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Abstract

This study investigated the removal of perfluorooctanoic acid (PFOA) by using molybdenum disulphide-graphene oxide-
carboxymethyl cellulose (MoS2/GO/CMC) composites as a photocatalyst under various irradiation conditions and solution
pH value levels. The performance of MoS2/GO/CMC was compared with MoS2/CMC and GO/CMC composites. Under
LED light irradiation (12 W, 400—700 nm spectrum range), the MoS2/GO/CMC composite achieved a maximum PFOA
degradation efficiency of 92.26% within 2 h, outperforming other photocatalysts. The incorporation of cellulose improved
nanoparticle stability and increased surface-active sites, enhancing degradation efficiency. pH 5 was found to be optimal for
PFOA degradation due to favorable hydrophobic interactions, while higher pH levels hindered degradation due to
Coulombic repulsion. Increasing LED wattage to 12 W maximised degradation efficiency by enhancing
photodecomposition. These findings provide valuable insights into optimising PFOA degradation under different
environmental conditions, highlighting the potential of MoS2/GO/CMC composites for sustainable water treatment
solutions.
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Introduction
Perfluorooctanoic acid (PFOA) belongs to a class of

urban areas, such as Petaling Jaya, Putrajaya and
Kuala Lumpur, demonstrated its prevalence in

per- and polyfluoroalkyl substances (PFAS), which
have been widely used in various industrial and
consumer applications due to their exceptional
thermal, chemical, and biological stability [1,2,3].
However, these same properties contribute to their
persistence in the environment and potential
bioaccumulation, raising significant health and
ecological concerns [4,5,6]. The strong carbon-
fluorine (C-F) bonds make PFOA highly resistant to
natural degradation, leading to its widespread
detection in water bodies, soil and even human
biological [7,8,9]. A study conducted by Mohamad
Haron found PFOA concentrations that ranged from
0.31 ng/g to 3693.96 ng/g in household dust from

residential environments [10]. Additionally, PFAS,
particularly PFOS, have been detected in almost all
food categories, with the highest concentrations
observed in canned foods (0.18 ng/g — 34.5 ng/g).
Alarmingly, hazard quotient (HQ) values exceeding |
suggest a significant risk to human health [11,12].

The persistent nature of PFOA necessitates the
development of effective remediation techniques to
mitigate its environmental and health risks. Several
methods have been explored for PFOA removal,
including adsorption [13], membrane separation [14],
microbial degradation [15] and electrochemical
degradation [16]. Among these, photocatalysis has
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emerged as a promising and environmentally friendly
approach due to its ability to degrade PFOA without
secondary pollution [17,18]. In a photocatalytic
system, light energy excites the surface electron of
photocatalyst, leading to the generation of reactive
species that will break down pollutants into less
harmful compounds [19].

Amongst various photocatalysts, two-dimensional
(2D) semiconductor-based materials have gained
attention due to their visible-light activity and high
surface-to-volume ratio, enabling efficient charge
transfer and light absorption. Transition-metal oxides
such as ZnO, TiO,;, WOs as well as sulfides like
MoS; and CdS, have been explored for their
photocatalytic applications [20,21,23]. Molybdenum
disulfide (MoS,) has attracted particular interest due
to its tunable bandgap, strong visible-light
absorption, and high adsorption capacity, making it
an excellent candidate for organic pollutant
degradation [24]. However, to enhance its
photocatalytic efficiency and reduce electron-hole
recombination, MoS, is often combined with other
materials such as carbon particles [25], titanium
oxide nanoparticles [26], and zinc oxide [27].
Amongst these, graphene oxide (GO) has emerged as
a highly effective co-catalyst due to its high electrical
conductivity, large surface area, and ability to act as
an electron acceptor, thereby facilitating charge
separation and enhancing photocatalytic activity
[28]. In this study, MoS, was integrated with GO to
improve its overall photocatalytic performance.

