Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1460

 

Research Article

 

Phenolic and chlorogenic acid recovery from Solanum lasiocarpum Dunal (terung asam) via solid-phase extraction: Fractionation, antioxidant, molecular docking, and anti-obesity

 

Aniza Saini1, Mohammad Amil Zulhilmi Benjamin2, Muhammad Daniel Eazzat Mohd Rosdan1, Mohamad Norisham Mohamad Rosdi1,3, Mohd Azrie Awang1,4*

 

1 Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia

2 Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia

3 Nutrition in Community Engagement (NICE) Living Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia

4 Food Security Research Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia

 

*Corresponding author: ma.awang@ums.edu.my

 

Received: 8 February 2025; Revised: 19 April 2025; Accepted: 23 April 2025; Published: 29 June 2025

 

Abstract

Solanum lasiocarpum Dunal, commonly known as ‘terung asam,’ is a fruit-vegetable extensively cultivated on Borneo Island. This study aimed to fractionate chlorogenic acid (CGA) from S. lasiocarpum fruit crude extract (SLFCE) using solid-phase extraction and to evaluate its antioxidant and anti-obesity properties. Various ethanol concentrations were tested to determine the fraction yield (FY), total phenolic content (TPC), and CGA content. Antioxidant capacity was assessed using DPPH, ABTS, and FRAP assays. Anti-obesity potential was investigated through in silico molecular docking and in vitro pancreatic lipase inhibition assays. The 80% ethanol fraction exhibited the highest FY (81.10 ± 0.50%), TPC (34.47 ± 1.41 mg GAE/g), and CGA concentration (7.09 ± 0.27 mg/g). Antioxidant activity was also greatest at this concentration, with DPPH scavenging activity at 91.32 ± 0.61%, ABTS at 85.98 ± 0.09%, and FRAP at 819.53 ± 0.30 mg TE/g. Molecular docking analysis showed that CGA had a stronger binding affinity (–8.3 kcal/mol) than orlistat (–7.6 kcal/mol). In vitro, SLFCE and its optimal fraction demonstrated IC₅₀ values of 44.12 ± 0.08 µg/mL and 16.54 ± 0.05 µg/mL, respectively, while CGA and orlistat exhibited IC₅₀ values of 8.45 ± 0.03 µg/mL and 12.71 ± 0.03 µg/mL. These results suggest that SLCFE has promising potential as a functional food ingredient and dietary supplement with notable antioxidant and anti-obesity effects.

 

Keywords: Solanum lasiocarpum, chlorogenic acid, solid-phase extraction, antioxidant, anti-obesity



References

1.      Badawy, M. E. I., El-Nouby, M. A. M., Kimani, P. K., Lim, L. W. and Rabea, E. I. (2022). A review of the modern principles and applications of solid‑phase extraction techniques in chromatographic analysis. Analytical Sciences, 38 (12): 1457-1487.

2.      Hui-Yan, T. and Sarbini, S. R. (2024). The local indigenous food of Sarawak as potential functional food. International Journal of Food Science & Technology, 59(10): 7692-7703.

3.      Soon, A. T. K. and Ding, P. (2021). A review on wild indigenous eggplant, terung asam Sarawak (Solanum lasiocarpum Dunal.). Sains Malaysiana, 50 (3): 595-603.

4.      Pimpley, V., Patil, S., Srinivasan, K., Desai, N. and Murthy, P. S. (2020). The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Preparative Biochemistry and Biotechnology, 50 (10): 969-978.

5.      Nguyen, V., Taine, E. G., Meng, D., Cui, T. and Tan, W. (2024). Chlorogenic acid: A systematic review on the biological functions, mechanistic actions, and therapeutic potentials. Nutrients, 16 (7): 924.

6.      Awang, M. A., Chua, L. S. and Abdullah, L. C. (2022). Solid-phase extraction and characterization of quercetrin-rich fraction from Melastoma malabathricum leaves. Separations, 9(11): 373.

