Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1460
Research Article
Phenolic and chlorogenic acid recovery from Solanum
lasiocarpum Dunal (terung asam) via solid-phase
extraction: Fractionation, antioxidant, molecular docking, and anti-obesity
Aniza Saini1, Mohammad Amil Zulhilmi Benjamin2, Muhammad Daniel Eazzat Mohd Rosdan1, Mohamad Norisham Mohamad
Rosdi1,3, Mohd Azrie Awang1,4*
1 Faculty of Food Science and
Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah,
Malaysia
2 Borneo Research on Algesia,
Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and
Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu,
Sabah, Malaysia
3 Nutrition in Community
Engagement (NICE) Living Laboratory, Faculty of Food Science and
Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah,
Malaysia
4 Food Security Research
Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah,
Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
*Corresponding author: ma.awang@ums.edu.my
Received:
8 February 2025; Revised: 19 April 2025; Accepted: 23 April 2025; Published: 29
June 2025
Abstract
Solanum lasiocarpum Dunal, commonly
known as ‘terung asam,’ is
a fruit-vegetable extensively cultivated on Borneo Island. This study aimed to fractionate
chlorogenic acid (CGA) from S. lasiocarpum fruit crude extract (SLFCE)
using solid-phase extraction and to evaluate its antioxidant and anti-obesity
properties. Various ethanol concentrations were tested to determine the
fraction yield (FY), total phenolic content (TPC), and CGA content. Antioxidant
capacity was assessed using DPPH, ABTS, and FRAP assays. Anti-obesity potential
was investigated through in silico molecular docking and in vitro
pancreatic lipase inhibition assays. The 80% ethanol fraction exhibited the
highest FY (81.10 ± 0.50%), TPC (34.47 ± 1.41 mg GAE/g), and CGA concentration
(7.09 ± 0.27 mg/g). Antioxidant activity was also greatest at this
concentration, with DPPH scavenging activity at 91.32 ± 0.61%, ABTS at 85.98 ±
0.09%, and FRAP at 819.53 ± 0.30 mg TE/g. Molecular docking analysis showed
that CGA had a stronger binding affinity (–8.3 kcal/mol) than orlistat (–7.6
kcal/mol). In vitro, SLFCE and its optimal fraction demonstrated
IC₅₀ values of 44.12 ± 0.08 µg/mL and 16.54 ± 0.05 µg/mL,
respectively, while CGA and orlistat exhibited IC₅₀ values of 8.45
± 0.03 µg/mL and 12.71 ± 0.03 µg/mL. These results suggest that SLCFE has
promising potential as a functional food ingredient and dietary supplement with
notable antioxidant and anti-obesity effects.
Keywords: Solanum lasiocarpum, chlorogenic acid, solid-phase
extraction, antioxidant, anti-obesity
References
1.
Badawy, M. E. I.,
El-Nouby, M. A. M., Kimani, P. K., Lim, L. W. and
Rabea, E. I. (2022). A review of the modern principles and applications of
solid‑phase extraction techniques in chromatographic analysis. Analytical
Sciences, 38 (12): 1457-1487.
2.
Hui-Yan, T. and Sarbini, S. R. (2024). The local indigenous food of Sarawak
as potential functional food. International Journal of Food Science &
Technology, 59(10): 7692-7703.
3.
Soon, A. T. K. and
Ding, P. (2021). A review on wild indigenous eggplant, terung
asam Sarawak (Solanum lasiocarpum Dunal.). Sains
Malaysiana, 50 (3): 595-603.
4.
Pimpley, V., Patil, S., Srinivasan, K., Desai, N. and Murthy,
P. S. (2020). The chemistry of chlorogenic acid from green coffee and its role
in attenuation of obesity and diabetes. Preparative Biochemistry and
Biotechnology, 50 (10): 969-978.
5.
Nguyen, V., Taine,
E. G., Meng, D., Cui, T. and Tan, W. (2024). Chlorogenic acid: A systematic
review on the biological functions, mechanistic actions, and therapeutic
potentials. Nutrients, 16 (7): 924.
6.
Awang, M. A.,
Chua, L. S. and Abdullah, L. C. (2022). Solid-phase extraction and
characterization of quercetrin-rich fraction from Melastoma malabathricum
leaves. Separations, 9(11): 373.
7.
Mohd Rosdan, M. D.
