management, 365: 121529.
14.
Abas, A., Aiyub,
K., and Idris, N. A. (2021). Systematic review on ecosystem services (ES) of ecotourism
in South-East Asia (ASEAN). Problemy Ekorozwoju, 16(1): 113-121.
15.
Hewitt, C. N., MacKenzie,
A. R., Di Carlo, P., Di Marco, C. F., Dorsey, J. R., Evans, M., Fowler, D.,
Gallagher, M. W., Hopkins, J. R., Jones, C. E., Langford, B., Lee, J. D.,
Lewis, A. C., Lim, S. F., McQuaid, J., Misztal, P., Moller, S. J., Monks, P.
S., Nemitz, E., Oram, D. E., Owen, S. M., Phillips, G. J., Pugh, T. A. M.,
Pyle, J. A., Reeves, C. E., Ryder, J., Siong, J., Skiba, U., and Stewart, D. J.
(2009). Nitrogen management is essential to prevent tropical oil palm from causing ground-level ozone pollution. Proceedings of the National Academy of
Sciences, 106(44): 18447-18451.
16.
Ma, A. N., and Ong, A. S. H. (1985). Pollution control in palm oil mills in Malaysia. Journal
of the American Oil Chemists' Society, 62(2): 261–266.
17.
Habib, A.,
Yusoff, F. M., Phang, S.-M., Kamarudin, M. S., and Mohmed S. (1998). Chemical characteristics
and essential nutrients of agro-industrial effluents in Malaysia. Asian
Fisheries Science, 11: 279-286.
18.
Hamilton, R. L.,
Trimmer, M., Bradley, C., and Pinay, G. (2016). Deforestation for oil palm alters the fundamental balance of the soil N cycle.
Soil Biology and Biochemistry, 95: 223-232.
19.
Salahudin, N.,
Abdullah, M. M. B., and Shahrul, N. A. N. (2013).
Emissions: Sources, Policies, and Development in Malaysia.
20.
Ramli, S.,
Jaafar, J., and Mohamad, R. B. R. (2022). Study on nitrogen removal capability
of selected regional sewage treatment plants in Klang Valley, Malaysia. In Proceedings
of the 2nd International Conference on Environmental Sustainability and Climate
Change (pp. 1385–1396).
21.
Sellan, G., Majalap, N., Thompson, J., Dise, N. B., Field, C. D.,
Pappalardo, S. E., Codato, D., Robert, R., and
Brearley, F. Q. (2023). Assessment of wet inorganic nitrogen deposition in an
oil palm plantation-forest matrix environment in Borneo. Atmosphere, 14(2):
297.
22.
Nishina, K.,
Melling, L., Toyoda, S., Itoh, M., Terajima, K., Waili, J. W., Wong, G. X., Kiew, F., Aeries, E. B., Hirata,
R., Takahashi, Y., and Onodera, T. (2023). Dissolved N2O
concentrations in oil palm plantation drainage in a peat swamp of Malaysia. Science
of The Total Environment, 872: 162062.
23.
Othman, N., Alpandi, R. M., Din, N., and Benalywa,
Z. A. (2023). Palm oil export and environmental pollution in Malaysia: Evidence
from ARDL approach. Environment-Behaviour
Proceedings Journal, 8(26): 45-50.
24.
Wae AbdulKadir, W. A. F., Che Omar, R., Roslan, R., and Baharuddin,
I. N. Z. (2023). Landfill leachate treatment in Malaysia: Continuous circulation
motion using mixed agricultural wastes with an open grid-like Luffa’s configuration.
Journal of Water Process Engineering, 56: 104532.
25.
Suhani, N.,
Mohamed, R. M. S. R., Latiff, A. A., Nasir, N., Ahmad, B., Oyekanmi,
A. A., Awang, H., and Daud, Z. (2020). Removal of
COD and ammoniacal nitrogen by banana trunk fiber with chitosan adsorbent. Malaysian
Journal of Fundamental and Applied Sciences, 16(2): 243-247.
26.
Lestariningsih, D., Nuryoto, and
Kurniawan, T. (2021). Ammonium adsorption from wastewater using Malang natural
zeolites. AIP Conference Proceedings, 2021: 020017.
27.
Vikas, Y.
(2021). Removal of ammonia from water using natural zeolite adsorbent. SGS-Engineering
& Sciences, 1(1): 10.
28.
Subarim, F., Sheikh Abdullah, S. R., Abu Hasan, H., and
Abd. Rahman, N. (2018). Biological Removal of ammonia by naturally grown
bacteria in sand biofilter. Malaysian Journal of Analytical Science, 22(2):
346-352.
29.
Aguirre, J.
(2023). Nitrogen compounds. In The Kjeldahl Method: 140 Years (pp.
35–52). Cham: Springer Nature Switzerland.
30.
Georg-August-University
Göttingen. (2023). Rhenium mediated formation of n-containing organic compounds
by nitride transfer. Doctoral thesis.
