Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1443

 

Review Article

 

Applications of aptamer-gold nanoparticle conjugates in biosensors for point-of-care diagnostics

 

Nur Syamimi Mohamad1, Lee Yook Heng2 and Eda Yuhana Ariffin3*

 

1Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Department of Chemical Sciences, School of Distance Education, Universiti Sains Malaysia, E39, Minden Heights, 11800 Gelugor, Pulau Pinang

 

*Corresponding author: edayuhana@usm.my

 

Received: 29 December 2024; Revised: 3 June 2025; Accepted: 18 June 2025; Published: 29 June 2025

 

Abstract

The rapid, sensitive and selective detection of biomolecules made possible by biological sensing technology has completely changed the field of diagnostics. Recent advancements include the implementation of aptamer-gold nanoparticle (AuNP) conjugate-based biosensors, which represent a novel category of clinical diagnostic tools. This thorough study consolidates recent advancements while critically assessing the diagnostic capabilities, technological constraints, and translational preparedness of aptamer-AuNP biosensors. By systematically analysing 28 peer-reviewed studies published from 2014 to 2023, utilizing data from Web of Science and PubMed, this review highlights issues, such as instability, inadequate specificity, restricted reproducibility, and difficulties in incorporating biosensors into user-friendly diagnostic platforms. The results also demonstrate a significant increase in research activities over the past five years, with optical and electrochemical platforms identified as the predominant modalities of study. Analytical evaluations demonstrated exceptional sensitivity (as low as 0.02 pg mL⁻¹) and significant stability (up to 35 days) in actual biological specimens, including serum, urine, saliva, and food matrices. However, major gaps remain in long-term reproducibility, integration into user-friendly formats, and specificity in complex matrices. This analysis outlines the limitations and suggests alternatives to improve sensor design and implementation for practical diagnostic applications, particularly in personalized medicine and point-of-care diagnostics.

 

Keywords: Aptamer; gold-nanoparticles; biosensor; optical; electrochemical; systematic review


 

References

1.        Mohamad, N.S., Tan, L.L., Ta, G.C., Heng, L.Y. and NAIIM, N. (2022). A quinoline-based fluorescent labelling for zinc detection and DFT calculations. Sains Malaysiana, 51: 3949-3966.

2.        Ramakrishna, B. and Sai, V.V.R. (2016). Evanescent wave absorbance based U-bent fiber probe for immunobiosensor with gold nanoparticle labels. Sensor Actuators B Chem, 226: 184-190.

3.        Mohamad, N.S., Zakaria, N.H., Daud, N., Tan, L.L., Heng, L.Y. and Hassan, N.I. (2021). The Role of 8-amidoquinoline derivatives as fluorescent probes for zinc ion determination. Sensors, 21: 311.

4.        Nath, P., Mahtaba, K.R. and Ray, A. (2023) Fluorescence-based portable assays for detection of biological and chemical analytes. Sensors, 23: 5053.

5.        Le, D., Dhamecha, D., Gonsalves, A. and Menon, J.U. (2020). Ultrasound-enhanced chemiluminescence for bioimaging. Frontier Bioengineering Biotechnology, 8: 25.

6.        Zeng, Y., Hu, R., Wang, L., Gu, D., He, J., Wu, S.-Y., Ho, H.-P., Li, X., Qu, J., Gao, B.Z. and Shao, Y. (2017). Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability. Nanophotonics, 6: 1017-1030.

7.        Zhang, L., Guo, W., Lv, C., Liu, X., Yang, M., Guo, M. and Fu, Q. (2023). Electrochemical biosensors represent promising detection tools in medical field. Advanced Sensor and Energy Materials, 2, 100081.

8.        Baranwal, J., Barse, B., Gatto, G., Broncova, G. and Kumar, A. (2022). Electrochemical sensors and their applications: A review. Chemosensors, 10: 363.

9.        Ang, L.F., Por, L.Y. and Yam, M.F. (2015). Development of an amperometric-based glucose biosensor to measure the glucose content of fruit. PLoS One, 10: e0111859.

10.     Wang, Y., Xu, H., Zhang, J. and Li, G. (2008). Electrochemical sensors for clinic analysis. Sensors, 8: 2043-2081.

11.     Štukovnik, Z., Fuchs-Godec, R. and Bren, U. (2023). Nanomaterials and their recent applications in impedimetric biosensing. Biosensors (Basel), 13: 899.

12.     Darwish, M.A., Abd-Elaziem, W., Elsheikh, A., Zayed, A.A. (2024). Advancements in nanomaterials for nanosensors: a comprehensive review. Nanoscale Advances, 6, 4015-4046.