To address challenges associated with nanoparticle
aggregation and recovery, immobilisation within a
hydrogel matrix was explored as a strategy for
enhancing photocatalyst stability and reusability.
Amongst natural polysaccharides, carboxymethyl
cellulose (CMC) stands out due to its water
solubility, biocompatibility, and ability to form
hydrogels with excellent mechanical stability [29-
36]. Unlike other polysaccharides such as chitosan
and lignin, CMC offers superior dispersibility, which
facilitates uniform photocatalyst distribution and
enhances availability of surface-active site. Previous
studies had demonstrated the successful integration
of cellulose-based  hydrogels with  various
nanomaterials, such as nano chitosan/TiO, [37],
carbon dot/ZnO [38], Ag/AgCl [39], and
polyaniline/GO [40], yielding efficient photocatalysts
for pollutant degradation. The presence of CMC in
MoS,/GO composites is expected to further enhance
photocatalytic efficiency by stabilising nanoparticles
and preventing their agglomeration [41].

Additionally, the choice of light source plays a
crucial role in determining photocatalytic efficiency.
Light-emitting diodes (LEDs) have gained popularity

as an energy-efficient alternative to conventional UV
lamps and mercury-based fluorescent lights due to
their longer lifespan, low energy consumption, and
tunable spectral output [29]. Unlike traditional
sources, LEDs emit a narrow spectrum of visible
light, ensuring optimal energy utilisation for
photocatalysis while minimising heat loss [30]. Their
compact design also allows for flexible reactor
configurations, making them suitable for scalable
water treatment applications. Despite these
advantages, few studies had explored the application
of LED-activated photocatalysts for PFOA
degradation, highlighting the need for further
research in this area.

This study aims to develop and characterise
MoS,/GO photocatalysts immobilised in a CMC
hydrogel matrix for the efficient photodegradation of
PFOA under visible-light LED irradiation. The
photocatalytic  activity of MoS,/GO/CMC is
evaluated under different reaction conditions,
including pH and LED wattage, to determine the
optimal degradation parameters. Additionally, the
recyclability of the photocatalyst is assessed to
demonstrate its potential for sustainable water
treatment applications. By integrating an energy-
efficient light source with a heterogeneous
MoS,/GO/CMC hydrogel system, this study seeks to
provide an effective and environmentally friendly
approach for PFOA remediation.

Materials and Methods

Materials

In this research, sodium molybdate (NazMoQa, 98%),
sulfuric acid (H2SO4, 98%), graphite powder (particle
size: 20 pm), potassium permanganate (KMnOs,
99%), sodium carboxymethyl cellulose (MW:
~250,000 g/mol, 99.5%), and perfluorooctanoic acid
(PFOA) were obtained from Sigma-Aldrich Co. (St.
Louis, Missouri, USA). Thiourea (CH4sN-S, >99.0%),
sodium hydroxide (NaOH), hydrogen peroxide
(H202), and sodium nitrate (NaNOs) were procured
from R&M Chemicals (United Kingdom).

Instrument

A Spectrum 100 FTIR Spectrometer from Perkin
Elmer, Attenuated Total Reflectance-Fourier
Transform Infrared (ATR-FTIR)-FTIR was utilised
to examine the functional group in hydrogels with
wavenumber ranges of 4000-650 cm™.

Preparation of MoS2/GO/CMC hydrogels

MoS; and GO were prepared according to [18]. The
synthesis started with the addition of 0.1 g of MoS,
and 0.1 g of GO nanoparticles to 2.5 mL of isopropyl
alcohol. This mixture was rapidly agitated at 60°C
for 1 h. Another solution was created simultaneously
by mixing 0.4 g of CMC with 2.5 mL of deionised
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water and vigorously swirled. After both solutions
were stirred for 1 h, the MoS, and GO dispersed
solution was carefully introduced into the CMC
solution while stirring it for 20 min. Then, the
resulting gel was processed to form flat beads. The
product was finally dried in a desiccator for 48 h
[31]. For control samples MoS,/CMC and GO/CMC
hydrogels were prepared by adding 0.1 g of MoS»
nanoparticles to 2.5 mL of isopropyl alcohol and
agitated vigorously at 60°C for 1 h. Consequently,
0.4 g of CMC was added to 2.5 mL of deionised
water and subjected to intense stirring at the same
temperature for 1 h. The MoS, solution was carefully
poured into the CMC solution and stirred for another
20 min. The resulting gel was moulded into flat
beads. Finally, the product was dried in a desiccator
for 48 h. The preparation of GO/CMC hydrogels
followed a similar procedure, with the key
difference.