31.
Basaraba, I., and
Sukhodolska, I. (2023). The nitrogen compounds
concentration in water ecosystems of different types. Biology & Ecology,
9(1): 75-84.
32.
Ji, W., Tian,
Y., Cai, M., Jiang, B., Cheng, S., Li, Y., Zhou, Q., Li, B., Chen, B., Zheng,
X., Li, W., and Li, A. (2022). Simultaneous determination of dissolved organic
nitrogen, nitrite, nitrate, and ammonia using size exclusion chromatography
coupled with nitrogen detector. Journal of
Environmental Sciences, 125: 309-318.
33.
Ryu, H., Thompson, D., Huang, Y., Li, B., and Lei, Y. (2020). Electrochemical sensors for nitrogen species: A review.
Sensors and Actuators Reports, 2(1): 100022.
34.
Zhou, L.,
Al-Dhabi, N. A., Zhang, X., Gao, B., Zhu, Z., Ruth, G., Zhang, X., Tang, W., and
Wu, P. (2024). Advanced nitrogen removal from municipal wastewater by
autotrophy-heterotrophy coupled anammox system in a novel simultaneous
microaerobic/limited-oxygen SBR: Interspecific correlation network. Chemical
Engineering Journal, 485: 150092.
35.
Tang, X., Wang,
Y., Zhang, Y., Liu, J., Fu, Y., Chen, R., Wang, X., and Xing, B.
(2024). Research progress, problems, and future
prospects of a new combined anaerobic ammonia oxidation and nitrogen
removal process. Frontiers of Chinese Water Sciences, 2(1): 4-15.
36.
Wu, L., Zhang,
Y., Yin, J., Luo, A., Tian, Y., Liu, Y., Xu, J., and Peng, Y.
(2024). Achieving advanced nitrogen removal from mature landfill leachate
in continuous flow system involving partial nitrification-anammox and
denitrification. Bioresource Technology, 399: 130553.
37.
Huang, L., Li,
W., Chen, Z., Chen, Y., Li, Y., Wang, X., and Yuan, Y. (2024). Enhancing nitrogen
removal of real industrial nitrogen-containing wastewater by a simultaneous
partial denitrification-anammox process with exogenous glycine betaine adding. Journal
of Water Process Engineering, 58: 104855.
38.
Ubaidillah,
M. F., Mohamed Kutty, S. R., and Shekh Imaduddin
Hakmi, S. N. (2021). Extended aeration activated sludge process in treating
ammonia-nitrogen by-products from petrochemical plant.
AIP Conference Proceedings, 2339(1): 020169.
39.
Ramli, S.,
Jaafar, J., and Mohamad, R. B. R. (2022). Study on nitrogen removal capability
of selected regional sewage treatment plants in Klang Valley, Malaysia. In Proceedings
of the 2nd International Conference on Environmental Sustainability and Climate
Change (pp. 1385–1396).
40.
Ibrahim, I., and Izzati, R. H. (2013).
Study of Aeration Rate Effects on Total Nitrogen Removal from Domestic
Wastewater. Bachelor thesis. Universiti Tun Hussein
Onn Malaysia.
41.
Anggoro, D. D.,
Prayoga, B. N., Salsabiil, N., and Buchori, L. (2023). Study of
adsorption capacity on textile dyes and heavy metal (Pb2+) using modified
natural zeolite. AIP Conference Proceedings, 2023: 050009.
42.
Gutiérrez-Sánchez,
P., Hrichi, A., Garrido-Zoido, J. M., Álvarez-Torrellas, S., Larriba, M., Gil,
M. V., Amor, H. B., and García, J. (2023). Natural clays
as adsorbents for the efficient removal of antibiotic
ciprofloxacin from wastewaters: Experimental and
theoretical studies using DFT method. Journal of Industrial and Engineering
Chemistry, 134:
137-151.
43.
Al-Najar, J. A.,
Al-Humairi, S. T., Lutfee, T., Balakrishnan, D., Veza, I., Soudagar, M. E. M., and
Fattah, I. M. R. (2023). Cost-effective natural adsorbents
for remediation of oil-contaminated water. Water (Basel), 15(6): 1186.
44.
Alorabi,
A. Q., Hassan, M. S., Alam, M. M., Zabin, S. A., Alsenani,
N. I., and Baghdadi, N. E. (2021). Natural clay as a low-cost adsorbent for
crystal violet dye removal and antimicrobial activity. Nanomaterials, 11(11): 2789.
45.
Akter, S., Naher, U. H. B., and Sultana,
R. (2024). Development of low-cost natural adsorbent for the abatement of
pollution from tannery effluent – a green technology. Cleaner Water, 1: 100005.
46.
Tamrakar, S.,
Verma, R., Sar, S. K., and Verma, C. (2019). Cost-effective
natural adsorbents for the removal of fluoride: A green approach. Rasayan Journal of Chemistry, 12(2): 455-463.
