Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1363
Research Article
Development of QuEChERS method combined with ultraviolet-visible
spectroscopy for residual nanopesticide analysis in crops and vegetables
Farhatun
Najat Maluin∗,
Adam Iman Zairam, Nur Fadhlin Ilyana Noor Suha Azwar and Nurul Amirah Amir
Azahary
School of Chemical
Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
*Corresponding
author: farhatunnajat@usm.my
Received: 23 September 2025; Revised: 3 July
2025; Accepted: 21 July 2025; Published: 22 August 2025
Abstract
This study reports
the development of a modified QuEChERS method combined with UV-Visible
spectroscopy for the analysis of residual nanohexaconazole in rubber, chilli,
and eggplant matrices. Conventional QuEChERS methods face major limitations,
including incomplete removal of matrix interferences and insufficient
sensitivity, especially when applied to nanomaterials. Detecting nanopesticides
presents additional challenges due to their small particle size, enhanced
penetration into plant tissues, and interactions with biological compounds that
can alter detection signals. To address these issues, the method was improved
using acidified acetonitrile extraction and matrix-matched calibration to
enhance both precision and accuracy. The study specifically focuses on
detecting the newly developed nanohexaconazole in various matrices, including
fruit, leaf, and soil samples. The results revealed strong signal suppression
in leaf matrices, particularly in chilli leaf (ME% = -412.2%), followed by
eggplant and rubber leaves (ME% = -153.5% and -194.2%). In contrast, eggplant
fruit and topsoil showed moderate signal enhancement (ME% = 39.2% and 27.9%).
All matrix-specific calibration curves achieved R² values greater than 0.9,
confirming excellent linearity. This modified method provides a reliable and
accurate approach for the analysis of nanopesticide residue across complex
agricultural matrices, thereby supporting food safety monitoring and regulatory
compliance.
Keywords: QuEChERs method, nanopesticide, residue analysis, sustainable
nanomaterials
References
1. Singh, H., Sharma, A., Bhardwaj, S. K., Arya, S. K., Bhardwaj, N., and Khatri, M. (2021). Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environmental Science: Processes & Impacts, 23(2): 213-239.
2. Maluin, F. N., and Hussein, M. Z. (2020). Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules, 25(7): 1611.
3. Maluin, F. N., Hussein, M. Z., Yusof, N. A., Fakurazi, S., Maznah, Z., Idris, A. S., Hilmi, N. H. Z., and Daim, L. D. J. (2020). Residual analysis of chitosan-based agronanofungicides as a sustainable alternative in oil palm disease management. Scientific Reports, 10(1): 22323.
4. Câmara, J. S., Perestrelo, R., Berenguer, C. V., Andrade, C. F., Gomes, T. M., Olayanju, B., Kabir, A., Rocha, C., Teixeira, J. A., and Pereira, J. A. (2022). Green extraction techniques as advanced sample preparation approaches in biological, food, and environmental matrices: a review. Molecules, 27(9): 2953.
5. Williams, M. L., Olomukoro, A. A., Emmons, R. V., Godage, N. H., and Gionfriddo, E. (2023). Matrix effects demystified: Strategies for resolving challenges in analytical separations of complex samples. Journal of Separation Science, 46(23): 2300571.
6. Wahab, S., Muzammil, K., Nasir, N., Khan, M. S., Ahmad, M. F., Khalid, M., Ahmad, W., Dawria, A., Reddy, L. K. V., and Busayli, A. M. (2022). Advancement and new trends in analysis of pesticide residues in food: A comprehensive review. Plants, 11(9): 1106.
7.
Rutkowska, E., Łozowicka,
B., and Kaczyński, P. (2018). Modification of multiresidue QuEChERS
protocol to minimize matrix effect and improve recoveries for determination of
pesticide residues in dried herbs followed by GC-MS/MS. Food Analytical Methods, 11(3):
709-724.
8.
Maluin, F. N., Hussein, M. Z.,
Yusof, N. A., Fakurazi, S., Idris, A. S., Zainol Hilmi, N. H., and Jeffery
Daim, L. D. (2019). Preparation of chitosan–hexaconazole nanoparticles as
fungicide nanodelivery system for combating Ganoderma
disease in oil palm. Molecules, 24 (13): 2498.
9.
Dudkowiak, A., Nakamura, C.,
Arai, T., Miyake, J. (1998). Interactions of chlorophyll a with synthesized
peptide in aqueous solution. Journal of
Photochemistry and Photobiology B: Biology, 45(1): 43-50.
10.
Riaz, M., Zia-Ul-Haq, M., and Dou,
D. (2021). Carotenoids: structure and function in the human body, Springer Cham Publisher, Switzerland: pp.
43-76.
11.
Neill, S. O., and Gould, K. S. (2003).
Anthocyanins in leaves: light attenuators or antioxidants? Functional Plant Biology, 30(8):
865-873.
12.
Kunst, L., Samuels, A., and Jetter,
R. (2020). Plant lipids, Blackwell,
New York: pp 270-302.
13.
Zhu, J., Qi, J., Fang, Y.,
Xiao, X., Li, J., Lan, J., and Tang, C. (2018). Characterization of sugar
contents and sucrose metabolizing enzymes in developing leaves of Hevea brasiliensis. Frontiers in Plant Science, 9:
58.
