Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1443
Review Article
Applications of aptamer-gold
nanoparticle conjugates in biosensors for point-of-care diagnostics
Nur Syamimi Mohamad1, Lee
Yook Heng2 and Eda Yuhana Ariffin3*
1Southeast
Asia Disaster Prevention Research Initiative (SEADPRI), Institute for
Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department
of Chemical Sciences, School of Distance Education, Universiti Sains Malaysia,
E39, Minden Heights, 11800 Gelugor, Pulau Pinang
*Corresponding
author: edayuhana@usm.my
Received: 29 December 2024;
Revised: 3 June 2025; Accepted: 18 June 2025; Published: 29 June 2025
Abstract
The rapid, sensitive and selective
detection of biomolecules made possible by biological sensing technology has
completely changed the field of diagnostics. Recent advancements include the
implementation of aptamer-gold nanoparticle (AuNP) conjugate-based biosensors,
which represent a novel category of clinical diagnostic tools. This thorough
study consolidates recent advancements while critically assessing the
diagnostic capabilities, technological constraints, and translational
preparedness of aptamer-AuNP biosensors. By systematically analysing
28 peer-reviewed studies published from 2014 to 2023, utilizing data from Web of Science and PubMed, this review highlights issues,
such as instability, inadequate specificity, restricted reproducibility, and
difficulties in incorporating biosensors into user-friendly diagnostic
platforms. The results also demonstrate a significant increase in research
activities over the past five years, with optical and electrochemical platforms
identified as the predominant modalities of study. Analytical evaluations
demonstrated exceptional sensitivity (as low as 0.02 pg
mL⁻¹) and significant stability (up to 35 days) in actual biological
specimens, including serum, urine, saliva, and food matrices. However, major
gaps remain in long-term reproducibility, integration into user-friendly
formats, and specificity in complex matrices. This analysis outlines the
limitations and suggests alternatives to improve sensor design and
implementation for practical diagnostic applications, particularly in
personalized medicine and point-of-care diagnostics.
Keywords: Aptamer; gold-nanoparticles;
biosensor; optical; electrochemical; systematic review
References
1.
Mohamad, N.S., Tan, L.L., Ta, G.C., Heng, L.Y. and
NAIIM, N. (2022). A quinoline-based
fluorescent labelling for zinc detection and DFT calculations. Sains
Malaysiana, 51: 3949-3966.
2.
Ramakrishna, B.
and Sai, V.V.R. (2016). Evanescent wave absorbance based
U-bent fiber probe for immunobiosensor
with gold nanoparticle labels. Sensor Actuators B Chem, 226: 184-190.
3.
Mohamad, N.S.,
Zakaria, N.H., Daud, N., Tan, L.L., Heng, L.Y. and Hassan, N.I. (2021). The
Role of 8-amidoquinoline derivatives as fluorescent probes for zinc ion
determination. Sensors, 21: 311.
4.
Nath, P., Mahtaba, K.R. and Ray, A. (2023) Fluorescence-based
portable assays for detection of biological and chemical analytes. Sensors,
23: 5053.
5.
Le, D., Dhamecha, D., Gonsalves, A. and Menon, J.U. (2020).
Ultrasound-enhanced chemiluminescence for bioimaging. Frontier
Bioengineering Biotechnology, 8: 25.
6.
Zeng, Y., Hu, R.,
Wang, L., Gu, D., He, J., Wu, S.-Y., Ho, H.-P., Li, X., Qu, J., Gao, B.Z. and
Shao, Y. (2017). Recent advances in surface plasmon resonance imaging:
detection speed, sensitivity, and portability. Nanophotonics,
6: 1017-1030.
7.
Zhang, L., Guo,
W., Lv, C., Liu, X., Yang, M., Guo, M. and Fu, Q.
(2023). Electrochemical biosensors represent promising detection tools in
medical field. Advanced Sensor and Energy Materials, 2, 100081.
8.
Baranwal, J.,
Barse, B., Gatto, G., Broncova, G. and Kumar, A.
(2022). Electrochemical sensors and their applications: A review. Chemosensors, 10: 363.
9.
Ang, L.F., Por,
L.Y. and Yam, M.F. (2015). Development of an amperometric-based
glucose biosensor to measure the glucose content of fruit. PLoS
One, 10: e0111859.
