Malays. J.
Anal. Sci. Volume 29 Number 3 (2025): 1436
Research Article
A novel of substituted
dithiocarbazate derivatives: synthesis, characterisation, and antibacterial
activity of S-benzyl-β-N-4-chloro-3-nitrobenzoyl
dithiocarbazate (SB3NO) and its Cu(II), Zn(II), Co(II), and Ni(II) complexes
Siti Khadijah Roslan, and How N.-F
Fiona*
Department of Chemistry,
Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200,
Kuantan, Pahang, Malaysia
*Corresponding
author: howfiona@iium.edu.my
Received: 11 December 2024;
Revised: 15 April 2024; Accepted: 28 April 2025; Published: 15 June 2025
Abstract
Cu(II), Zn(II), Co(II), and Ni(II)
metal complexes have been synthesized using the O, S bidentate ligand S-benzyl-4-chloro-3-nitrodithiocarbazate
(SB3NO). SB3NO coordinates with the metal ions according to the general formula
of [M(SB3NO)2], where M is Cu2+, Zn2+, Co2+,
and Ni2+. Various spectroscopic techniques, such as elemental
analysis, FT-IR, NMR, GC-MS, TGA, UV-Vis spectroscopy, molar conductivity
measurements, and magnetic susceptibility testing, were used to characterize
the ligand and complexes. In a solid state, SB3NO exists
in a thione tautomeric form and deprotonated to chelate
metal(II) center through the oxygen of carbonyl and ionic sulfur of thiol in
liquid, giving rise to either tetrahedral or square planar geometry.
Additionally, the in-vitro antibacterial activity of SB3NO and its metal
complexes was assessed against pathogenic gram positive and gram-negative
bacteria. The test revealed that Zn(SB3NO)₂ exhibited the strongest
antibacterial activity against Pseudomonas aeruginosa (ATCC 27853) in
the MIC assay (437 µg/ml).
This study concludes that incorporating metal ions enhances the antibacterial
activity of the free ligand, highlighting their potential as promising
metal-based antibacterial agents.
Keywords:
Dithiocarbazate derivatives, metal
complexes, MIC assay
1. Alexander, J. W. (2009). History of
the Medical Use of Silver. Journal of Surgical Infection, 10 (3):
289-292.
2. Beceiro, A., Tomás, M., and Bou, G. (2013).
Antimicrobial resistance and virulence: A successful or deleterious association
in the bacterial world. Clinical Microbiology Reviews, 26: 185-230.
3. Pachori, P., Gothalwal,
R., and Gandhi, P. (2019). The emergence of antibiotic resistance Pseudomonas
aeruginosa in intensive care unit; a critical review. Genes & Diseases,
6: 109-119.
4. Gasser, G. (2015). Metal complexes
and medicine: A successful combination. Chimia,
69: 442-446.
5. Huh, A. J., and Kwon, Y. J. (2011).
“Nanoantibiotics”: A new paradigm for treating
infectious diseases using nanomaterials in the antibiotics
resistant era. Journal of Controlled Release, 156: 128-145.
6. Bhat, R. A., Singh, K., Kumar, D.,
Kumar, A., and Mishra, P. (2022). Antimicrobial studies of the Zn(II) complex
of S-benzyl-β-(N-2-methyl-3-phenylallylidene) dithiocarbazate.
Journal of Coordination Chemistry, 75: 1050-1062.
7. Sohtun, W.
P., Kathiravan, A., Asha Jhonsi, M., Aashique, M., Bera, S., and Velusamy, M. (2022). Synthesis, crystal structure, BSA
binding and antibacterial studies of Ni(II) complexes derived from dithiocarbazate-based ligands. Inorganica
Chimica Acta, 536: 120888.
8. Kargar, H., Ashfaq, M., Fallah-Mehrjardi, M., Behjatmanesh-Ardakani,
R., Munawar, K. S., and Tahir, M. N. (2022). Unsymmetrical Ni(II) Schiff base
complex: Synthesis, spectral characterization, crystal structure analysis,
Hirshfeld surface investigation, theoretical studies, and antibacterial
activity. Journal of Molecular Structure, 1265: 133381.
9. Rosnizam, A. N., Hamali,
M. A., Low, A. L. M., Youssef, H. M., Bahron, H., and
Tajuddin, A. M. (2022). Palladium (II) complexes bearing N, O-bidentate Schiff
base ligands: Experimental, in-silico, antibacterial, and catalytic
properties. Journal of Molecular Structure, 1260: 132821.
10. Ali, M. A., and
Bose, R. (1977). Metal
complexes of Schiff bases are formed by condensation of 2-methoxybenzaldehyde
and 2-hydroxybenzal dehyde with S-benzyldithiocarbazate. Journal
of Inorganic and Nuclear Chemistry, 39: 265-269.
11. How, F. N. F., Crouse, K. A., Tahir,
M. I. M., Tarafder, M. T. H., and Cowley, A. R.
(2008). Synthesis, characterization and biological studies of
S-benzyl-β-N-(benzoyl) dithiocarbazate and its
metal complexes. Polyhedron, 27: 3325-3329.