E., Awang, M. A., Benjamin, M. A. Z., Mohd Amin, S. F. and Julmohammad,
N. (2024). Effect of ultrasound-assisted osmotic dehydration (UAOD)
pretreatment on Mangifera pajang Kosterm. fruit pulp: Drying kinetics, chemical qualities,
and color measurement. Journal of Food Process
Engineering, 47(9): e14721.
8.
Ivanović, M.,
Grujić, D., Cerar, J., Razboršek, M. I., Topalić-Trivunović,
L., Savić, A., Kočar, D. and Kolar, M. (2022). Extraction of
bioactive metabolites from Achillea millefolium L. with choline chloride
based natural deep eutectic solvents: A study of the antioxidant and
antimicrobial activity. Antioxidants, 11(4): 724.
9.
Awang, M. A.,
Benjamin, M. A. Z., Anuar, A., Ismail, M. F., Ramaiya, S. D. and Mohd Hashim,
S. N. A. (2023). Dataset of gallic acid quantification and their antioxidant
and anti-inflammatory activities of different solvent extractions from kacip fatimah (Labisia pumila Benth. & Hook. f.) leaves.
Data in Brief, 51: 109644.
10.
Wołosiak, R., Drużyńska,
B., Derewiaka, D., Piecyk, M., Majewska, E., Ciecierska, M., Worobiej, E. and Pakosz, P. (2022). Verification of the conditions for
determination of antioxidant activity by ABTS and DPPH assays—a practical
approach. Molecules, 27(1): 50.
11.
Russo, D., Kenny,
O., Smyth, T. J., Milella, L., Hossain, M. B., Diop,
M. S., Rai, D. K. and Brunton, N. P. (2013). Profiling of phytochemicals in
tissues from Sclerocarya birrea by HPLC-MS and their link with antioxidant
activity. ISRN Chromatography, 2013: 283462.
12.
Li, S., Pan, J.,
Hu, X., Zhang, Y., Gong, D. and Zhang, G. (2020). Kaempferol inhibits the
activity of pancreatic lipase and its synergistic effect with orlistat. Journal
of Functional Foods, 72: 104041.
13.
Estribillo, A. G.
M., Gaban, P. J. V., Rivadeneira, J. P., Villanueva, J. C., Torio, M. A. O. and
Castillo-Israel, K. A. T. (2022). Evaluation
of in vitro lipid-lowering properties of ‘Saba’ banana [Musa
acuminata x balbisiana (BBB group) ‘Saba’] peel pectin from
different extraction methods. Malaysian Journal of Nutrition, 28(1): 65-77.
14.
Dirar, A. I.,
Alsaadi, D. H. M., Wada, M., Mohamed, M. A., Watanabe, T. and Devkota, H. P.
(2019). Effects of extraction solvents on total phenolic and flavonoid contents
and biological activities of extracts from Sudanese medicinal plants. South
African Journal of Botany, 120: 261-267.
15.
Sun, C., Wu, Z.,
Wang, Z. and Zhang, H. (2015). Effect of ethanol/water solvents on phenolic
profiles and antioxidant properties of Beijing propolis extracts. Evidence-Based
Complementary and Alternative Medicine, 2015: 595393.
16.
Yusof, N., Abdul Munaim, M. S. and Veloo Kutty, R.
(2020). The effects of different ethanol concentration on total phenolic and
total flavonoid content in Malaysian Propolis. IOP Conference Series:
Materials Science and Engineering, 991(1): 012033.
17.
El Mannoubi, I. (2023). Impact of different solvents on
extraction yield, phenolic composition, in vitro antioxidant and
antibacterial activities of deseeded Opuntia stricta fruit. Journal
of Umm Al-Qura University for Applied Sciences, 9 (2): 176-184.
18.
Cui, T., Wang, C.,
Shan, C. and Wu, P. (2014). Optimization of the extraction technology of
chlorogenic acid in honeysuckle response surface method. Open Access Library
Journal, 1 (6): e941.
19.
Oziembłowski, M., Nawirska-Olszańska,
A. and Maksimowski, D. (2023). Optimization of
chlorogenic acid in ethanol extracts from elderberry flowers (Sambucus nigra
L.) under different conditions: Response surface methodology. Applied
Sciences, 13(5): 3201.
20.
Osorio, E.,
Toledano, M., Aguilera, F. S., Tay, F. R. and Osorio, R. (2010). Ethanol wet-bonding technique sensitivity assessed by
AFM. Journal of Dental Research, 89 (11): 1264-1269.