13.     Noah, N.M. (2020). Design and Synthesis of Nanostructured Materials for Sensor Applications. Journal of Nanomaterials, 2020: 1-20.

14.     Kusuma, S.A.F., Harmonis, J.A., Pratiwi, R. and Hasanah, A.N. (2023). Gold nanoparticle-based colorimetric sensors: properties and application in detection of heavy metals and biological molecules. Sensors, 23: 8172.

15.     Karnwal, A. Kumar Sachan, R.S., Devgon, I., Devgon, J., Pant, G., Panchpuri, M., Ahmad, A., Alshammari, M.B., Hossain, K. and Kumar, G. (2024). Gold nanoparticles in nanobiotechnology: From synthesis to biosensing applications. ACS Omega, 9: 29966-29982.

16.     Kumalasari, M.R., Alfanaar, R. and Andreani, A.S. (2024). Gold nanoparticles (AuNPs): A versatile material for biosensor application. Talanta Open, 9: 100327.

17.     Zahra, Q. ul A., Luo, Z., Ali, R., Khan,M.I., Li, F. and Qiu, B. (2021). Advances in gold nanoparticles-based colorimetric aptasensors for the detection of antibiotics: An overview of the past decade. Nanomaterials, 11: 840.

18.     Rahimizadeh, K., Zahra, Q., Chen, S., Le, B.T., Ullah, I. and Veedu, R.N. (2023). Nanoparticles-assisted aptamer biosensing for the detection of environmental pathogens. Environmental Research, 238: 117123.

19.     Kadam, U.S. and Hong, J.C. (2022) Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment. Trends in Environmental Analytical Chemistry, 36: e00184.

20.     20. Frens, G. (1973) Controlled nucleation for the regulation of the particle size in monodispersed gold suspensions. Nature Physical Science, 241: 20-22.

21.     Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2004). Rapid synthesis of Au, Ag and bimetallic Au-core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275: 496-502.

22.     Duff, D.G., Baiker, A. and Edwards, P.P. (1993). A new hydrosol of gold clusters. 1 Formation and particle size variation. Langmuir, 9: 2301-2309.

23.     Daniel, M-C. and Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis and nanotechnology. Chemical Reviews, 104: 293-346.

24.     Amendola, V. and Meneghetti, M. (2009). Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Physical Chemistry Chemical Physics, 11: 3805-3821.

25.     Ngernpimai, S., Puangmali, T., Kopwitthaya, A., Tippayawat, P., Chompoosor, A. and Teerasong, S. (2024). Enhanced stability of gold-nanoparticles with thioalkylated carboxyl-terminated ligands for applications in biosensing. ACS Applied Nanomaterials, 7: 13124-13133.

26.     Mafune, F., Kohno, J-y., Takeda, Y. and Kondow, T. (2002). Full physical preparation of size-selected gold nanoparticles in solution: Laser ablation and laser-induced size control. The Journal of Physical Chemistry B, 106: 7575-7577.

27.     Mafune, F., Kohno, J-y., Takeda, Y. and Kondow, T. (2003) Formation of gold nanonetworks and small gold nanoparticles by irradiation of intense pulsed laser onto gold nanoparticles. Journal of Physical Chemistry B, 107: 12589-12596.

28.     Khaleeq-ur-Rahman, M., Bhatti, K.A., Rafique, M.S., Anjum, S., Latif, A., Anjum, M., Ahsan, A. and Ozair, H. (2010) Morphological and structural analysis of nano-structured gold thin film on silicon by pulsed laser deposition technique. Vacuum, 85, 353-357.

29.     Wei, X., Wang, Y., Zhao, Y. and Chen, Z. (2017). Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation. Biosensors and Bioelectronic, 97: 332-337.

30.     Zhu, J., Huo, X., Liu, X. and Ju, H. (2016). Gold nanoparticles deposited polyaniline-TiO2 nanotube for surface plasmon resonance enhanced photoelectrochemical biosensing. ACS Applied Materials and Interfaces, 8: 341-349

31.     Yu, Z-J., Yang, T-T., Liu, G., Deng, D-H. and Liu, L. (2024). Gold nanoparticles-based colorimetric immunoassay of carcinoembryonic antigen with metal-organic framework to load quinones for catalytic oxidation of cysteine. Sensors, 24, 6701.

32.     Melaine, F., Roupioz, Y. and Buhot, A. (2015) Gold nanoparticles surface plasmon resonance enhanced signal for the detection of small molecules on split-aptamer microarrays (small molecules detection from split-aptamers). Microarrays, 4: 41-52.