Photocatalytic degradation studies

The photodegradation experiments were conducted
in a custom-designed photoreactor equipped with an
LED light source (A = 420-700 nm, visible light
spectrum) with a maximum power of 12 W. The
irradiation time for each experiment was set at 180
min to achieve optimal degradation. To evaluate the
photocatalytic efficiency of MoS./CMC, GO/CMC,
and MoS:/GO/CMC in degrading PFOA, a
photoreactor (Figure 1) which contained multiple
quartz tube reactors was used. In a typical
experiment, 0.01 g of the photocatalyst was added to
a 10 mL PFOA stock solution (50 mg/L). Before
exposure to light, the solutions were stirred in the
dark for 30 min to establish an adsorption/desorption
equilibrium. Them, the photocatalytic reactions were
initiated under LED irradiation (420 nm —700 nm) at
varying power levels (7 W, 9 W, 12 W). After
treatment, the solutions were filtered and the

concentration of PFOA was analysed by using
HPLC-UV at 210 nm.

Effect of light source

The photocatalytic performance of MoS/CMC,
GO/CMC, and Mo0S2/GO/CMC was evaluated under
different light sources (dark, UV, fluorescent, and
LED). Each composite (0.01 g) was added to 20 mL
of 50 mg/L PFOA solution in separate photoreactor
tubes. The mixtures were exposed to the respective
light sources for degradation, followed by filtration.
The PFOA concentration was analysed by using
HPLC-UV at 210 nm.

Effect of pH value

The effect of pH value on PFOA degradation was
investigated by using a 50 mg/L PFOA solution
across a pH value range of from 2.0 to 12.0. The pH
value was adjusted by using HCI or NaOH at 25°C.
Then, hydrogels were introduced to the pH-adjusted
solution, sonicated for 30 min, and transferred to a
glass cuvette for photocatalytic degradation in a UV
photoreactor. Afterward, the solutions were filtered,
and the PFOA concentration was analysed by using
HPLC-UV at 210 nm.

Zero potential analysis

The zero point of charge (pHZPC) of
MoS./GO/CMC was determined by using the salt
addition method. A solution of 0.1 M NaCl (40 mL)
was prepared and adjusted to pH 2—10 by using HCI
or NaOH. Then, 0.1 g of the material was added, and
the suspensions were stirred at 250 rpm overnight.
The final pH values were recorded, and the ApH
(pHf- pHi) was plotted against pHi to determine
pHZPC [32-33].

PUT IN THE
MATERIAL

12 WATT
LED LAMP

ANALYTE

Figure 1. A customised schematic measurement
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Effect of power watt

The photocatalytic performance of MoS:/GO/CMC
was evaluated under different power watt (7, 9, 12).
Each composite (0.01 g) was added to 20 mL of 50
mg/L PFOA solution in separate photoreactor tubes.
The mixtures were exposed to the respective light
sources for degradation, followed by filtration. The
PFOA concentration was analysed by using HPLC-
UV at 210 nm.

Analytical technique

A High-Performance Liquid Chromatography
(HPLC) with a UV detector system was used to
measure the concentration of PFOA in the aqueous
phase. The Agilent 1100 series HPLC system used
had a manual sample injector with a degasser, a 20-L
injection volume, a column oven that was kept at
40°C, and a pump. A CI18 separation column was
utilised for the analysis. The samples were eluted at
1.0 mL/min with acetonitrile and aqueous sodium
dihydrogen phosphate (5 mMol, pH 7.0) as the
mobile phase in a 50:50 (v/v) ratio. of 210 nm was
used for detection. Equation (1) was used to calculate
the degradation percentage:

Degradation (%)
Co—C
=9 0o 1)

o

Where, Co is initial PFOA concentration and C is the
PFOA concentration at the end of experiment [17].