10. Wang, Y., Xu, H., Zhang, J. and Li, G. (2008).
Electrochemical sensors for clinic analysis. Sensors, 8: 2043-2081.
11. Štukovnik, Z., Fuchs-Godec, R. and Bren, U. (2023). Nanomaterials
and their recent applications in impedimetric biosensing. Biosensors (Basel),
13: 899.
12. Darwish, M.A., Abd-Elaziem,
W., Elsheikh, A., Zayed, A.A. (2024). Advancements in nanomaterials for nanosensors: a comprehensive review. Nanoscale Advances,
6, 4015-4046.
13. Noah, N.M. (2020). Design and Synthesis of
Nanostructured Materials for Sensor Applications. Journal of Nanomaterials,
2020: 1-20.
14. Kusuma, S.A.F., Harmonis,
J.A., Pratiwi, R. and Hasanah, A.N. (2023). Gold nanoparticle-based
colorimetric sensors: properties and application in detection of heavy metals
and biological molecules. Sensors, 23: 8172.
15. Karnwal, A. Kumar Sachan, R.S., Devgon,
I., Devgon, J., Pant, G., Panchpuri,
M., Ahmad, A., Alshammari, M.B., Hossain, K. and Kumar, G. (2024). Gold nanoparticles
in nanobiotechnology: From synthesis to biosensing applications. ACS Omega,
9: 29966-29982.
16. Kumalasari, M.R., Alfanaar, R. and
Andreani, A.S. (2024). Gold nanoparticles (AuNPs): A versatile material for
biosensor application. Talanta Open, 9:
100327.
17. Zahra, Q. ul A., Luo, Z., Ali, R., Khan,M.I.,
Li, F. and Qiu, B. (2021). Advances in gold nanoparticles-based colorimetric aptasensors for the detection of antibiotics: An overview
of the past decade. Nanomaterials, 11: 840.
18. Rahimizadeh, K., Zahra, Q., Chen, S., Le, B.T., Ullah, I. and
Veedu, R.N. (2023). Nanoparticles-assisted aptamer biosensing for the detection
of environmental pathogens. Environmental Research, 238: 117123.
19. Kadam, U.S. and Hong, J.C. (2022) Advances in
aptameric biosensors designed to detect toxic contaminants from food, water,
human fluids, and the environment. Trends in Environmental Analytical
Chemistry, 36: e00184.
20. 20. Frens, G. (1973) Controlled nucleation for the
regulation of the particle size in monodispersed gold suspensions. Nature
Physical Science, 241: 20-22.
21. Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M.
(2004). Rapid synthesis of Au, Ag and bimetallic Au-core-Ag shell nanoparticles
using Neem (Azadirachta indica) leaf
broth. Journal of Colloid and Interface Science, 275: 496-502.
22. Duff, D.G., Baiker, A. and Edwards, P.P. (1993). A new
hydrosol of gold clusters. 1 Formation and particle size variation. Langmuir,
9: 2301-2309.
23. Daniel, M-C. and Astruc, D. (2004). Gold
nanoparticles: Assembly, supramolecular chemistry, quantum-size-related
properties and applications toward biology, catalysis and nanotechnology. Chemical
Reviews, 104: 293-346.
24. Amendola, V. and Meneghetti, M. (2009). Laser ablation
synthesis in solution and size manipulation of noble metal nanoparticles. Physical
Chemistry Chemical Physics, 11: 3805-3821.
25. Ngernpimai, S., Puangmali, T., Kopwitthaya, A., Tippayawat, P., Chompoosor, A. and Teerasong, S.
(2024). Enhanced stability of gold-nanoparticles with thioalkylated
carboxyl-terminated ligands for applications in biosensing. ACS Applied
Nanomaterials, 7: 13124-13133.
26. Mafune, F., Kohno, J-y., Takeda, Y. and Kondow,
T. (2002). Full physical preparation of size-selected gold nanoparticles in
solution: Laser ablation and laser-induced size control. The Journal of
Physical Chemistry B, 106: 7575-7577.