33.     Canbaz, M.C., Simsek, C.S. and Sezgintürk, M.K. (2014). Electrochemical biosensor based on self-assembled monolayers modified with gold nanoparticles for detection of HER-3. Analytica Chimica Acta, 814: 31-38.

34.     Huang, J-Y., Lin, H-T., Chen, T-H., Chen, C-A., Chang, H-T. and Chen, C-F. (2018). Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sensors, 3: 174-182.

35.     Elizarova, T.N., Antopolsky, M.L., Novichikhin, D.O., Skirda, A.M., Orlov, A.V., Bragina, V.A. and Nikitin, P.I. (2023). A straightforward method for the development of positively charged gold nanoparticle-based vectors for effective siRNA delivery. Molecules, 28: 3318.

36.     Chegel, V., Rachkov, O., Lopatynskyi, A., Ishihara, S., Yanchuk, I., Nemoto, Y., Hill, J.P. and Ariga, K. (2011). Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate. The Journal of Physical Chemistry C, 116: 2683-2690.

37.     Al-mahamad, L.L.G. (2022). Analytical study to determine the optical properties of gold nanoparticles in the visible solar spectrum. Heliyon, 8, e09966.

38.     Ahmad, T., Wani, I.A., Ahmed, J. and Al-Hartomy, O.A. (2014). Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions. Applied Nanoscience, 4: 491-498.

39.     Khajegi, P. and Rashidi-Huyeh, M. (2021) Optical properties of gold nanoparticles: Shape and size effects. International Journal of Optics and Photonics, 15: 41-48.

40.     Brambilla, D., Panico, F., Zarini, L., Mussida, A., Ferretti, A.M., Aslan, M., Unlu, M.S. and Chiari. (2024). Copolymer-coated gold nanoparticles: enhanced stability and customizable functionalization for biological assays. Biosensors, 14: 319.

41.     Yarbakht, M. and Nikkhah, M. (2016) Unmodified gold nanoparticles as a colorimetric probe for visual methamphetamine detection. Journal of Experimental Nanoscience, 11: 593-601.

42.     Ning, Y., Hu, J. and Lu, F. (2020). Aptamers used for biosensors and targeted therapy. Biomedicine & Pharmacotherapy, 132:110902.

43.     Song, S., Wang, L., Li, J., Fan, C. and Zhao, J. (2008) Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 27: 108-117.

44.     Weaver, S., Mohammadi, M.H. and Nakatsuka, N. (2023). Aptamer-functionalized capacitive biosensors. Biosens Bioelectron, 224: 115014.

45.     Kumalasari, M.R., Alfanaar, R. and Andreani, A.S. (2024). Gold nanoparticles (AuNPs): A versatile material for biosensor application. Talanta Open, 9: 100327.

46.     Lee, J.-H., Cho, H.-Y., Choi, H.K., Lee, J.-Y. and Choi, J.-W. (2018) Application of Gold Nanoparticle to Plasmonic Biosensors. International Journal Molecular Sciences, 19: 2021.

47.     Gurung, B., Lama, A., Pokhrel, T., Sinjali, B.B., Thapa, S., Bhusal, M. and Adhikari, A. (2023) Optical Detection of the Viruses by Gold Nanoparticles (AuNPs). Journal Nanomaterials, 2023: 1–10.

48.     Castillo, G., Spilella, K., Poturnayov, A., Snejdarkova, Snjejdarkova, M. Mosiello, L. and Hianik, T. (2015). Detection of aflatoxin B1 by aptamer-based biosensor using, PAMAM dendrimers as immobilization platform. Food Control, 52: 9-18.

49.     Matteoli, G., Luin, S., Bellucci, L., Nifosì, R., Beltram, F. and Signore, G. (2023). Aptamer-based gold nanoparticle aggregates for ultrasensitive amplification-free detection of PSMA. Science Reports, 13: 19926.

50.     Kusuma, S.A.F., Harmonis, J.A., Pratiwi, R. and Hasanah, A.N. (2023). Gold nanoparticle-based colorimetric sensors: properties and application in detection of heavy metals and biological molecules. Sensors, 23: 8172.

51.     Siciliano, G., Alsadig, A., Chiriacò, M.S., Turco, A., Foscarini, A., Ferrara, F., Gigli, G. and Primiceri, E. (2024) Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta, 268: 125280.

52.     Sequeira-Antunes, B. and Ferreira, H.A. (2023). Nucleic acid aptamer-based biosensors: A review. Biomedicines, 11: 3201.