Results and Discussion

FTIR spectra for CMC, MoS/CMC, GO/CMC, and
MoS./GO/CMC are shown in Figure 2. The FTIR
spectrum of CMC powder revealed absorption peaks
which corresponded to the vibrational frequencies of
chemical bonds within the CMC structure. The
absorption peak at 1600 cm™ corresponded to the
carboxylate group (COO"), while the peak at 1438
cm! was associated with the asymmetric stretching
vibration of carboxylate compound (COO Na).
Additionally, strong absorption between 950 cm™! and
1250 cm™ indicated the presence of ether (-C-O-C-)
linkages in the CMC compound [34]. The broad band
at 3400 cm™ corresponded to O-H stretching, while
the peak at 1321 cm™ was attributed to the
symmetric bending of CHz groups.

For MoS:, the FTIR spectrum displayed peaks
between 692 cm™ and 1137 cm™!, which were
characteristic of Mo-S and S-S bond vibrations,
confirming the presence of MoS.. The broad peak
around 3405 cm™ corresponded to O-H stretching
and bending modes, likely due to residual water or
hydroxyl groups adsorbed on the surface [35].
Meanwhile, for GO, the FTIR spectrum exhibited a
peak at 3453 cm™', which attributed to O-H

stretching vibrations and indicated the presence of
hydroxyl functional groups. Peaks at 1740 cm™ and
1589 cm™ corresponded to carbonyl (C=0) and C=C
stretching vibrations, respectively, confirming the
oxidation of graphite. Additionally, the peak at 1137
cm ! represented the epoxy (C-O-C) functional group
[36-38].

In the FTIR spectrum of the MoS:/GO/CMC
composite, all the characteristic peaks of CMC,
MoS., and GO were present, confirming the
successful formation of the composite material [39].
The skeletal vibration peak for the C-O-C bond
appeared at 1057 cm™!, while a peak at 865 cm™
corresponded to Mo-S and S-S linkages, indicating
the incorporation of MoS. within the composite
matrix. The presence of these characteristic
functional groups suggested strong interactions
between the components, which might enhance the
stability and photocatalytic activity of
MoS2/GO/CMC composite [40].

In this study, the photocatalytic process and
performance of MoS:/CMC, GO/CMC, and
MoS:/GO/CMC composites in degrading aqueous
PFOA solutions were evaluated. Figure 3 illustrates
the C/Co ratio for these composites under different
photocatalyst and irradiation conditions, whereby a
higher C/Co ratio indicated lower degradation
efficiency. The impact of various radiation sources,
including dark, UV, fluorescent, and LED irradiation,
was examined for over 120 min. Under dark
conditions, all photocatalysts displayed insignificant
degradation efficiency, primarily due to physical
adsorption mechanisms [41].

Meanwhile, under LED light, MoS./GO/CMC
exhibited the highest degradation efficiency (0.08) as
compared to MoS2/CMC (0.28) and GO/CMC (0.29).
Notably, fluorescent light showed better degradation
performance than UV light for GO/CMC (0.28) and
MoS:/GO/CMC (0.25). This enhanced performance
was attributed to the synergistic effect of MoS: and
GO within the composite matrix. The inclusion of
cellulose improved nanoparticle stability, reducing
the likelihood of their separation from the polymer
matrix and enhancing the ability of composite to
effectively separate photogenerated electron pairs.
Additionally, GO increased the number of surface-
active sites, further improving photocatalytic activity.
These findings highlighted the promising potential of
MoS»/GO/CMC composites for effective
photocatalytic degradation, particularly under LED
light.