47.
Gin, N., Buteh,
D., Manga, P., Daniel, S., Ranga, Y., Abdulmumini, H., SarkinNoma, A., Dangana,
B., and Alhassan, A. (2023). The effectiveness of natural
adsorbent for removal of dye using two isotherm models. Science World
Journal, 18(3): 332-340.
48.
Tymchuk, A. F., Streltsova, O. O., and Purich, A. D. (2023). Sorption of apolar liquids by natural
high molecular compounds. Odesa National University Herald. Chemistry, 28(1): 58-65.
49.
Du, P., Xu, L., Ke,
Z., Liu, J., Wang, T., Chen, S., Mei, M., Li, J., and Zhu, S. (2022). A
highly efficient biomass-based adsorbent fabricated by graft copolymerization:
Kinetics, isotherms, mechanism and coadsorption
investigations for cationic dye and heavy metal. Journal of Colloid and
Interface Science, 616: 12-22.
50.
Helard,
D., Indah, S., Sari, C. M., and Mariesta, H. (2018).
The adsorption and regeneration of natural pumice as low-cost adsorbent for
nitrate removal from water. Journal of Geoscience, Engineering,
Environment, and Technology, 3(2): 86.
51.
Khelifi, S., Choukchou-Braham,
A., Oueslati, M. H., Sbihi, H. M., and Ayari, F.
(2020). Identification and use of local iron-ores deposit as adsorbent:
Adsorption study and photochemical regeneration. Desalination and Water
Treatment, 206: 429-438.
52.
Dutta, T.,
Kim, T., Vellingiri, K., Tsang, D. C., Shon, J., Kim, K., and Kumar, S.
(2019). Recycling and regeneration of carbonaceous
and porous materials through thermal or solvent treatment. Chemical
Engineering Journal, 364: 514-529.
53.
Maia, L., Da
Silva, A., Zanini, N., Carvalho, L., Pereira, P., Medeiros, S., Rosa, D., and
Mulinari. (2024). Natural fiber-based adsorbents for heavy
metals and dyes removal. In Materials from Natural Sources (pp.
46–92).
54.
Benettayeb,
A., Ahamadi, S., Ghosh, S., Malbenia
John, M., Mitchel, C. R., and Haddou, B. (2024). Natural adsorbents for the
removal of emerging pollutants and its adsorption mechanisms. In Sustainable
Technologies for Remediation of Emerging Pollutants from Aqueous Environment
(pp. 63–78).
55.
Bostan, R.,
Glevitzky, M., Varvara, S., Dumitrel, G., Rusu, G. I., Popa, M., Glevitzky, I.,
and Vică, M. L. (2024). Utilization of natural adsorbents
in the purification of used sunflower and palm cooking oils. Applied
Sciences, 14(11): 4417.
56.
Zhao, Y., Wang,
W., and Yi, H. (2020). Mineral adsorbents and characteristics.
In Adsorption at natural minerals/water interfaces (pp. 1-54).
57.
Kozera-Sucharda,
B., Gworek, B., Kondzielski, I., and Chojnicki, J.
(2021). The comparison of the efficacy of natural and synthetic
aluminosilicates, including zeolites, in concurrent elimination of lead and
copper from multi-component aqueous solutions. Processes, 9(5): 812.
58.
Kordala,
N., and Wyszkowski, M. (2024). Zeolite
Properties, Methods of Synthesis, and Selected Applications.
Molecules, 29(5):
1069.
59.
Vasconcelos, A.
A., Len, T., De Nazaré De Oliveira, A., Da Costa, A. A. F., Da Silva Souza, A.
R., Da Costa, C. E. F., Luque, R., Da Rocha Filho, G. N., Noronha, R. C. R., and
Nascimento, L. a. S. D. (2023). Zeolites: A theoretical
and practical approach with uses in (bio)chemical processes.
Applied Sciences, 13(3):
1897.
60.
Muscarella, S. M.,
Badalucco, L., Cano, B., Laudicina, V. A., and Mannina, G. (2021). Ammonium adsorption,
desorption, and recovery by acid and alkaline treated zeolite.
Bioresource Technology, 341:125812.
61.
Jiang, N.,
Shang, R., Heijman, S. G. J., and Rietveld, L. C. (2020). Adsorption of
triclosan, trichlorophenol, and phenol by high-silica zeolites: adsorption
efficiencies and mechanisms.
Separation and Purification Technology, 235: 116152
62.
Tang, H., Xu, X., Wang, B., Lv, C., and Shi, D. (2020). Removal of ammonium from swine wastewater using synthesized zeolite
from fly ash. Sustainability, 12(8): 3423.
63.
Qin, Y., Zhu, X., Su, Q., Anumah, A., Gao, B., Lyu, W., Zhou, X., Xing, Y., and Wang,
B. (2019). Enhanced removal of
ammonium from water by ball-milled biochar. Environmental
Geochemistry and Health, 42(6):
1579-1587.