53.     Khan, J., Rasmi, Y., Kırboğa, K.K., Ali, A., Rudrapal, M. and Patekar, R.R. (2022). Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. Beni Suef University Journal Basic Applied Sciences, 11: 111.

54.     Shan, X., Kuang, D., Feng, Q., Wu, M. and Yang, J. (2023). A dual-mode ratiometric aptasensor for accurate detection of pathogenic bacteria based on recycling of DNAzyme activation. Food Chemistry, 423: 136287.

55.     Kurup, C.P., Mohd-Naim, N.F. and Ahmed, M.U. (2022) A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor. Microchimica Acta, 189: 165.

56.     Ebrahimi, R., Barzegari, A., Teimuri-Mofrad, R., Kordasht, H.K., Hasanzadeh, M., Khoubnasabjafari, M., Jouyban-Gharamaleki, V., Rad, A.A., Shadjou, N., Rashidi, M.-R., Afshar Mogaddam, M.R. and Jouyban, A. (2022) Selection of specific aptamer against rivaroxaban and utilization for label-free electrochemical aptasensing using gold nanoparticles: first announcement and application for clinical sample analysis. Biosensors (Basel), 12: 773.

57.     Kurnia Sari, A., Hartati, Y.W., Gaffar, S., Anshori, I., Hidayat, D. and Wiraswati, H.L. (2022). The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP. Journal of  Electrochemical Science and Engineering, 12: 219–235.

58.     Mohsin, D.H., Mashkour, M.S. and Fatemi, F. (2021) Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of Hepatitis B virus. Chemical Papers, 75: 279-295.

59.     Tao, D., Shui, B., Gu, Y., Cheng, J., Zhang, W., Jaffrezic-Renault, N., Song, S. and Guo, Z. (2019). Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients’ Sera. Biosensors (Basel), 9: 84.

60.     Chang, C.C., Chen, C.Y., Zhao, X.H., Wu, T.H., Wei, S.C and Lin, C.W. (2014) Label-free colorimetric aptasensor for IgE using DNA pseudoknot probe. Analyst, 139: 3347–3351.

61.     Eshlaghi, S.N., Syedmoradi, L., Amini, A. and Omidfar, K. (2023). A label-free electrochemical aptasensor based on screen printed carbon electrodes with gold nanoparticles-polypyrrole composite for detection of cardiac troponin I. IEEE Sensor Journal, 23: 3439-3445.

62.     Lin, X., Liu, P.P., Yan, J., Luan, D., Sun, T. and Bian, X. (2023). Dual synthetic receptor-based sandwich electrochemical sensor for highly selective and ultrasensitive detection of pathogenic bacteria at the single-cell level. Analytical Chemistry, 95: 5561–5567.

63.     Hao, N., Zou, Y., Qiu, Y., Zhao, L., Wei, J., Qian, J. and Wang, K. (2023). Visual electrochemiluminescence biosensor chip based on distance readout for deoxynivalenol detection. Analytical Chemistry, 95: 2942–2948.

64.     Villalonga, A., Sánchez, A., Vilela, D., Mayol, B., Martínez-Ruíz, P. and Villalonga, R. (2022). Electrochemical aptasensor based on anisotropically modified (Janus-type) gold nanoparticles for determination of C-reactive protein. Microchimica Acta, 189: 309.

65.     Roushani, M., Sarabaegi, M., Hosseini, H. and Pourahmad, F. (2022) Gold nanostructures integrated on hollow carbon N-doped nanocapsules as a novel high-performance aptasensing platform for Helicobacter pylori detection. Journal Material Sciences, 57: 589–597.

66.     Sohouli, E., Ghalkhani, M., Zargar, T., Joseph, Y., Rahimi-Nasrabadi, M., Ahmadi, F., Plonska-Brzezinska,M.E. and Ehrlich, H. (2022). A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochim Acta, 403: 139633.

67.     El-Wekil, M.M., Halby, H.M., Darweesh, M., Ali, M.E. and Ali, R. (2022). An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe3O4 binary hybrid. Science Reports, 12: 12502.

68.     Capatina, D., Lupoi, T., Feier, B., Blidar, A., Hosu, O., Tertis, M., Olah, D., Cristea, C. and  Oprean, R. (2022). label-free electrochemical aptasensor for the detection of the 3-O-C12-HSL quorum-sensing molecule in Pseudomonas aeruginosa. Biosensors (Basel), 12: 440.

69.     Mahyari, M., Hooshmand, S.E., Sepahvand, H., Gholami, S., Rezayan, A.H. and Zarei M.A. (2021). Gold nanoparticles anchored onto covalent poly deep eutectic solvent functionalized graphene: An electrochemical aptasensor for the detection of C-reactive protein. Materials Chemistry Physics, 269: 124730.