7.      Mohd Rosdan, M. D. E., Awang, M. A., Benjamin, M. A. Z., Mohd Amin, S. F. and Julmohammad, N. (2024). Effect of ultrasound-assisted osmotic dehydration (UAOD) pretreatment on Mangifera pajang Kosterm. fruit pulp: Drying kinetics, chemical qualities, and color measurement. Journal of Food Process Engineering, 47(9): e14721.

8.      Ivanović, M., Grujić, D., Cerar, J., Razboršek, M. I., Topalić-Trivunović, L., Savić, A., Kočar, D. and Kolar, M. (2022). Extraction of bioactive metabolites from Achillea millefolium L. with choline chloride based natural deep eutectic solvents: A study of the antioxidant and antimicrobial activity. Antioxidants, 11(4): 724.

9.      Awang, M. A., Benjamin, M. A. Z., Anuar, A., Ismail, M. F., Ramaiya, S. D. and Mohd Hashim, S. N. A. (2023). Dataset of gallic acid quantification and their antioxidant and anti-inflammatory activities of different solvent extractions from kacip fatimah (Labisia pumila Benth. & Hook. f.) leaves. Data in Brief, 51: 109644.

10.   Wołosiak, R., Drużyńska, B., Derewiaka, D., Piecyk, M., Majewska, E., Ciecierska, M., Worobiej, E. and Pakosz, P. (2022). Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays—a practical approach. Molecules, 27(1): 50.

11.   Russo, D., Kenny, O., Smyth, T. J., Milella, L., Hossain, M. B., Diop, M. S., Rai, D. K. and Brunton, N. P. (2013). Profiling of phytochemicals in tissues from Sclerocarya birrea by HPLC-MS and their link with antioxidant activity. ISRN Chromatography, 2013: 283462.

12.   Li, S., Pan, J., Hu, X., Zhang, Y., Gong, D. and Zhang, G. (2020). Kaempferol inhibits the activity of pancreatic lipase and its synergistic effect with orlistat. Journal of Functional Foods, 72: 104041.

13.   Estribillo, A. G. M., Gaban, P. J. V., Rivadeneira, J. P., Villanueva, J. C., Torio, M. A. O. and Castillo-Israel, K. A. T. (2022). Evaluation of in vitro lipid-lowering properties of ‘Saba’ banana [Musa acuminata x balbisiana (BBB group) ‘Saba’] peel pectin from different extraction methods. Malaysian Journal of Nutrition, 28(1): 65-77.

14.   Dirar, A. I., Alsaadi, D. H. M., Wada, M., Mohamed, M. A., Watanabe, T. and Devkota, H. P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 120: 261-267.

15.   Sun, C., Wu, Z., Wang, Z. and Zhang, H. (2015). Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evidence-Based Complementary and Alternative Medicine, 2015: 595393.

16.   Yusof, N., Abdul Munaim, M. S. and Veloo Kutty, R. (2020). The effects of different ethanol concentration on total phenolic and total flavonoid content in Malaysian Propolis. IOP Conference Series: Materials Science and Engineering, 991(1): 012033.

17.   El Mannoubi, I. (2023). Impact of different solvents on extraction yield, phenolic composition, in vitro antioxidant and antibacterial activities of deseeded Opuntia stricta fruit. Journal of Umm Al-Qura University for Applied Sciences, 9 (2): 176-184.

18.   Cui, T., Wang, C., Shan, C. and Wu, P. (2014). Optimization of the extraction technology of chlorogenic acid in honeysuckle response surface method. Open Access Library Journal, 1 (6): e941.

19.   Oziembłowski, M., Nawirska-Olszańska, A. and Maksimowski, D. (2023). Optimization of chlorogenic acid in ethanol extracts from elderberry flowers (Sambucus nigra L.) under different conditions: Response surface methodology. Applied Sciences, 13(5): 3201.

20.   Osorio, E., Toledano, M., Aguilera, F. S., Tay, F. R. and Osorio, R. (2010). Ethanol wet-bonding technique sensitivity assessed by AFM. Journal of Dental Research, 89 (11): 1264-1269.

