Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1508

 

Research Article

 

Chitosan-microcrystalline cellulose aerogel films for methylene blue adsorption: A combined experimental and density functional theory study

 

Nur Aqilah Mokhtar1, Nur Aida Fatimah Mashri1, Noor Afizah Rosli1,3, Najaa Mustaffa4, Suhaila Sapari4, Fazira Ilyana Abdul Razak4,Adhitya G. Saputro5,6, and Nadhratun Naiim Mobarak1,2,3

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia

2Water Analysis Research Center (ALIR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan

 3Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia

4Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor

5Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia

6Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia

 

*Corresponding author: nadhratunnaiim@ukm.edu.my

 

Received: 10 March 2025; Revised: 20 May 2025; Accepted: 25 May 2025; Published: 27 June 2025

 

Abstract

This study has investigated the effects of microcrystalline cellulose (C) on the swelling and adsorption characteristics of chitosan (CH)-based aerogels. The primary objective is to evaluate the impact of varying amounts of microcrystalline cellulose on the performance of chitosan-microcrystalline cellulose (CH-C) aerogels in methylene blue (MB) adsorption and swelling experiments. CH-C aerogel films were prepared by incorporating different quantities of microcrystalline cellulose into a chitosan solution, then freeze-dried. The results demonstrated that the addition of microcrystalline cellulose enhanced the strength of aerogel, allowing it to maintain its form when submerged in distilled water for 24 h. Although mechanical integrity improved with cellulose addition, the degree of swelling decreased due to stronger hydrogen bonding between chitosan and cellulose. Fourier transform infrared spectroscopy analysis indicated physical interactions between microcrystalline cellulose and chitosan. The adsorption process of MB on the CH-C aerogel revealed that it follows the pseudo-second-order kinetic model and the Langmuir isotherm model, suggesting that physical adsorption dominates this adsorption process. The adsorption amount increased with both the concentration of methylene blue and the duration of exposure, with an optimal adsorption time of 120 min. These findings highlight the potential of microcrystalline cellulose to enhance the mechanical properties and adsorption performance of chitosan-based aerogels. They offer promising applications in water treatment and environmental remediation. Additionally, the Highest Occupied Molecular Orbital (HOMO) of chitosan spans both oxygen and nitrogen atoms, whereas in cellulose, the electron density is predominantly localized around oxygen atoms.

 

Keywords: Chitosan, cellulose, methylene blue, isotherm, kinetic



References

1.      Filipkowska, U., Klimiuk, E., Grabowski, S., and Siedlecka, E. (2002). Adsorption of reactive dyes by modified chitin from aqueous solutions. Polish Journal of Environmental Studies, 11(4): 315-324.

2.      Manning, B. W., Cerniglia, C. E., and Federle, T. W. (1985). Metabolism of the benzidine-based azo dye direct black 38 by human intestinal microbiota. Applied and Environmental Microbiology, 50(1): 10-15.

3.      Nony, C. R., and Bowman, M. C. (1980). Trace analysis of potentially carcinogenic metabolites of an azo dye and pigment in hamster and human urine as determined by two chromatographic procedures. Journal of Chromatographic Science, 18(2): 64-74.

4.      Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., and Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. In Desalination, 280: 1–3.

5.      Kyzas, G. Z., Fu, J., and Matis, K. A. (2013). The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials, 6(11): 5131-5158.

6.      Novikov, V. Y., Derkach, S. R., Konovalova, I. N., Dolgopyatova, N. V, and Kuchina, Y. A. (2023). Mechanism of heterogeneous alkaline deacetylation of chitin: A review. Polymers, 15(7).

7.      Hamed, I., Özogul, F., and Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48: 40-50.

8.      Jawad, A. H., Azharul Islam, M., and Hameed, B. H. (2017). Cross-linked chitosan thin film coated onto glass plate as an effective adsorbent for adsorption of reactive Orange 16. International Journal of Biological Macromolecules, 95: 743-749.