21.
Chakma, A., Afrin,
F., Rasul, M. G., Maeda, H., Yuan, C. and Shah, A. K. M. A. (2023). Effects of
extraction techniques on antioxidant and antibacterial activity of stevia (Stevia
rebaudiana Bertoni) leaf extracts. Food
Chemistry Advances, 3: 100494.
22.
Sopee, M. S. M.,
Azlan, A. and Khoo, H. E. (2019). Comparison of antioxidants content and
activity of Nephelium mutabile rind extracted
using ethanol and water. Journal of Food Measurement and Characterization,
13(3): 1958-1963.
23.
Sun, S., Liu, Z.,
Lin, M., Gao, N. and Wang, X. (2024). Polyphenols in health and food
processing: Antibacterial, anti-inflammatory, and antioxidant insights. Frontiers
in Nutrition, 11: 1456730.
24.
Clarke, G., Ting, K. N., Wiart, C. and
Fry, J. (2013). High correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical scavenging, ferric reducing activity potential and total phenolics
content indicates redundancy in use of all three assays to screen for
antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants,
2 (1): 1-10.
25.
Sadeer, N. B., Montesano, D., Albrizio, S., Zengin, G. and Mahomoodally,
M. F. (2020). The versatility of antioxidant assays in food science and
safety—chemistry, applications, strengths, and limitations. Antioxidants,
9(8): 709.
26.
Hsieh, C. and Rajashekaraiah,
V. (2021). Ferric reducing ability of plasma: A potential oxidative stress
marker in stored plasma. Acta Haematologica
Polonica, 52(1): 61-67.
27.
Macari, G., Toti, D., Pasquadibisceglie, A. and
Polticelli, F. (2020). DockingApp RF: A state-of-the-art novel scoring function for
molecular docking in a user-friendly interface to AutoDock
Vina. International Journal of Molecular Sciences, 21(24): 9548.
28.
Shao, J., Kuiper,
B. P., Thunnissen, A.-M. W. H., Cool, R. H., Zhou,
L., Huang, C., Dijkstra, B. W. and Broos, J. (2022). The role of tryptophan in
π interactions in proteins: An experimental approach. Journal of the
American Chemical Society, 144 (30): 13815-13822.
29.
Zhu, Y.-T., Jia,
Y.-W., Liu, Y.-M., Liang, J., Ding, L.-S. and Liao, X. (2014). Lipase ligands
in Nelumbo nucifera leaves and study of their binding mechanism. Journal
of Agricultural and Food Chemistry, 62(44): 10679-10686.
30.
Mudgil, P., Baba,
W. N., Kamal, H., FitzGerald, R. J., Hassan, H. M., Ayoub, M. A., Gan, C.-Y. and
Maqsood, S. (2022). A comparative investigation into novel cholesterol esterase
and pancreatic lipase inhibitory peptides from cow and camel casein
hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion. Food
Chemistry, 367: 130661.
31.
Du, X., Li, Y., Xia,
Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L. and Liu, S.-Q. (2016). Insights
into protein–ligand interactions: Mechanisms, models, and methods. International
Journal of Molecular Sciences, 17(2): 144.
32.
Quek, A., Kassim, N. K., Lim, P. C., Tan,
D. C., Mohammad Latif, M. A., Ismail, A., Shaari, K. and Awang, K. (2021).
α-Amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory effects of Melicope latifolia bark extracts and
identification of bioactive constituents using in vitro and in
silico approaches. Pharmaceutical Biology, 59(1): 964-973.
33.
Xu, Z., Cao, Q., Manyande, A., Xiong, S. and Du, H. (2022). Analysis of the
binding selectivity and inhibiting mechanism of chlorogenic acid isomers and
their interaction with grass carp endogenous lipase using multi-spectroscopic,
inhibition kinetics and modeling methods. Food
Chemistry, 382: 132106.
34.
Liu, Y., Luo, J. and
Xu, B. (2024). Elucidation of anti-obesity mechanisms of phenolics in Artemisiae argyi
Folium (Aiye) by integrating LC-MS, network
pharmacology, and molecular docking. Life, 14(6): 656.
35.
Ado, M. A., Abas,
F., Mohammed, A. S. and Ghazali, H. M. (2013). Anti- and pro-lipase activity of
selected medicinal, herbal and aquatic plants, and structure elucidation of an
anti-lipase compound. Molecules, 18(12): 14651-14669.