21.   Chakma, A., Afrin, F., Rasul, M. G., Maeda, H., Yuan, C. and Shah, A. K. M. A. (2023). Effects of extraction techniques on antioxidant and antibacterial activity of stevia (Stevia rebaudiana Bertoni) leaf extracts. Food Chemistry Advances, 3: 100494.

22.   Sopee, M. S. M., Azlan, A. and Khoo, H. E. (2019). Comparison of antioxidants content and activity of Nephelium mutabile rind extracted using ethanol and water. Journal of Food Measurement and Characterization, 13(3): 1958-1963.

23.   Sun, S., Liu, Z., Lin, M., Gao, N. and Wang, X. (2024). Polyphenols in health and food processing: Antibacterial, anti-inflammatory, and antioxidant insights. Frontiers in Nutrition, 11: 1456730.

24.   Clarke, G., Ting, K. N., Wiart, C. and Fry, J. (2013). High correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants, 2 (1): 1-10.

25.   Sadeer, N. B., Montesano, D., Albrizio, S., Zengin, G. and Mahomoodally, M. F. (2020). The versatility of antioxidant assays in food science and safety—chemistry, applications, strengths, and limitations. Antioxidants, 9(8): 709.

26.   Hsieh, C. and Rajashekaraiah, V. (2021). Ferric reducing ability of plasma: A potential oxidative stress marker in stored plasma. Acta Haematologica Polonica, 52(1): 61-67.

27.   Macari, G., Toti, D., Pasquadibisceglie, A. and Polticelli, F. (2020). DockingApp RF: A state-of-the-art novel scoring function for molecular docking in a user-friendly interface to AutoDock Vina. International Journal of Molecular Sciences, 21(24): 9548.

28.   Shao, J., Kuiper, B. P., Thunnissen, A.-M. W. H., Cool, R. H., Zhou, L., Huang, C., Dijkstra, B. W. and Broos, J. (2022). The role of tryptophan in π interactions in proteins: An experimental approach. Journal of the American Chemical Society, 144 (30): 13815-13822.

29.   Zhu, Y.-T., Jia, Y.-W., Liu, Y.-M., Liang, J., Ding, L.-S. and Liao, X. (2014). Lipase ligands in Nelumbo nucifera leaves and study of their binding mechanism. Journal of Agricultural and Food Chemistry, 62(44): 10679-10686.

30.   Mudgil, P., Baba, W. N., Kamal, H., FitzGerald, R. J., Hassan, H. M., Ayoub, M. A., Gan, C.-Y. and Maqsood, S. (2022). A comparative investigation into novel cholesterol esterase and pancreatic lipase inhibitory peptides from cow and camel casein hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion. Food Chemistry, 367: 130661.

31.   Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L. and Liu, S.-Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2): 144.

32.   Quek, A., Kassim, N. K., Lim, P. C., Tan, D. C., Mohammad Latif, M. A., Ismail, A., Shaari, K. and Awang, K. (2021). α-Amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory effects of Melicope latifolia bark extracts and identification of bioactive constituents using in vitro and in silico approaches. Pharmaceutical Biology, 59(1): 964-973.

33.   Xu, Z., Cao, Q., Manyande, A., Xiong, S. and Du, H. (2022). Analysis of the binding selectivity and inhibiting mechanism of chlorogenic acid isomers and their interaction with grass carp endogenous lipase using multi-spectroscopic, inhibition kinetics and modeling methods. Food Chemistry, 382: 132106.

34.   Liu, Y., Luo, J. and Xu, B. (2024). Elucidation of anti-obesity mechanisms of phenolics in Artemisiae argyi Folium (Aiye) by integrating LC-MS, network pharmacology, and molecular docking. Life, 14(6): 656.

35.   Ado, M. A., Abas, F., Mohammed, A. S. and Ghazali, H. M. (2013). Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound. Molecules, 18(12): 14651-14669.