27. Mafune, F., Kohno, J-y., Takeda, Y. and Kondow,
T. (2003) Formation of gold nanonetworks and small gold nanoparticles by
irradiation of intense pulsed laser onto gold nanoparticles. Journal of
Physical Chemistry B, 107: 12589-12596.
28. Khaleeq-ur-Rahman, M.,
Bhatti, K.A., Rafique, M.S., Anjum, S., Latif, A., Anjum, M., Ahsan, A. and
Ozair, H. (2010) Morphological and structural analysis of nano-structured gold
thin film on silicon by pulsed laser deposition technique. Vacuum, 85,
353-357.
29. Wei, X.,
Wang, Y., Zhao, Y. and Chen, Z. (2017). Colorimetric sensor array for protein
discrimination based on different DNA chain length-dependent gold nanoparticles
aggregation. Biosensors and Bioelectronic, 97: 332-337.
30.
Zhu, J., Huo, X., Liu, X. and Ju, H. (2016). Gold nanoparticles
deposited polyaniline-TiO2 nanotube for surface plasmon resonance
enhanced photoelectrochemical biosensing. ACS Applied Materials and
Interfaces, 8: 341-349
31. Yu, Z-J.,
Yang, T-T., Liu, G., Deng, D-H. and Liu, L. (2024). Gold nanoparticles-based
colorimetric immunoassay of carcinoembryonic antigen with metal-organic
framework to load quinones for catalytic oxidation of cysteine. Sensors,
24, 6701.
32. Melaine, F.,
Roupioz, Y. and Buhot, A.
(2015) Gold nanoparticles surface plasmon resonance enhanced signal for the
detection of small molecules on split-aptamer microarrays (small molecules
detection from split-aptamers). Microarrays, 4: 41-52.
33. Canbaz,
M.C., Simsek, C.S. and Sezgintürk, M.K. (2014). Electrochemical
biosensor based on self-assembled monolayers modified with gold nanoparticles
for detection of HER-3. Analytica Chimica Acta,
814: 31-38.
34.
Huang, J-Y., Lin, H-T., Chen, T-H., Chen, C-A., Chang,
H-T. and Chen, C-F. (2018). Signal amplified gold nanoparticles for cancer
diagnosis on paper-based analytical devices. ACS Sensors, 3: 174-182.
35.
Elizarova, T.N., Antopolsky, M.L., Novichikhin,
D.O., Skirda, A.M., Orlov, A.V., Bragina, V.A. and
Nikitin, P.I. (2023). A straightforward method for the development of
positively charged gold nanoparticle-based vectors for effective siRNA delivery.
Molecules, 28: 3318.
36.
Chegel, V., Rachkov, O., Lopatynskyi, A.,
Ishihara, S., Yanchuk, I., Nemoto, Y., Hill, J.P. and Ariga, K. (2011). Gold nanoparticles
aggregation: Drastic effect of cooperative functionalities in a single
molecular conjugate. The Journal of Physical Chemistry C, 116: 2683-2690.
37.
Al-mahamad, L.L.G. (2022). Analytical
study to determine the optical properties of gold nanoparticles in the visible
solar spectrum. Heliyon, 8, e09966.
38.
Ahmad, T., Wani, I.A., Ahmed, J. and Al-Hartomy, O.A. (2014). Effect of gold ion concentration on
size and properties of gold nanoparticles in TritonX-100 based inverse
microemulsions. Applied Nanoscience, 4: 491-498.
39.
Khajegi, P. and
Rashidi-Huyeh, M. (2021) Optical properties of gold nanoparticles: Shape and size
effects. International Journal of Optics and Photonics, 15: 41-48.
40.
Brambilla, D., Panico, F., Zarini,
L., Mussida, A., Ferretti, A.M., Aslan, M., Unlu,
M.S. and Chiari. (2024). Copolymer-coated gold nanoparticles: enhanced
stability and customizable functionalization for biological assays. Biosensors,
14: 319.
41.
Yarbakht, M. and
Nikkhah, M. (2016) Unmodified gold nanoparticles as a colorimetric probe for
visual methamphetamine detection. Journal of Experimental Nanoscience,
11: 593-601.
42.
Ning, Y., Hu, J.
and Lu, F. (2020). Aptamers used for biosensors and targeted therapy. Biomedicine
& Pharmacotherapy, 132:110902.