64.
Kamyab,
S. M., and Williams, C. D. (2021). Pure
Zeolite LTJ synthesis from kaolinite under hydrothermal conditions and its
ammonium removal efficiency. Microporous and Mesoporous
Materials, 318: 111006.
65.
Guida, S.,
Potter, C., Jefferson, B., and Soares, A. (2020). Preparation and
evaluation of zeolites for ammonium removal from municipal wastewater through
ion exchange process. Scientific
Reports, 10(1): 12426.
66.
Pauzan, M. A. B., Puteh, M. H., Yuzir, A., Othman, M. H. D., Wahab, R. A., and Abideen, M.
Z. (2019). Optimizing ammonia removal
from landfill leachate using natural and synthetic zeolite through statically
designed experiment. Arabian Journal for Science and
Engineering, 45(5): 3657-3669.
67.
Ismail, M. H. S., Dalang, S., Syam, S., and Izhar, S. (2013). A study on zeolite performance in waste treating
ponds for treatment of palm oil mill effluent. Journal of
Water Resource and Protection, 5(7): 18-27.
68.
Farraji,
H., Mohammadpour, R., and Zaman, N. Q. (2021). Post-treatment of palm oil mill effluent using zeolite and wastewater.
Journal of Oil Palm Research, 33(1):
103-118.
69.
Yatim, N. N. I., Ishak, N. N. A., Mohamad,
N. N. A., Abuabdou, N. S. M. A., and Hamzah, N. S.
(2023). Heat-treated zeolite as an
effective adsorbent for final treatment of palm oil mill effluent.
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 110(1): 1-16.
70.
Vaičiukynienė,
D., Mikelionienė, A., Baltušnikas,
A., Kantautas, A., and Radzevičius, A. (2020). Removal of ammonium ion from aqueous solutions by
using unmodified and H₂O₂-modified zeolitic waste. Scientific
Reports, 10(1): 352.
71.
Inglezakis,
V. J. (2005). The concept of capacity
in zeolite ion-exchange systems. Journal of Colloid and
Interface Science, 281(1):
68-79.
72.
Castro, C.,
Shyu, H., Xaba, L., Bair, R., and Yeh, D. (2021). Performance and
onsite regeneration of natural zeolite for ammonium removal in a field-scale
non-sewered sanitation system. Science of the Total
Environment, 776: 145938.
73.
Techkem
Water Technologies Sdn Bhd. (n.d.). Top Wastewater Chemical Treatment Company in
Malaysia. Techkem Water
Technologies.
74.
Millati,
R., Cahyono, R. B., Ariyanto, T., Azzahrani,
I. N., Putri, R. U., and Taherzadeh, M. J.
(2019). Agricultural, industrial,
municipal, and forest wastes.
In sustainable resource recovery and zero
waste approaches (pp. 1–22).
75.
Othmani, A., Magdouli,
S., Kumar, P. S., Kapoor, A., Chellam, P. V., and Gökkuş,
Ö. (2021). Agricultural waste
materials for adsorptive removal of phenols, chromium (vi), and cadmium (II) from
wastewater: A review. Environmental Research, 204: 111916.
76.
Asadu,
C. O., Anthony, E. C., Elijah, O. C., Ike, I. S., Onoghwarite,
O. E., and Okwudili, U. E. (2021). Development of an adsorbent for the remediation of
crude oil-polluted water using stearic acid grafted coconut husk (Cocos
Nucifera) composite.
Applied Surface Science Advances, 6:
100179.
77.
James, A., and Yadav, D. (2021). Valorization of coconut waste for facile treatment
of contaminated water: A comprehensive review (2010–2021). Environmental
Technology & Innovation, 24:
102075.
78.
Nallakukkala,
S., Lal, B., and Shaik, F. (2021). Kinetic
and isothermal investigations in elimination of iron metal from aqueous mixture
by using natural adsorbent. International Journal of
Environmental Science and Technology, 18(7):
1761-1772.
79.
Azreen,
I., Lija, Y., and Zahrim, A. Y. (2017, June). Ammonia nitrogen removal from aqueous solution by
local agricultural wastes. IOP Conference Series: Materials
Science and Engineering, 206:
012077.
80.
Huang, X., Bai, J., Li, K., Zhao, Y.,
Tian, W., and Hu, C. (2020, June). Preparation
of Clay/Biochar Composite Adsorption Particle and Performance for Ammonia
Nitrogen Removal from Aqueous Solution. Journal of Ocean
University of China, 19(3):
729-739.
81.
Oyekanmi,
A. A., Abdurahman, N. H., Yunus, R. M., Rabe, W., Altaee,
A., and Atilhan, M. (2019). Adsorption of pollutants from palm oil mill effluent
using natural adsorbents: Optimization and isotherm
studies. Desalination and Water Treatment, 169,
181–190.
