Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1363

 

Research Article

 

Development of QuEChERS method combined with ultraviolet-visible spectroscopy for residual nanopesticide analysis in crops and vegetables

 

Farhatun Najat Maluin, Adam Iman Zairam, Nur Fadhlin Ilyana Noor Suha Azwar and Nurul Amirah Amir Azahary

 

School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

 

*Corresponding author: farhatunnajat@usm.my

 

Received: 23 September 2025; Revised: 3 July 2025; Accepted: 21 July 2025; Published: 22 August 2025

 

Abstract

This study reports the development of a modified QuEChERS method combined with UV-Visible spectroscopy for the analysis of residual nanohexaconazole in rubber, chilli, and eggplant matrices. Conventional QuEChERS methods face major limitations, including incomplete removal of matrix interferences and insufficient sensitivity, especially when applied to nanomaterials. Detecting nanopesticides presents additional challenges due to their small particle size, enhanced penetration into plant tissues, and interactions with biological compounds that can alter detection signals. To address these issues, the method was improved using acidified acetonitrile extraction and matrix-matched calibration to enhance both precision and accuracy. The study specifically focuses on detecting the newly developed nanohexaconazole in various matrices, including fruit, leaf, and soil samples. The results revealed strong signal suppression in leaf matrices, particularly in chilli leaf (ME% = -412.2%), followed by eggplant and rubber leaves (ME% = -153.5% and -194.2%). In contrast, eggplant fruit and topsoil showed moderate signal enhancement (ME% = 39.2% and 27.9%). All matrix-specific calibration curves achieved R² values greater than 0.9, confirming excellent linearity. This modified method provides a reliable and accurate approach for the analysis of nanopesticide residue across complex agricultural matrices, thereby supporting food safety monitoring and regulatory compliance.

Keywords: QuEChERs method, nanopesticide, residue analysis, sustainable nanomaterials

 


References

1.        Singh, H., Sharma, A., Bhardwaj, S. K., Arya, S. K., Bhardwaj, N., and Khatri, M. (2021). Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environmental Science: Processes & Impacts, 23(2): 213-239.

2.        Maluin, F. N., and Hussein, M. Z. (2020). Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules, 25(7): 1611.

3.        Maluin, F. N., Hussein, M. Z., Yusof, N. A., Fakurazi, S., Maznah, Z., Idris, A. S., Hilmi, N. H. Z., and Daim, L. D. J. (2020). Residual analysis of chitosan-based agronanofungicides as a sustainable alternative in oil palm disease management. Scientific Reports, 10(1): 22323.

4.        Câmara, J. S., Perestrelo, R., Berenguer, C. V., Andrade, C. F., Gomes, T. M., Olayanju, B., Kabir, A., Rocha, C., Teixeira, J. A., and Pereira, J. A. (2022). Green extraction techniques as advanced sample preparation approaches in biological, food, and environmental matrices: a review. Molecules, 27(9): 2953.

5.        Williams, M. L., Olomukoro, A. A., Emmons, R. V., Godage, N. H., and Gionfriddo, E. (2023). Matrix effects demystified: Strategies for resolving challenges in analytical separations of complex samples. Journal of Separation Science, 46(23): 2300571.

6.        Wahab, S., Muzammil, K., Nasir, N., Khan, M. S., Ahmad, M. F., Khalid, M., Ahmad, W., Dawria, A., Reddy, L. K. V., and Busayli, A. M. (2022). Advancement and new trends in analysis of pesticide residues in food: A comprehensive review. Plants, 11(9): 1106.

7.        Rutkowska, E., Łozowicka, B., and Kaczyński, P. (2018). Modification of multiresidue QuEChERS protocol to minimize matrix effect and improve recoveries for determination of pesticide residues in dried herbs followed by GC-MS/MS. Food Analytical Methods, 11(3): 709-724.

8.        Maluin, F. N., Hussein, M. Z., Yusof, N. A., Fakurazi, S., Idris, A. S., Zainol Hilmi, N. H., and Jeffery Daim, L. D. (2019). Preparation of chitosan–hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules, 24 (13): 2498.

9.        Dudkowiak, A., Nakamura, C., Arai, T., Miyake, J. (1998). Interactions of chlorophyll a with synthesized peptide in aqueous solution. Journal of Photochemistry and Photobiology B: Biology, 45(1): 43-50.

10.     Riaz, M., Zia-Ul-Haq, M., and Dou, D. (2021). Carotenoids: structure and function in the human body, Springer Cham Publisher, Switzerland: pp. 43-76.

11.     Neill, S. O., and Gould, K. S. (2003). Anthocyanins in leaves: light attenuators or antioxidants? Functional Plant Biology, 30(8): 865-873.