43.
Song, S., Wang,
L., Li, J., Fan, C. and Zhao, J. (2008) Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 27: 108-117.
44.
Weaver, S.,
Mohammadi, M.H. and Nakatsuka, N. (2023). Aptamer-functionalized capacitive
biosensors. Biosens Bioelectron,
224: 115014.
45.
Kumalasari, M.R., Alfanaar, R. and
Andreani, A.S. (2024). Gold nanoparticles (AuNPs): A versatile material for
biosensor application. Talanta Open, 9:
100327.
46. Lee, J.-H., Cho, H.-Y., Choi, H.K., Lee, J.-Y. and
Choi, J.-W. (2018) Application of Gold Nanoparticle to Plasmonic Biosensors. International
Journal Molecular Sciences, 19: 2021.
47. Gurung, B., Lama, A., Pokhrel, T., Sinjali,
B.B., Thapa, S., Bhusal, M. and Adhikari, A. (2023) Optical Detection of the
Viruses by Gold Nanoparticles (AuNPs). Journal Nanomaterials, 2023:
1–10.
48. Castillo,
G., Spilella, K., Poturnayov,
A., Snejdarkova, Snjejdarkova,
M. Mosiello, L. and Hianik, T. (2015). Detection of
aflatoxin B1 by aptamer-based biosensor using, PAMAM dendrimers as
immobilization platform. Food Control, 52: 9-18.
49. Matteoli, G., Luin, S., Bellucci, L., Nifosì, R., Beltram, F. and Signore,
G. (2023). Aptamer-based gold nanoparticle aggregates for ultrasensitive
amplification-free detection of PSMA. Science Reports, 13: 19926.
50. Kusuma, S.A.F., Harmonis,
J.A., Pratiwi, R. and Hasanah, A.N. (2023). Gold nanoparticle-based
colorimetric sensors: properties and application in detection of heavy metals
and biological molecules. Sensors, 23: 8172.
51. Siciliano, G., Alsadig, A., Chiriacò, M.S., Turco, A., Foscarini,
A., Ferrara, F., Gigli, G. and Primiceri, E. (2024)
Beyond traditional biosensors: Recent advances in gold nanoparticles modified
electrodes for biosensing applications. Talanta,
268: 125280.
52. Sequeira-Antunes, B. and Ferreira, H.A. (2023).
Nucleic acid aptamer-based biosensors: A review. Biomedicines, 11: 3201.
53. Khan, J., Rasmi, Y., Kırboğa,
K.K., Ali, A., Rudrapal, M. and Patekar, R.R. (2022).
Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. Beni
Suef University Journal Basic Applied Sciences, 11: 111.
54. Shan, X., Kuang, D., Feng, Q., Wu, M. and Yang, J.
(2023). A dual-mode ratiometric aptasensor
for accurate detection of pathogenic bacteria based on recycling of DNAzyme activation. Food Chemistry, 423: 136287.
55. Kurup, C.P., Mohd-Naim, N.F. and Ahmed, M.U. (2022) A
solid-state electrochemiluminescence aptasensor for
β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed
sensor. Microchimica Acta, 189: 165.
56. Ebrahimi, R., Barzegari, A., Teimuri-Mofrad,
R., Kordasht, H.K., Hasanzadeh, M., Khoubnasabjafari, M., Jouyban-Gharamaleki,
V., Rad, A.A., Shadjou, N., Rashidi, M.-R., Afshar Mogaddam, M.R. and Jouyban, A.
(2022) Selection of specific aptamer against rivaroxaban and utilization for
label-free electrochemical aptasensing using gold
nanoparticles: first announcement and application for clinical sample analysis.
Biosensors (Basel), 12: 773.
57. Kurnia Sari, A., Hartati, Y.W., Gaffar, S., Anshori, I., Hidayat, D. and Wiraswati,
H.L. (2022). The optimization of an electrochemical aptasensor
to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using
screen-printed carbon electrode/AuNP. Journal of Electrochemical
Science and Engineering, 12: 219–235.
58. Mohsin, D.H., Mashkour, M.S.
and Fatemi, F. (2021) Design of aptamer-based sensing platform using gold
nanoparticles functionalized reduced graphene oxide for ultrasensitive
detection of Hepatitis B virus. Chemical Papers, 75: 279-295.