82.
Mariana, M., Nasir, M. S. M., Abdullah, M.
H. R. O., Kadir, W. N. A., and Yusop, Z. (2021). Recent advances in activated carbon modification
techniques for enhanced heavy metal adsorption. Journal of
Water Process Engineering, 40:
102221.
83.
Wang, N., Huang, D., Shao, M., Sun, R., and
Xu, Q. (2022). Use of activated carbon
to reduce ammonia emissions and accelerate humification in composting digestate
from food waste. Bioresource Technology, 347: 126701.
84.
Zhang, F., Liang, M., Ye, C., and Zhang,
C. (2020). Removal of ammonia and
hydrogen sulfide from livestock farm by copper modified activated carbon.
Global Nest Journal, 22(2): 165-172.
85.
Liu, Z., Lompe,
K. M., Mohseni, M., Bérubé, P. R., Sauvé, S., and Barbeau, B. (2020). Biological ion exchange as an alternative to biological activated carbon for drinking water treatment.
Water Research, 168: 115148.
86.
Alves, A. T.,
Lasmar, D. J., de Andrade Miranda, I. P., da Silva Chaar, J., and dos Santos
Reis, J. (2021). The potential of activated carbon in the treatment
of water for human consumption: A study of the state of the art and its
techniques used for its development. Advances
in Bioscience and Biotechnology, 12(6):
143-153.
87.
Sinha, P., Banerjee, S., and Kar, K. K.
(2020). Characteristics of activated
carbon. In activated carbon
for polymer-filled composites (pp. 125–154).
88.
Ani, J. U., Akpomie,
K. G., Okoro, U. C., Aneke, L. E., Onukwuli, O. D., and
Ujam, O. T. (2020). Potentials of activated carbon produced from biomass materials for
sequestration of dyes, heavy metals, and crude oil components from aqueous
environment. Applied Water Science, 10(2): 69.
89.
Gan, Y. X. (2021). Activated carbon from biomass sustainable sources.
C (Basel), 7(2): 39.
90.
Joseph, J., Sajeesh, A. K., Nagashri, K.,
Gladis, E. H. E., Sharmila, T. M., and Dhanaraj, C. J. (2021). Determination of ammonia content in various drinking
water sources in Malappuram District, Kerala, and its removal by adsorption
using agricultural waste materials. Materials Today:
Proceedings, 45: 811-819.
91.
Rungrodnimitchai, S., and Hiranphinyophat,
S. (2020). The modification of charcoal for ammonia removal. Key Engineering
Materials, 834, 3–9.
92.
Elhetawy, A. I. G., Abdel-Rahim, M. M., Sallam, A. E.,
Shahin, S. A., Lotfy, A. M. A., and El Basuini, M. F.
(2023). Dietary wood and activated charcoal improved ammonium removal, heavy
metals detoxification, growth performance, blood biochemistry, carcass traits,
and histopathology of European seabass. Aquaculture Nutrition, 2023: 1-17.
93.
Gaouar Yadi, M., Benguella, B., Gaouar-Benyelles, N., and Tizaoui, K. (2016). Adsorption of
ammonia from wastewater using low-cost bentonite/chitosan beads. Desalination
and Water Treatment, 57(45): 21444-21454.
94.
Angelidaki, I., and Ahring, B. K. (1993). Effect of the clay
mineral bentonite on ammonia inhibition of anaerobic thermophilic reactors
degrading animal waste. Biodegradation, 3(4): 240362
95.
Zhao, M., Zhang,
X., Han, Y., Li, H., and Yang, J. (2020). Mechanisms of Pb and/or Zn adsorption
by different biochars: biochar characteristics,
stability, and binding energies. Science of the Total Environment, 717: 136894.
96.
Zhang, X., Wang,
Y., Liu, H., Li, Z., and Chen, G. (2022). Microalgae-derived nanoporous biochar
for ammonia removal in sustainable wastewater treatment. Journal of
Environmental Chemical Engineering, 10(6): 108514.
97.
Pantoja, F.,
Beszédes, S., Gyulavári, T., Illés, E., Kozma, G., and
László, Z. (2024). Ammonium ion removal from aqueous solutions in the presence
of organic compounds, using biochar from banana leaves: Competitive isotherm
models. Heliyon, 10(10): e31495.
98.
Ahmad, T.,
Sethupathi, S., Bashir, M. J. K., and Tan, S. Y. (2021). Evaluation of various
preparation methods of oil palm fiber (OPF) biochar for ammonia-nitrogen (NH3-N)
removal. IOP Conference Series: Earth and Environmental Science, 945: 012020).
99.
Sohaimi, K. S. A., Aziz, N., Yusoff, N. A., Zainol, N. A., Rohaizad, N. M., and Sharuddin,
S. S. N. (2023). Ammonium adsorption-desorption by using rice straw biochar. AIP
Conference Proceedings: 070003.