12.     Kunst, L., Samuels, A., and Jetter, R. (2020). Plant lipids, Blackwell, New York: pp 270-302.

13.     Zhu, J., Qi, J., Fang, Y., Xiao, X., Li, J., Lan, J., and Tang, C. (2018). Characterization of sugar contents and sucrose metabolizing enzymes in developing leaves of Hevea brasiliensis. Frontiers in Plant Science, 9: 58.

14.     Ghaly, A. E., Alkoaik, F. (2010). Extraction of protein from common plant leaves for use as human food. American Journal of Applied Sciences, 7(3): 331.

15.     Korkmaz, A., Atasoy, A. F., and Hayaloglu, A. A. (2020). Changes in volatile compounds, sugars and organic acids of different spices of peppers (Capsicum annuum L.) during storage. Food Chemistry, 311: 125910.

16.     Rodrigues, C. A., Zomer, A. P. L., Rotta, E. M., Visentainer, J. V., and Maldaner, L. (2022). A μ-QuEChERS method combined with UHPLC-MS/MS for the analysis of phenolic compounds in red pepper varieties. Journal of Food Composition and Analysis, 112: 104647.

17.     Bouhajeb, R., Selmi, S., Nakbi, A., Jlassi, I., Montevecchi, G., Flamini, G., Zarrad, I., and Dabbou, S. (2020). Chemical composition analysis, antioxidant, and antibacterial activities of eggplant leaves. Chemistry & Biodiversity, 17 (12): e2000405.

18.     Wan Mohd Zain, W. Z., Ramli, N. N., Jusoh, S., and Hamid, N. A. (2021). Antioxidant activity, total phenolic and flavonoid content from leaves and seed extracts of Hevea brasiliensis clone. Journal of Academia, 9: 1-7.

19.     Puttaso, P., Namanusart, W., Thumanu, K., Kamolmanit, B., Brauman, A., Lawongsa, P. (2020). Assessing the effect of rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) leaf chemical composition on some soil properties of differently aged rubber tree plantations. Agronomy, 10(12): 1871.

20.     Cho, S.-Y., Kim, H.-W., Lee, M.-K., Kim, H.-J., Kim, J.-B., Choe, J.-S., Lee, Y.-M., and Jang, H.-H. (2020). Antioxidant and anti-inflammatory activities in relation to the flavonoids composition of pepper (Capsicum annuum L.). Antioxidants, 9(10): 986.

21.     Kookana, R. S., Boxall, A. B., Reeves, P. T., Ashauer, R., Beulke, S., Chaudhry, Q., Cornelis, G., Fernandes, T. F., Gan, J., and Kah, M. (2014). Nanopesticides: guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry, 62(19): 4227-4240.

22.     Chariou, P. L., Dogan, A. B., Welsh, A. G., Saidel, G. M., Baskaran, H., and Steinmetz, N. F. (2019). Soil mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology, 14(7): 712-718.

23.     Paul, E. A. (2016). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98: 109-126.

24.     Bulaić Nevistić, M., & Kovač Tomas, M. (2023). Matrix effect evaluation in GC/MS-MS analysis of multiple pesticide residues in selected food matrices. Foods, 12(21), 3991.

25.     Zhang, S., He, Z., Zeng, M., and Chen, J. (2023). Impact of matrix species and mass spectrometry on matrix effects in multi-residue pesticide analysis based on QuEChERS-LC-MS. Foods, 12(6): 1226.

26.     Han, L., Matarrita, J., Sapozhnikova, Y., and Lehotay, S. J. (2016). Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods. Journal of Chromatography A, 1449: 17-29.

27.     Wu, X., and Ding, Z. (2023). Evaluation of matrix effects for pesticide residue analysis by QuEChERs coupled with UHPLC-MS/MS in complex herbal matrix. Food Chemistry, 405: 134755.

28.     Sampaio, M. R., Tomasini, D., Cardoso, L. V., Caldas, S. S., and Primel, E. G. (2012). Determination of pesticide residues in sugarcane honey by QuEChERS, and liquid chromatography. Journal of the Brazilian Chemical Society, 23: 197-205.

29.     Lehotay, S. J., Son, K. A., Kwon, H., Koesukwiwat, U., Fu, W., Mastovska, K., Hoh, E., and Leepipatpiboon, N. (2010). Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A, 1217(16): 2548-2560.

30.     Mohammed, A. S., Ramadan, G. A., Abdelkader, A. I., Gadalla, S. A., Ayoub, M. M., Alabdulmalik, N. A., and AL Baker, W. A. (2020). Evaluation of method performance and matrix effect for 57 commonly used herbicides in some vegetable families using LC-MS/MS determination. Cogent Food & Agriculture, 6(1): 1815287.

31.     Guideline, I. H. T. (2005). Validation of analytical procedures: text and methodology. Q2 (R1), 1(20): 05.

32.     Miladinović, S. M. (2025). Green analytical chemistry: integrating sustainability into undergraduate education. Analytical and Bioanalytical Chemistry, 417(4): 665-673.