59. Tao, D., Shui, B., Gu, Y., Cheng, J., Zhang, W., Jaffrezic-Renault, N., Song, S. and Guo, Z. (2019). Development
of a Label-Free Electrochemical Aptasensor for the
Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients’
Sera. Biosensors (Basel), 9: 84.
60. Chang, C.C., Chen, C.Y., Zhao, X.H., Wu, T.H., Wei,
S.C and Lin, C.W. (2014) Label-free colorimetric aptasensor
for IgE using DNA pseudoknot probe. Analyst,
139: 3347–3351.
61. Eshlaghi, S.N., Syedmoradi, L.,
Amini, A. and Omidfar, K. (2023). A label-free
electrochemical aptasensor based on screen printed
carbon electrodes with gold nanoparticles-polypyrrole
composite for detection of cardiac troponin I. IEEE Sensor Journal, 23:
3439-3445.
62. Lin, X., Liu, P.P., Yan, J., Luan, D., Sun, T. and
Bian, X. (2023). Dual synthetic receptor-based sandwich electrochemical sensor
for highly selective and ultrasensitive detection of pathogenic bacteria at the
single-cell level. Analytical Chemistry, 95: 5561–5567.
63. Hao, N., Zou, Y., Qiu, Y., Zhao, L., Wei, J., Qian, J.
and Wang, K. (2023). Visual electrochemiluminescence biosensor chip based on
distance readout for deoxynivalenol detection. Analytical Chemistry, 95:
2942–2948.
64. Villalonga, A., Sánchez, A., Vilela, D., Mayol,
B., Martínez-Ruíz, P. and Villalonga,
R. (2022). Electrochemical aptasensor based on anisotropically
modified (Janus-type) gold nanoparticles for determination of C-reactive
protein. Microchimica Acta, 189: 309.
65. Roushani, M., Sarabaegi, M.,
Hosseini, H. and Pourahmad, F. (2022) Gold
nanostructures integrated on hollow carbon N-doped nanocapsules
as a novel high-performance aptasensing platform for
Helicobacter pylori detection. Journal Material Sciences, 57: 589–597.
66. Sohouli, E., Ghalkhani, M., Zargar,
T., Joseph, Y., Rahimi-Nasrabadi, M., Ahmadi, F., Plonska-Brzezinska,M.E. and Ehrlich, H. (2022). A new electrochemical aptasensor based on gold/nitrogen-doped carbon
nano-onions for the detection of Staphylococcus aureus. Electrochim Acta, 403: 139633.
67. El-Wekil, M.M., Halby, H.M.,
Darweesh, M., Ali, M.E. and Ali, R. (2022). An
innovative dual recognition aptasensor for specific
detection of Staphylococcus aureus based on Au/Fe3O4
binary hybrid. Science Reports, 12: 12502.
68. Capatina, D., Lupoi, T.,
Feier, B., Blidar, A., Hosu, O., Tertis, M., Olah,
D., Cristea, C. and Oprean, R. (2022).
label-free electrochemical aptasensor for the
detection of the 3-O-C12-HSL quorum-sensing molecule in Pseudomonas
aeruginosa. Biosensors (Basel), 12: 440.
69. Mahyari, M., Hooshmand, S.E., Sepahvand,
H., Gholami, S., Rezayan, A.H. and Zarei M.A. (2021).
Gold nanoparticles anchored onto covalent poly deep eutectic solvent
functionalized graphene: An electrochemical aptasensor
for the detection of C-reactive protein. Materials Chemistry Physics,
269: 124730.
70. Villalonga, A., Vegas, B., Paniagua, G., Eguílaz, M.,
Mayol, B., Parrado, C., Rivas, G., Díez, P., and Villalonga, R. (2020). Amperometric aptasensor for
carcinoembryonic antigen based on a reduced graphene oxide/gold nanoparticles
modified electrode. Journal of Electroanalytical Chemistry, 877: 114511.
71. Khonsari, Y.N. and Sun, S. (2019). A novel label free electrochemiluminescent aptasensor
for the detection of lysozyme. Materials Science and Engineering: C, 96:
146–152.