100. Ismail, N. M., Safie, N. N., Subramaniam, M., Junaidi,
N. S., and Yaser, A. Z. (2022). Comparison between fresh and
degraded biochar for ammonium ion (NH₄⁺) removal from wastewater.
In waste management, processing and valorisation (pp.
119-133).
101. Ahmad,
R., Sohaimi, K. S. A., Mohamed, A. R., Zailani, S. N., Salleh, N. H. M., and Azizan, N. H. (2021).
Kinetic and isotherm studies of empty fruit bunch biochar on ammonium
adsorption. IOP Conference Series: Earth and Environmental Science, 646(1):
012052.
102. Panwar,
N. L., Pawar, A., and Salvi, B. L. (2019). Comprehensive review on production and utilization of biochar. SN Applied
Sciences, 1(2): 168.
103. Sakhiya,
A. K., Anand, A., and Kaushal, P. (2020). Production, activation, and
applications of biochar in recent times. Biochar, 2(3): 253-285.
104. Gayathiri,
M., Pulingam, T., Lee, K. T., and Sudesh, K. (2022).
Activated carbon from biomass waste precursors: factors affecting production
and adsorption mechanism. Chemosphere, 294: 133764.
105. Vilén,
A., Laurell, P., and Vahala, R. (2022). Comparative life cycle assessment of
activated carbon production from various raw materials. Journal of
Environmental Management, 324: 116356.
106. Feng,
L., Yan, B., Wang, C., Zhang, Q., Jiang, S., and He, S. (2022). Preparation of
porous activated carbon materials and their application in supercapacitors. Springer,
587-612.
107. Sevilla,
M., Díez, N., and Fuertes, A. B. (2021). More sustainable chemical activation
strategies for the production of porous carbons. ChemSusChem, 14(1): 94-117.
108. Jawad,
A. H., Bardhan, M., Islam, M. A., Islam, M. A., Syed-Hassan, S. S. A., Surip, S., ALOthman, Z. A., and
Khan, M. R. (2020). Insights into the modeling, characterization, and
adsorption performance of mesoporous activated carbon from corn cob residue via
microwave-assisted H₃PO₄ Activation. Surfaces and Interfaces, 21:
100688.
109. Ren,
Z., Jia, B., Zhang, G., Fu, X., Wang, Z., Wang, P., and Lv,
L. (2020). Study on adsorption of ammonia nitrogen by iron-loaded activated
carbon from low-temperature wastewater. Chemosphere, 262: 127895.
110. Feng,
D., Guo, D., Zhang, Y., Sun, S., Zhao, Y., Chang, G., Guo, Q., and Qin, Y.
(2020). Adsorption-enrichment characterization of CO₂ and dynamic
retention of free nh₃ in functionalized biochar
with H₂O/NH₃·H₂O activation for promotion of new
ammonia-based carbon capture. Chemical Engineering Journal, 409: 128193.
111. Gupta,
H., and Rani, M. (2003). Microbial biomass: An economical alternative for
removal of heavy metals from wastewater. Indian Journal of Experimental
Biology, 9(41): 945–966.
112. Valdman, E., and Leite, S. G. F. (2000). biosorption
of Cd, Zn, and Cu by Sargassum sp. waste biomass. Bioprocess
Engineering, 22(2): 171-173.
113. Fehrmann,
C., and Pohl, P. (1993). Cadmium adsorption by the non-living biomass of
microalgae grown in axenic mass culture. Journal of Applied Phycology, 5(6):
555-562.
114. Mishra,
P. K., and Mukherji, S. (2012). Biosorption of diesel and lubricating oil on
algal biomass. 3 Biotech, 2(4): 301-310.
115. Wang,
X., Yu, H., Lv, J., and Changfu,
Y. (2013). Nitrogen and phosphorus removal from municipal wastewater by the
green alga Chlorella sp. Journal of Environmental Biology, 34: 421-425.
116. Ashour,
M., Alprol, A. E., Heneash,
A. M. M., Saleh, H., Abualnaja, K. M., Alhashmialameer, D., and Mansour, A. T. (2021). Ammonia bioremediation
from aquaculture wastewater effluents using Arthrospira Platensis
NIOF17/003: Impact of biodiesel residue and potential of ammonia-loaded biomass
as rotifer feed. Materials, 14(18):5460.
117. Otero, M., Freire, L., Gómez-Cuervo, S., and Ávila, C.
(2024). Ammonium removal in wastewater treatments by adsorbent
geopolymer material with granite wastes: Full-scale
validation. Clean Technologies, 6(1): 339-364.
118. Alouani, M. E., Aouan, B., Rachdi, Y., Alehyen, S., Herradi, E. H. E., Saufi, H., Mabrouki, J., and
Barka, N. (2022). Porous geopolymers as innovative adsorbents for the removal
of organic and inorganic hazardous substances: A mini-review. International
Journal of Environmental Analytical Chemistry, 1-13.