9.      Nawi, M. A., Jawad, A. H., Sabar, S., and Ngah, W. S. W. (2011). Photocatalytic-oxidation of solid state chitosan by immobilized bilayer assembly of tio2–chitosan under a compact household fluorescent lamp irradiation. Carbohydrate Polymers, 83(3): 1146-1152.

10.   Pang, Y. L., Tan, J. H., Lim, S., and Chong, W. C. (2021). A state-of-the-art review on biowaste derived chitosan biomaterials for biosorption of organic dyes: Parameter studies, kinetics, isotherms and thermodynamics. Polymers, 13(17): 3009.

11.   Ozen, E., Yildirim, N., Dalkilic, B., and Ergun, M. E. (2021). Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Maderas. Ciencia y tecnología, 23: 26.

12.   Yang, H., Sheikhi, A., and Van De Ven, T. G. M. (2016). Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir, 32(45): 11771-11779.

13.   Hakam, A., Rahman, I. A., Jamil, M. S. M., Othaman, R., Amin, M. C. I. M., and Lazim, A. M. (2015). Removal of methylene blue dye in aqueous solution by sorption on a bacterial-g-poly-(acrylic acid) polymer network hydrogel. Sains Malaysiana, 44(6): 827-834.

14.   Huo, M. X., Jin, Y. L., Sun, Z. F., Ren, F., Pei, L., and Ren, P. G. (2021). Facile synthesis of chitosan-based acid-resistant composite films for efficient selective adsorption properties towards anionic dyes. Carbohydrate Polymers, 254(11): 117473.

15.   Ntakirutimana, S., Tan, W., and Wang, Y. (2019). Enhanced surface activity of activated carbon by surfactants synergism. RSC Advances, 9(45): 26519-26531.

16.   Shetty, B. (2022). A Green approach to the removal of malachite green dye from aqueous medium using chitosan/cellulose blend: pp. 1-26.

17.   Li, Q., Zhou, J., and Zhang, L. (2009). Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of polymer science part B: Polymer physics, 47(11): 1069-1077.

18.   Yasmeen, S., Kabiraz, M. K., Saha, B., Qadir, M. D., Gafur, M. D., and Masum, S. (2016). Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent. International Research Journal Pure Applied Chemistry, 10(4): 1-14.

19.   Mao, H., Wei, C., Gong, Y., Wang, S., and Ding, W. (2019). Mechanical and water-resistant properties of eco-friendly chitosan membrane reinforced with cellulose nanocrystals. Polymers, 11(1): 166.

20.   Huang, X., Xie, F., and Xiong, X. (2018). Surface-modified microcrystalline cellulose for reinforcement of chitosan film. Carbohydrate Polymers, 201: 367-373.

21.   Chang, P. R., Jian, R., Yu, J., and Ma, X. (2010). Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chemistry, 120(3): 736-740.

22.   Khademian, E., Salehi, E., Sanaeepur, H., Galiano, F., and Figoli, A. (2020). A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-part A: Classification and modification strategies. Science of the Total Environment, 738: 139829.

23.   Wang, J., Wang, L., Yu, H., Zain-ul-Abdin, Chen, Y., Chen, Q., Zhou, W., Zhang, H., and Chen, X. (2016). Recent progress on synthesis, property and application of modified chitosan: An overview. International Journal of Biological Macromolecules, 88: 333-344.

24.   Muinde, V. M., Onyari, J. M., Wamalwa, B., and Wabomba, J. N. (2020). Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material. Environmental Chemistry and Ecotoxicology, 2: 115-125.

25.   Rangabhashiyam, S., Anu, N., and Selvaraju, N. (2013). Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering, 1(4): 629-641.

26.   Sun, X. F., Liu, B., Jing, Z., and Wang, H. (2015). Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydrate Polymers, 118: 16-23.

27.   Meroufel, B., Benali, O., Benyahia, M., Benmoussa, Y., and Zenasni, M. A. (2013). Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. Journal of Materials and Environmental Science, 4(3): 482-491.

28.   Dhananasekaran, S., Palanivel, R., & Pappu, S. (2016). Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by α-chitin nanoparticles. Journal of Advanced Research, 7(1): 113-124.