72. Liu, G., Gurung, A.S. and Qiu, W. (2019). Lateral flow
aptasensor for simultaneous detection of
platelet-derived growth factor-BB (PDGF-BB) and thrombin. Molecules, 24:
756.
73. Ali, A.S.M., El-Halawany,
M.S., Ibrahim, S.A., Plückthun, O., Khalil, A.S.G.
and Mayer, G. (2019) Aptasensor for Quantifying
Pancreatic Polypeptide. ACS Omega, 4: 2948-2956.
74. Ranjbar, S. and Shahrokhian,
S. (2018). Design and fabrication of an electrochemical aptasensor
using Au nanoparticles/carbon nanoparticles/ cellulose nanofibers nanocomposite
for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry,
123: 70-76.
75. He, B. (2018). Sandwich electrochemical thrombin assay
using a glassy carbon electrode modified with nitrogen- and sulfur-doped
graphene oxide and gold nanoparticles. Microchimica
Acta, 185: 344.
76. Mansor, N.N.N., Leong, T.T., Safitri,
E., Futra, D., Ahmad, N.S., Nasuruddin,
D.N., Itnin, A., Zaini, I.Z., Arifin, K.T., Heng,
L.Y. and Hassan, N.I. (2018) An Amperometric
Biosensor for the Determination of Bacterial Sepsis Biomarker, Secretory
Phospholipase Group 2-IIA Using a Tri-enzyme System. Sensors, 18: 686.
77. Li, R., Fan, H., Zhou, H., Chen, Y., Yu, Q., Hu, W.,
Liu, G.L. and Huang, L. (2023). Nanozyme-catalyzed metasurface plasmon sensor-based portable ultrasensitive
optical quantification platform for cancer biomarker screening. Advance Science, 10 :
2301658.
78. Tseng, Y-T., Yu,
Y-H., Yeh, Y-Y., Mai, P.C., Huang, T-T., Huang, C-J., Chau, L-K. and Chen, Y-L.
(2025) Femtomolar-level detection of procalcitonin
using a split aptamer-based fiber optic
nanogold-linked sorbent assay for diagnosis of sepsis. Talanta,
293: 128150.
79. Lim, S., Tan, M and Tan, E. (2024). Development of an
aptamer-based electrochemical biosensor for early detection of prostate cancer
markers. Journal of Biomedical and Techno Nanomaterials, 1: 196-206.
80. Cordeiro, M., Carlos, F.F., Pedrosa, P., Lopez, A. and
Baptista, P.V. (2016). Gold nanoparticles for diagnostics: advances towards
points of care. Diagnostics, 6: 43.
81. Guo, W., Zhang, C., Ma, T., Liu, X., Chen, Z., Li, S.
and Deng, Y. (2021). Advances in aptamer screening and aptasensors’
detection of heavy metal ions. Journal of Nanobiotechnology, 19:
166.
82. Zhu, J., Yang, B., Hao, H., Peng, L. and Lou, S.
(2023). Gold nanoparticles-based colorimetric assay of pesticides: A critical
study on aptamer’s role and another alternatives sensor array strategy. Sensors
and Actuators: B. Chemical, 381: 133439.
83. Iha, K., Kyosei, Y., Namba,
M., Makioka, D., Yamura, S., Watabe, S., Yoshimura, T. and Ito, E. (2021). Zeptomole
detection of an enzyme by a simple colorimetric method. Analytical Sciences,
37: 1469-1472.
84. Léguillier, V., Heddi, B. and Vidic, J. (2024) Recent advances
in aptamer-based biosensors for bacterial detection. Biosensors (Basel),
14: 210.
85. Tessaro, L., Aquino, A., de Carvalho, A.P.A and
Conte-Junior, C.A. (2021). A systematic review on gold nanoparticles
based-optical biosensors for Influenza virus detection. Sensors and
Actuators Reports, 3: 100060.
86. Díaz-García, V., Haensgen,
A., Inostroza, L., Contreras-Trigo, B. and Oyarzun, P. (2023). Novel microsynthesis of high-yield gold nanoparticles to
accelerate research in biosensing and other bioapplications.
Biosensors (Basel), 13: 992.