119. Chan,
M. K., and Yeow, A. T. Z. (2021). Kinetic study of ammonia removal using
activated rice husk. IOP Conference Series: Materials Science and
Engineering, 1092(1): 012073.
120. Zhang,
L.-J., Zhang, X., Liang, H.-F., Xie, Y., and Tao, H.-C. (2018). Ammonium removal
by a novel magnetically modified excess sludge. Clean Technologies and
Environmental Policy, 20(10): 2181-2189.
121. Šmelcerović, M., and
Šmelcerović, M. (2018). Adsorption of ammonia by
base-activated bentonite clay: Kinetic and equilibrium studies. Knowledge
International Journal, 28(4): 1251-1257.
122. Abdelfattah,
I., El-Saied, F. A., Almedolab, A. A., and El-Shamy,
A. M. (2022). Biosorption as a perfect technique for
purification of wastewater contaminated with ammonia. Applied Biochemistry
and Biotechnology, 194(9): 4105-4134.
123. Sheikh, M., Vallčs, V., Valderrama, C., Cortina, J.
L., and Rezakazemi, M. (2023). A mathematical model for ammonium
removal and recovery from real municipal wastewater using a
natural zeolite. Journal of Environmental Chemical Engineering, 11(5):
110833.
124. Husin, A., Hotmauli Aruan, F., Huda, A., Herlina, N., and
Patumona Manalu, S. (2024). Ammonia adsorption process using sarulla natural zeolite from North Sumatera, Indonesia. E3S
Web of Conferences, 519: 03028.
125. Lestariningsih, D., Nuryoto, and Kurniawan, T. (2021). Ammonium adsorption from
wastewater using malang natural zeolites. AIP
Conference Proceedings: 020017.
126. Abelta, G. A., Qadri, L. A., Febrina, M., Rajak, A.,
Maulana, S., Asagabaldan, M. A., and Taher, T. (2024). Enhanced
ammonium adsorption from aqueous solutions using ethylenediaminetetraacetic
acid (EDTA) modified lampung (Indonesia) natural
zeolite: Isotherm, kinetic, and thermodynamic studies. Science and
Technology Indonesia, 9(2): 224-234.
127. Zangeneh,
A., Sabzalipour, S., Takdatsan,
A., Yengejeh, R. J., and Khafaie,
M. A. (2021). Ammonia removal from municipal wastewater by air stripping
process: An experimental study. South African Journal of Chemical
Engineering, 36: 134-141.
128. Ulu,
F., and Kobya, M. (2020). Ammonia removal from
wastewater by air stripping and recovery: Struvite and calcium sulfate
precipitations from anesthetic gases manufacturing wastewater. Journal of
Water Process Engineering, 38: 101641.
129. Sharghi,
E. A., and Davarpanah, L. (2022). Optimization of
chemical coagulation–flocculation process of detergent manufacturing plant
wastewater treatment for full-scale applications: a case study. Desalination
and Water Treatment, 262: 38-53.
130. Upadhyayula,
S., and Chaudhary, A. (2021). Advanced Materials and Technologies for
Wastewater Treatment. Boca Raton, FL: CRC Press.
131. El-Taweel,
R. M., Mohamed, N., Alrefaey, K. A., Husien, S.,
Abdel-Aziz, A., Salim, A. I., Mostafa, N. G., Said, L. A., Fahim, I. S., and
Radwan, A. G. (2023). A review of coagulation explaining its definition,
mechanism, coagulant types, and optimization models, RSM, and ANN. Current
Research in Green and Sustainable Chemistry, 6: 100358.
132. Zahrim,
A., Azreen, I., Jie, S., Yoiying,
C., Felijia, J., Hasmilah,
H., Gloriana, C., and Khairunis, I. (2018).
Nanoparticles enhanced coagulation of biologically digested leachate. In nanotechnology
in water and wastewater treatment (pp. 205–241).
133. Rył, A., and
Owczarz, P. (2021). Thermoinduced
aggregation of chitosan systems in perikinetic and
orthokinetic regimes. Carbohydrate Polymers, 255: 117377.
134. Siciliano, A., Limonti, C., Curcio, G. M., and
Molinari, R. (2020). Advances in struvite precipitation
technologies for nutrients removal and recovery from aqueous waste and
wastewater. Sustainability, 12(18): 7538.
135. Ma,
W., Han, R., Zhu, L., Zhang, W., Zhang, H., Jiang, L., and Chen, L. (2023). Peroxymonosulfate enhanced Fe(III) coagulation coupled with
membrane distillation for ammonia recovery: Membrane fouling control process
and mechanism. Desalination, 565: 116859.
136. Wongcharee, S.,
Aravinthan, V., and Erdei, L. (2020). Removal of natural organic matter and
ammonia from dam water by enhanced coagulation combined with adsorption on
powdered composite nano-adsorbent. Environmental Technology &
Innovation, 17: 100557.
