Malays. J. Anal. Sci. Volume 29 Number 4 (2025): 1354

 

Research Article

 

Influence of crosslinker and monomer concentration on the swelling behaviour and morphological characteristics of hemicellulose-based hydrogels from oil palm empty fruit bunches

 

Sabiha Hanim Saleh1,2*, Nur Syafiqah Antashah Azaha1, Nurul Asyikin Abd Halim1, Shariff Ibrahim1,2, Mohammed Falalu Hamza1, Noraini Hamzah1,2

 

1School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Industrial Waste Conversion Technology Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: sabihahanim@uitm.edu.my

 

Received: 19 September 2024; Revised: 28 June 2025; Accepted: 2 July 2025; Published: 22 August 2025

 

Abstract

This study investigates the extraction of hemicellulose from oil palm empty fruit bunches (OPEFB) and its subsequent use in the synthesis of hemicellulose-based nanocomposite hydrogels. Given the limited understanding of how the crosslinker and monomer concentration affect the properties of these hydrogels, further exploration is essential. Six distinct hydrogels were synthesised by varying the amounts of the crosslinker N,N′-methylenebisacrylamide (MBA) and the monomer acrylic acid (AA). The primary aim was to evaluate the impact of these variations on the swelling behaviour of the hydrogels. Hemicellulose extraction was performed using a microwave-assisted alkaline solution at 130 °C for 30 min, and the extracted hemicellulose was then utilised to prepare the hydrogels. Swelling studies indicated that the hydrogel with 0.5% MBA exhibited the highest swelling percentage at 1008%, while the optimal monomer concentration of 20% achieved a swelling percentage of 1933%. Fourier Transform infrared spectroscopy identified key functional groups, including O-H, C≡C, C=O, and C-O stretches, reflecting differences in crosslinker and monomer concentrations. Field emission scanning electron microscopy analysis revealed distinct surface morphologies influenced by both crosslinker and monomer concentrations. Hydrogels with lower MBA (0.1%) and moderate AA (20%) exhibited rougher, more open surfaces, while higher MBA (1.0%) and AA (22%) contents resulted in smoother, denser structures. The optimal swelling performance was observed in samples with 0.5% MBA and 20% AA, corresponding to a well-balanced network structure. These findings highlight the critical need to optimise the crosslinker-to-monomer ratio and the concentrations of these components to develop hydrogels with desirable swelling properties and structural characteristics.

 

Keywords: crosslinker, monomer, oil palm empty fruit bunches, hydrogel, hemicellulose

 


References

1.        Padzil, F. N. M., Lee, S. H., Ainun, Z. M. A., Lee, C. H., and Abdullah, L. C. (2020). Potential of oil palm empty fruit bunch resources in nanocellulose hydrogel production for versatile applications: A review. Materials, 13(5): 1245.

2.        Puitel, A.C., Balan, C.D. and Nechita, M.T. (2025). Corn stalks-derived hemicellulosic polysaccharides: Extraction and purification. Polysaccharides, 6(2): 1-19.

3.        Zulyadi, N. H., Saleh, S. H., and Sarijo, S. H. (2016). Fractionation of hemicellulose from rice straw by alkaline extraction and ethanol precipitation. Malaysian Journal of Analytical Sciences, 20(2): 329-334. 

4.        Rodríguez-Sanz, A., Fuciños, C., Torrado, A. M., and Rúa, M. L. (2022). Extraction of the wheat straw hemicellulose fraction assisted by commercial endo-xylanases. Role of the accessory enzyme activities. Industrial Crops and Products, 179: 114655.

5.        Zhang, L., Huang, H., He, T., Sun, J., Chen, K., and Yue, F. (2024). Highly selective extraction of lignin and hemicellulose with retained original structure from sugarcane bagasse via low-temperature soaking and acidic precipitation. Industrial Crops and Products, 209: 118015.

6.        Mad Zahir, N. A. A., Hamzah, N., Mohd Zaki, H., Ibrahim, S., and Saleh, S. H. (2021). Optimisation of microwave-assisted water extraction of pineapple peel hemicellulose using response surface methodology. Malaysian Journal of Analytical Sciences, 25 (6): 1095-1106.

7.        Liu, K., Du, H., Zheng, T., Liu, H., Zhang, M., Zhang, R., Li, H., Xie, H., Zhang, X., Ma, M., and Si, C. (2021). Recent advances in cellulose and its derivatives for oilfield applications. Carbohydrate Polymers, 259: 117740.