14.
Ghaly, A. E., Alkoaik, F. (2010).
Extraction of protein from common plant leaves for use as human food. American Journal of Applied Sciences, 7(3): 331.
15.
Korkmaz, A., Atasoy, A. F., and
Hayaloglu, A. A. (2020). Changes in volatile compounds, sugars and organic
acids of different spices of peppers (Capsicum
annuum L.) during storage. Food
Chemistry, 311: 125910.
16.
Rodrigues, C. A., Zomer, A. P.
L., Rotta, E. M., Visentainer, J. V., and Maldaner, L. (2022). A
μ-QuEChERS method combined with UHPLC-MS/MS for the analysis of phenolic
compounds in red pepper varieties. Journal
of Food Composition and Analysis, 112:
104647.
17.
Bouhajeb, R., Selmi, S., Nakbi,
A., Jlassi, I., Montevecchi, G., Flamini, G., Zarrad, I., and Dabbou, S.
(2020). Chemical composition analysis, antioxidant, and antibacterial
activities of eggplant leaves. Chemistry
& Biodiversity, 17 (12):
e2000405.
18.
Wan Mohd Zain, W. Z., Ramli, N.
N., Jusoh, S., and Hamid, N. A. (2021). Antioxidant activity, total phenolic
and flavonoid content from leaves and seed extracts of Hevea brasiliensis clone. Journal
of Academia, 9: 1-7.
19.
Puttaso, P., Namanusart, W.,
Thumanu, K., Kamolmanit, B., Brauman, A., Lawongsa, P. (2020). Assessing the
effect of rubber (Hevea brasiliensis
(Willd. ex A. Juss.) Muell. Arg.) leaf chemical composition
on some soil properties of differently aged rubber tree plantations. Agronomy, 10(12): 1871.
20.
Cho, S.-Y., Kim, H.-W., Lee,
M.-K., Kim, H.-J., Kim, J.-B., Choe, J.-S., Lee, Y.-M., and Jang, H.-H. (2020).
Antioxidant and anti-inflammatory activities in relation to the flavonoids
composition of pepper (Capsicum annuum L.).
Antioxidants, 9(10): 986.
21.
Kookana, R. S., Boxall, A. B.,
Reeves, P. T., Ashauer, R., Beulke, S., Chaudhry, Q., Cornelis, G., Fernandes,
T. F., Gan, J., and Kah, M. (2014). Nanopesticides: guiding principles for
regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry, 62(19): 4227-4240.
22.
Chariou, P. L., Dogan, A. B.,
Welsh, A. G., Saidel, G. M., Baskaran, H., and Steinmetz, N. F. (2019). Soil
mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology, 14(7): 712-718.
23.
Paul, E. A. (2016). The nature
and dynamics of soil organic matter: Plant inputs, microbial transformations,
and organic matter stabilization. Soil
Biology and Biochemistry, 98:
109-126.
24.
Bulaić Nevistić, M., & Kovač Tomas, M. (2023). Matrix
effect evaluation in GC/MS-MS analysis of multiple pesticide residues in
selected food matrices. Foods, 12(21), 3991.
25.
Zhang, S., He, Z., Zeng, M., and Chen, J. (2023). Impact of matrix
species and mass spectrometry on matrix effects in multi-residue pesticide
analysis based on QuEChERS-LC-MS. Foods, 12(6):
1226.
26.
Han, L., Matarrita, J.,
Sapozhnikova, Y., and Lehotay, S. J. (2016). Evaluation of a recent product to
remove lipids and other matrix co-extractives in the analysis of pesticide
residues and environmental contaminants in foods. Journal of Chromatography A, 1449: 17-29.
27.
Wu, X., and Ding, Z. (2023).
Evaluation of matrix effects for pesticide residue analysis by QuEChERs coupled
with UHPLC-MS/MS in complex herbal matrix. Food
Chemistry, 405: 134755.
28.
Sampaio, M. R., Tomasini, D.,
Cardoso, L. V., Caldas, S. S., and Primel, E. G. (2012). Determination of
pesticide residues in sugarcane honey by QuEChERS, and liquid chromatography. Journal of the Brazilian Chemical Society, 23:
197-205.
29.
Lehotay, S. J., Son, K. A.,
Kwon, H., Koesukwiwat, U., Fu, W., Mastovska, K., Hoh, E., and Leepipatpiboon,
N. (2010). Comparison of QuEChERS sample preparation methods for the analysis
of pesticide residues in fruits and vegetables. Journal of Chromatography A, 1217(16): 2548-2560.
30.
Mohammed, A. S., Ramadan, G.
A., Abdelkader, A. I., Gadalla, S. A., Ayoub, M. M., Alabdulmalik, N. A., and
AL Baker, W. A. (2020). Evaluation of method performance and matrix effect for
57 commonly used herbicides in some vegetable families using LC-MS/MS
determination. Cogent Food &
Agriculture, 6(1): 1815287.
31.
Guideline, I. H. T. (2005).
Validation of analytical procedures: text and methodology. Q2 (R1), 1(20): 05.
32.
Miladinović, S. M. (2025).
Green analytical chemistry: integrating sustainability into undergraduate
education. Analytical and Bioanalytical
Chemistry, 417(4): 665-673.