70.     Villalonga, A., Vegas, B., Paniagua, G., Eguílaz, M., Mayol, B., Parrado, C., Rivas, G., Díez, P., and Villalonga, R. (2020). Amperometric aptasensor for carcinoembryonic antigen based on a reduced graphene oxide/gold nanoparticles modified electrode. Journal of Electroanalytical Chemistry, 877: 114511.

71.     Khonsari, Y.N. and Sun, S. (2019). A novel label free electrochemiluminescent aptasensor for the detection of lysozyme. Materials Science and Engineering: C, 96: 146–152.

72.     Liu, G., Gurung, A.S. and Qiu, W. (2019). Lateral flow aptasensor for simultaneous detection of platelet-derived growth factor-BB (PDGF-BB) and thrombin. Molecules, 24: 756.

73.     Ali, A.S.M., El-Halawany, M.S., Ibrahim, S.A., Plückthun, O., Khalil, A.S.G. and Mayer, G. (2019) Aptasensor for Quantifying Pancreatic Polypeptide. ACS Omega, 4: 2948-2956.

74.     Ranjbar, S. and Shahrokhian, S. (2018). Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/ cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry, 123: 70-76.

75.     He, B. (2018). Sandwich electrochemical thrombin assay using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles. Microchimica Acta, 185: 344.

76.     Mansor, N.N.N., Leong, T.T., Safitri, E., Futra, D., Ahmad, N.S., Nasuruddin, D.N., Itnin, A., Zaini, I.Z., Arifin, K.T., Heng, L.Y. and Hassan, N.I. (2018) An Amperometric Biosensor for the Determination of Bacterial Sepsis Biomarker, Secretory Phospholipase Group 2-IIA Using a Tri-enzyme System. Sensors, 18: 686.  

77.     Li, R., Fan, H., Zhou, H., Chen, Y., Yu, Q., Hu, W., Liu, G.L. and Huang, L. (2023). Nanozyme-catalyzed metasurface plasmon sensor-based portable ultrasensitive optical quantification platform for cancer biomarker screening. Advance Science, 10 : 2301658.

78.     Tseng, Y-T., Yu, Y-H., Yeh, Y-Y., Mai, P.C., Huang, T-T., Huang, C-J., Chau, L-K. and Chen, Y-L. (2025) Femtomolar-level detection of procalcitonin using a split aptamer-based fiber optic nanogold-linked sorbent assay for diagnosis of sepsis. Talanta, 293: 128150.

79.     Lim, S., Tan, M and Tan, E. (2024). Development of an aptamer-based electrochemical biosensor for early detection of prostate cancer markers. Journal of Biomedical and Techno Nanomaterials, 1: 196-206.

80.     Cordeiro, M., Carlos, F.F., Pedrosa, P., Lopez, A. and Baptista, P.V. (2016). Gold nanoparticles for diagnostics: advances towards points of care. Diagnostics, 6: 43.

81.     Guo, W., Zhang, C., Ma, T., Liu, X., Chen, Z., Li, S. and Deng, Y. (2021). Advances in aptamer screening and aptasensors’ detection of heavy metal ions. Journal of Nanobiotechnology, 19: 166.

82.     Zhu, J., Yang, B., Hao, H., Peng, L. and Lou, S. (2023). Gold nanoparticles-based colorimetric assay of pesticides: A critical study on aptamer’s role and another alternatives sensor array strategy. Sensors and Actuators: B. Chemical, 381: 133439.

83.     Iha, K., Kyosei, Y., Namba, M., Makioka, D., Yamura, S., Watabe, S., Yoshimura, T. and Ito, E. (2021). Zeptomole detection of an enzyme by a simple colorimetric method. Analytical Sciences, 37: 1469-1472.

84.     Léguillier, V., Heddi, B. and Vidic, J. (2024) Recent advances in aptamer-based biosensors for bacterial detection. Biosensors (Basel), 14: 210.

85.     Tessaro, L., Aquino, A., de Carvalho, A.P.A and Conte-Junior, C.A. (2021). A systematic review on gold nanoparticles based-optical biosensors for Influenza virus detection. Sensors and Actuators Reports, 3: 100060.

86.     Díaz-García, V., Haensgen, A., Inostroza, L., Contreras-Trigo, B. and Oyarzun, P. (2023). Novel microsynthesis of high-yield gold nanoparticles to accelerate research in biosensing and other bioapplications. Biosensors (Basel), 13: 992.