The study also examined the effect of solution pH
value on PFOA degradation at pH 5, 7, and 9 (Figure
4) [42]. Results indicated that pH 5 was the most
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effective condition, yielding a C/Co ratio of 0.08.
This optimal pH value facilitated interaction between
PFOA and MoS/GO/CMC, primarily due to
hydrophobic interactions between graphene oxide
and the hydrophobic tail of PFOA [13]. At higher pH
levels, PFOA deprotonation resulted in a negatively
charged species, leading to electrostatic repulsion
with the negatively charged MoS./GO/CMC surface,
and thus reducing degradation efficiency.

For MoS2/GO/CMC, the study measured the pH
value at the point of zero charge (pHpzc), which was
determined to be 5.24 (Figure 5). This value
indicated a nearly neutral surface charge at this pH
value. At higher pH value levels, the presence of
excess OH™ ions led to deprotonation of
MoS:/GO/CMC, resulting in a negatively charged
surface which further hindered interaction with the
deprotonated PFOA anions [43,44].
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The effect of different wattage levels of emitting
diodes (7, 9, and 12 W) on the photocatalytic
degradation of PFOA was also investigated. Results
showed that 12 watts of power yielded the highest
percentage degradation of PFOA (Figure 6). This
increase in power enhanced the number of quanta

yields available for photodecomposition, thereby
improving decomposition efficiency. Overall, these
findings offered valuable insights into optimising the
photocatalytic degradation of PFOA in various
environmental conditions, considering factors such
as irradiation, pH value, and power levels [2].
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degradation of PFOA.

The most noteworthy result of photodegradation
experiments was a viable photocatalyst that may be
renewed. After a few applications, a good
photocatalyst ought to be able to maintain good
deteriorating performance. The photocatalyst was
washed with deionised water and methanol before
the experiment, and it was put in oven at 70 °C for 2
h. Figure 7(a) shows that after seven cycles, the
deterioration efficiency was decreased by about 12%.
Therefore, it was determined that it was allowed to
reuse the MoS,/GO/CMC for up to seven cycles [45-
46]. MoS,/GO/CMC structures did not show a
significant reduction in efficiency after seven cycles,
as seen in Figure 7(a). After seven cycles, the PFOA
degradation efficiency decreased from 92.26% to
89.02%, but the deterioration was still significant
[47]. Therefore, MoS,/GO/CMC revealed high
recyclability.

The FTIR analysis of the MoS/GO/CMC composite
after the seventh cycle provided insight into the
factors which contributed to its reduced
photocatalytic degradation efficiency. As shown in
Figure 7(b), a noticeable decrease in peak intensity
indicated a diminished presence of functional groups

essential for photocatalytic activity. This suggested
that repeated use led to the saturation or deactivation
of active sites, limiting the functional groups
responsible for radical generation. As a result, the
ability of composite to generate reactive oxygen
species (ROS) declined, reducing its affinity for
pollutant molecules and ultimately decreased the
degradation rate [48].

Additionally, the absence of the characteristic peak
between 1000 cm™ and 800 cm™ after multiple
cycles suggested structural modifications, likely due
to the repeated washing of the composite with
deionised water [49]. This process may have resulted
in the partial removal of functionalised GO
components, further reducing available surface-
active sites. Despite these changes, the composite
still maintained a high degradation efficiency after
seven cycles, demonstrating its relative stability and
reusability. However, the observed decline
highlighted the need for potential regeneration
strategies or modifications to enhance long-term
catalytic performance.
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Conclusion

In conclusion, this study demonstrates the
effectiveness of MoS,/GO/CMC composites in
degrading PFOA under LED light irradiation,
outperforming MoS,/CMC and GO/CMC
composites. The incorporation of cellulose enhanced
nanoparticle stability and increased surface-active
sites, leading to improved degradation efficiency.
The optimal degradation conditions were observed at
pH 5, whereby favorable hydrophobic interactions
facilitated degradation, whereas higher pH value
levels impeded the process. Additionally, increasing
the LED wattage to 12W significantly boosted
photodecomposition, maximising efficiency. These
findings provided valuable insights into optimising
PFOA degradation for real-world applications.
Future research should explore the long-term
stability and reusability of these composites, assess
their performance in complex water matrices, and
investigate large-scale implementation strategies to
advance sustainable water treatment solutions.
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