8.        Liu, W., Du, H., Zhang, M., Liu, K., Liu, H., Xie, H., Zhang, X., and Si, C. (2020). Bacterial cellulose-based composite scaffolds for biomedical applications: A review. ACS Sustainable Chemistry & Engineering, 8(20): 7536-7562.

9.        Chen, T., Liu, H., Dong, C., An, Y., Liu, J., Li, J., Li, X., Si, C., and Zhang, M. (2020). Synthesis and characterization of temperature/pH dual sensitive hemicellulose-based hydrogels fromeucalyptus APMP waste liquor.     Carbohydrate Polymers, 247: 116717.

10.     Shahzamani, M., Taheri, S., Roghanizad, A., Naseri, N., and Dinari, M. (2020). Preparation and characterization of hydrogel nanocomposite based on nanocellulose and acrylic        acid in   the presence of urea. International Journal of Biological Macromolecules, 147:187-193.

11.     Weerasooriya, P. R. D., Nadhilah, R., Owolabi, F. A. T., Hashim, R., Abdul Khalil, H. P. S., Syahariza, Z. A., Hussin, M. H., Hiziroglu, S., and Haafiz, M. K. M. (2020). Exploring the properties of hemicellulose based carboxymethyl cellulose film as a potential green packaging. Current Research in Green and Sustainable Chemistry, 1-2: 20-28.

12.     Aljeboree, A. M., Hasan, I. T., Al-Warthan, A., and Alkaim, A. F. (2024). Preparation  of sodium alginate-based SA-g-poly(ITA-co-VBS)/RC hydrogel nanocomposites: And their application towards dye adsorption. Arabian Journal of Chemistry, 17(3): 105589.

13.     Singh, J. and Dhaliwal, A. (2018). Synthesis, characterization and swelling behavior of silver nanoparticles containing superabsorbent based on grafted copolymer of polyacrylic acid/Guar gum. Vacuum, 157: 51-60.

14.     Nasution, H., Harahap, H., Dalimunthe, N.F., Ginting, M.H.S., Jaafar, M., Tan, O.O.H., Aruan, H.K. and Herfananda A. L. (2022). Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: A review. Gels, 8(568): 1-31.

15.     Soares, P. A., de Seixas, J. R., Albuquerque, P. B., Santos, G. R., Mourao, P. A., Barros, W., Jr., Correia, M. T., and Carneiro-da-Cunha, M. G. (2015). Development and characterization of a new hydrogel based on galactomannan and kappa-carrageenan. Carbohydrate Polymers, 134: 673- 679.

16.     Peng, F., Guan, Y., Zhang, B., Bian, J., Ren, J. L., Yao, C. L., and Sun, R. C. (2014). Synthesis and properties of hemicelluloses-based semi-IPN hydrogels. International Journal of Biological Macromolecules, 65: 564-572.

17.     Ninciuleanu, C.M., Ianchiş, R., Alexandrescu, E., Mihăescu, C.I., Scomoroşcenco, C., Nistor, C.L., Preda, S., Petcu, C. and Teodorescu, M. (2021). The effects of monomer, crosslinking agent, and filler concentrations on the viscoelastic and swelling properties of poly(methacrylic acid) hydrogels: A comparison. Materials, 14(9): 2305.

18.     Banerjee, S., Patti, A. F., Ranganathan, V., and Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing,  117: 38-50.

19.     Lambrecht, S., Schröter, H., Pohle, H., and Jopp, S. (2024). Swelling behavior of novel hydrogels produced from glucose-based ionic monomers with varying cross-linkers. ACS Omega, 9: 5418-5428.

20.     Shin, S., Kim, S., Hong, S., Kim, N., Kang, J., and Jeong, J. (2025). Tuning the swelling behavior of superabsorbent hydrogels with a branched poly(aspartic acid) crosslinker. Gels, 11(3): 161.

21.     Groult, S., Buwalda, S., and Budtova, T. (2021). Pectin hydrogels, aerogels, cryogels and xerogels: Influence of drying on structural and release properties. European Polymer Journal, 149: 110386.

22.     Yang, J., Liang, G., Xiang, T., and Situ, W. (2021). Effect of crosslinking processing on the chemical structure and biocompatibility of a chitosan-based hydrogel. Food Chemistry, 354: 129476.