12. Break, M. K. Bin, Tahir, M. I. M.,
Crouse, K. A., and Khoo, T. J. (2013). Synthesis, characterisation,
and bioactivity of Schiff bases and their Cd2+, Zn2+, Cu2+,
and Ni2+ complexes derived from chloroacetophenone isomers with S-benzyldithiocarbazate and the X-ray crystal structure of
S-benzyl-β-N-(4-chlorophenyl) methylenedithiocarbazate. Bioinorganic Chemistry and
Applications, 1: 362513.
13. Malmberg, C., Yuen, P., Spaak, J.,
Cars, O., Tängdén, T., and Lagerbäck, P. (2016). A novel
microfluidic assay for rapid phenotypic antibiotic susceptibility testing of
bacteria detected in clinical blood cultures. Plos
One, 11: 167356.
14. Gwaram, N. S., Ali, H. M., Khaledi, H., Abdulla, M. A., Hadi, H. A., Lin, T. K., Ching,
C. L., and Ooi, C. L. (2012). Antibacterial evaluation of some Schiff bases
derived from 2-acetylpyridine and their metal complexes. Molecules, 17:
5952-5971.
15. T. W. Graham Solomons
Craig B. Fryhle, and Snyder, S. A. (2016). Organic
Chemistry: 1124
16. Tarafder, M. T. H., Ali, M. A., Wee, D. J.,
Azahari, K., Silong, S., and Crouse, K. A. (2000).
Complexes of a tridentate ONS Schiff base. Synthesis and biological properties.
Transition Metal Chemistry, 25(4): 456-460.
17. Akbar Ali, M., and Livingstone, S.
E. (1974). Metal complexes of sulphur-nitrogen
chelating agents. Coordination Chemistry Reviews, 13: 101-132.
18. Cohen, L., Go, E. P., and Siuzdak, G. (2007). Small-molecule desorption/ionization
mass analysis. MALDI MS: 299-337.
19. Ali, I., Wani, W. A., and Saleem, K.
(2013). Empirical formulae to molecular structures of metal complexes by molar
conductance. Synthesis and Reactivity in Inorganic, Metal-Organic and
Nano-Metal Chemistry, 43: 1162-1170.
20. Guo, L., Wu, S., Zeng, F., and Zhao,
J. (2006). Synthesis and fluorescence property of terbium complex with the novel
Schiff-base macromolecular ligand. European Polymer Journal, 42:
1670-1675.
21. Chen, Z., Wu, Y., Gu, D., and Gan,
F. (2007). Spectroscopic, and thermal studies of some new binuclear transition
metal(II) complexes with hydrazone ligands containing acetoacetanilide
and isoxazole. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 68: 918-926.
22. Mahmoud, W. A., Hassan, Z., and
Russel W. (2020). Synthesis and spectral analysis of some metal complexes with
mixed Schiff base ligands 1-[2-(2-hydroxybenzylideneamino)ethyl]pyrrolid ine-2,5-dione (HL1) and (2-hydroxybenzalid ine)glycine (HL2). Journal of Physics: Conference Series,
1660: 12027.
23. El-Samanody,
E. S. A., AbouEl-Enein, S. A., and Emara, E. M.
(2018). Molecular modelling, spectral investigation and thermal studies of the
new asymmetric Schiff base ligand;
(E)-N’-(1-(4-((E)-2-hydroxybenzylideneamino)phenyl)ethylid
ene)morpholine-4-carbothiohydrazide and its metal
complexes: Evaluation of their antibacterial and anti-molluscicidal
activity. Applied Organometallic Chemistry, 32: 4262.
24. Thermogravimetric analysis. (2018). A
practical guide to microstructural analysis of cementitious materials: pp. 196-231.
25. PerkinElmer. (2010). A beginner’s
guide to thermogravimetric analysis: pp. 209-287.
26. Singh, M., Aggarwal, V., Singh, U.
P., and Singh, N. K. (2009). Synthesis, characterization and spectroscopic
studies of a new ligand [N′-(2-methoxybenzoyl)hydrazinecarbodithioate]
ethyl ester and its Mn(II) and Cd(II) complexes: X-ray structural study of
Mn(II) complex. Polyhedron, 28: 107-112.
27. Yekke-Ghasemi, Z., Ramezani, M., Mague,
J. T., and Takjoo, R. (2020). Synthesis,
characterization and bioactivity studies of new dithiocarbazate
complexes. New Journal of Chemistry, 44: 8878-8889.
28. Bos, M. P., and Tommassen,
J. (2004). Biogenesis of the Gram-negative bacterial outer membrane. Current
Opinion in Microbiology, 7: 610–616.
29. Malanovic, N., and Lohner, K.
(2016). Gram-positive bacterial cell envelopes: The impact on the activity of
antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes,
1858: 936-946.
30. Bhowmick, A. C., Bhowmick, A. C.,
Dev Nath, B., and Moim, M. I. (2019). Coordination
complexes of transition metals and Schiff base with potent medicinal activity. American
Journal of Chemistry, 4: 109-114.