137. Mohtar, S. S., Sharuddin, S. S. N., Saman, N., Lye,
J. W. P., Othman, N. S., and Mat, H. (2020). A simultaneous
removal of ammonium and turbidity via an adsorptive coagulation for drinking
water treatment process. Environmental Science and Pollution Research, 27(16):
20173-20186.
138. Liu,
N., Sun, Z., Zhang, H., Klausen, L. H., Moonhee, R., and
Kang, S. (2023). Emerging high-ammonia nitrogen wastewater remediation by
biological treatment and photocatalysis techniques. Science of The Total
Environment, 875: 162603.
139. John,
E. M., Krishnapriya, K., and Sankar, T. V. (2020). Treatment of ammonia and
nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture,
526: 735390.
140. Wan-Mohtar, W. A. A. Q. I., Khalid, N. I., Rahim, M. H. A., Luthfi, A. A. I., Zaini, N. S. M., Din, N. A. S., and Zaini,
N. A. M. (2023). Underutilized malaysian
agro-industrial wastes as sustainable carbon sources for lactic acid
production. Fermentation, 9(10): 905.
141. Loh,
L.-M., Yan, Y.-W., Yap, P.-W., Nadarajan, R., and Ong, A. S.-H. (2019). Palm oil
mill effluent as an alternate carbon source for
ammonia removal in wastewater treatment. Sains Malaysiana,
48(4): 871-876.
142. Maceiras, R., Feijoo, J., Perez-Rial, L., Alfonsin,
V., and Falcon, P. (2024). Study of natural zeolites for
hydrogen purification: CO₂ adsorption capacity and kinetic mechanism. Fuel,
376: 132732.
143. Gao,
S., Peng, H., Song, B., Zhang, J., Wu, W., Vaughan, J., Zardo, P., Vogrin, J.,
Tulloch, S., and Zhu, Z. (2022). Synthesis of zeolites from low-cost feeds and
its sustainable environmental applications. Journal of Environmental
Chemical Engineering, 11(1): 108995.
144. Chia,
S. R., Nomanbhay, S., Chew, K. W., Show, P. L.,
Milano, J., and Shamsuddin, A. H. (2022). Indigenous materials as catalyst
supports for renewable diesel production in Malaysia. Energies, 15(8): 2835.
145. Choo,
L. N. L. K., Ahmed, O. H., Razak, N. A., and Sekot,
S. (2022). Improving nitrogen availability and Ananas Comosus L. Merr var. Moris productivity in a tropical peat soil using
clinoptilolite zeolite. Agronomy, 12(11): 2750.
146. Razzak,
S. A., Faruque, M. O., Alsheikh, Z., Alsheikhmohamad,
L., Alkuroud, D., Alfayez,
A., Hossain, S. M. Z., and Hossain, M. M. (2022). A comprehensive review on
conventional and biological-driven heavy metals removal from industrial
wastewater. Environmental Advances, 7: 100168.
147. Tasić, Ž. Z.,
Bogdanović, G. D., and Antonijević, M. M.
(2019). Application of natural zeolite in wastewater treatment: A review. Journal
of Mining and Metallurgy A: Mining, 55(1): 67-79.
148. Awoh,
E. T., Kiplagat, J., Kimutai, S. K., and Mecha, A. C. (2023). Current trends in
palm oil waste management: A comparative review of Cameroon and Malaysia. Heliyon, 9(11): e21410.
149. Malik,
M. A. I., Zeeshan, S., Khubaib, M., Ikram, A., Hussain, F., Yassin, H., and Qazi,
A. (2024). A review of major trends, opportunities, and technical challenges in
biodiesel production from waste sources. Energy Conversion and Management:
X, 23: 100675.
150. Carbon Credit (2024).
Malaysia’s first industrial biochar facility, carbon plus partners with crystaltrade for carbon removal optimization. Access from https://carboncredits.com/
malaysias-first-industrial-biochar-facility
carbon-plus-partners-with-crystaltrade-for-carbon-removal-optimization/
151. Naylor,
R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M.,
Clay, J., Folke, C., Lubchenco, J., Mooney, H., and Troell, M. (2000). Effect of
aquaculture on world fish supplies. Nature, 405(6790): 1017-1024.
152. Ooi,
J., Lee, L. Y., Hiew, B. Y. Z., Thangalazhy-Gopakumar,
S., Lim, S. S., and Gan, S. (2017). Assessment of fish scales waste as a
low-cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic
and thermodynamic studies. Bioresource Technology, 245: 656-664.
153. Duarte, E. B., and Rezende, L. C. S. H. (2023). Removal of methylene blue from a residue as a low-cost biosorbent: Peanut hull (Arachis Hypogaea). Periódico Eletrônico Fórum Ambiental da Alta Paulista, 19(1): 3505.