Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1422
Research Article
Colorimetric determination of boron
by distilled borate ester into curcumin-gelatin film
Risna Erni Yati Adu1*,
Maria Magdalena Kolo1, Wilda Lumban Tobing2 and Felicia
Taimenas1
1Study
Program of Chemistry, Faculty of Agriculture, Science and Health, Universitas
Timor, Jalan Km. 09 Sasi, Kefamenanu -NTT, Indonesia
2Study
Program of Agrotechnology, Faculty of Agriculture, Science and Health, Universitas
Timor, Jalan Km. 09 Sasi, Kefamenanu -NTT, Indonesia
*Corresponding
author: risnaadu12@unimor.ac.id, adoe.risna@yahoo.com
Received: 5 December 2024;
Revised: 21 March 2025; Accepted: 11 April 2025; Published: 19 June 2025
Abstract
A novel green
colorimetric sensor for boron was developed by integrating the isothermal
distillation system with the curcumin-gelatin film. In this work, curcumin
gelatin films were successfully synthesized in various content of curcumin as
signaling device and characterized using Fourier Transform Infra-Red (FTIR), Scanning
Electron Microscope (SEM) and Thermogravimetric Analysis (TGA). Boron was
separated from the sample matrix through isothermal distillation and dehydrated
into curcumin-gelatin film to form a red complex compound with color intensity
that is proportional to boron content. Film properties such as surface color
and tensile strength were improved by increasing curcumin concentration. On the
other hand, mechanical and physicochemical characteristics such as water
content, swelling index and water solubility decreased along with increasing
curcumin concentration. Curcumin concentration has no significant effect on the
thermal stability and color brightness of the films. SEM images show an
aggregation of gelatin biopolymer matrix when curcumin concentration is
increased. Gelatine-Ethanol-Curcumin 2 (GEC2) films showed a good linearity
with the coefficient determination (R2) of 0.9918. The three
curcumin films give Limit of Detections (LOD) and Limit of Quantifications (LOQ)
within the range of 0.11-0.67 mg L-1
and 0.38-2.24 mg L-1 respectively. This proposed method gives
precision values for both intra- and inter-day within accepted variable limits
(<5% of Relative Standard Deviation) and acceptable recovery between
78.23-92.35 %. Analysis of variance shows that there is no significant
difference (calculated f value = 0.002, f table value = 7.7 and df= 4) between boron level determined by UV-Vis
Spectrophotometric and colorimetric method in soil samples. These results
indicate that the integration of isothermal distillation system with curcumin
film can be an alternative method in quantifying boron levels.
Keywords: boron, curcumin, colorimetry, film, gelatin
References
1.
Arunkumar, B.R.,
Thippeshappa, G. N., Anjali, M. C., and Prashanth, K. M. (2018). Boron: A critical
micronutrient for crop growth and productivity. Journal of Pharmacognosy and
Phytochemistry, 7(2): 2738-2741.
2.
Brdar-Jokanović,
M. (2020). Boron toxicity and deficiency in agricultural plants. International
Journal of Molecular Sciences, 21(4):1424.
3.
García
Lozano, M., Peña García, Y., Silva Gonzalez, J. A., Ochoa Bañuelos, C. V.,
Luevanos Escareño, M. P., and Balagurusamy, N. (2019). Biosensors for food
quality and safety monitoring: Fundamentals and applications. In: Enzymes in
Food Biotechnology, 691-709.
4.
Zhang,
W., Zhang, Q., Xing, Y., Cao, Q., Qin, L., and Fang, K. (2022). Effect of boron
toxicity on pollen tube cell wall architecture and the relationship of cell
wall components of Castanea mollissima Blume. Frontier Plant Sciences,
13:946781.
5.
Duran,
C., Arce-Johnson, P., and Aquea, F. (2018). Methylboronic acid fertilization
alleviates boron deficiency symptoms in Arabidopsis thaliana. Planta,
248(1): 221-229.
6.
Galeriani,
T. M., Neves, G. O., Santos Ferreira, J. H., Oliveira, R. N., Oliveira, S. L.,
Calonego, J. C., and Crusciol, C. A. C. (2022). Calcium and boron fertilization
improves soybean photosynthetic efficiency and grain yield. Plants., 11(21):
2937.
7.
Sapkota,
A., Meccage, E. C., Stougaard, R. N., Tanner, J. P., Peterson, D. M., and Torrion,
J. A. (2018). Boron fertilization of irrigated Alfalfa in Montana. Crop
Forage & Turfgrass Management, 4(1):1–8.
8.
Shrestha,
S., Becker, M., Lamers, J. P. A., and Wimmer, M. A. (2020). Boron and zinc
fertilizer applications are essential in emerging vegetable‐based crop rotations in Nepal. Journal
Plant Nutrition Soil Sciences, 183(4): 439-454.
9.
Peng,
Z. K., and Liu, Z. N. (2019). Accurate determination of boron content in halite
by ICP-OES and ICP-MS. International Journal of Analytical Chemistry, 2019(1):1-5.
10.
Standish,
C. D., Chalk, T. B., Babila, T. L., Milton, J. A., Palmer, M. R., and Foster, G.
L. (2019). The effect of matrix interferences on In Situ boron isotope
analysis by laser ablation multi‐collector inductively
coupled plasma mass spectrometry. Rapid Communication Mass Spectrometry,
33(10): 959-968.
11.
Currie,
R. B., Kanji, B., Bruce, A., and Schmidt, R. G. (2021). Use of LA-ICP-MS for determination
of elemental concentrations of boron in preservative treated solid wood and engineered
wood panels. Holzforschung, 75(2): 195-198.
12.
Robbika,
O. I., Rohyami, Y., and Hadriansyah, H. (2022). Critical quality control on
determination of boron using ICP-OES with gravimetric method. Indonesian
Journal of Chemical Analysis, 5(2): 103-110.
13.
Turner,
B. L., Bielnicka, A. W., Dalling, J. W., and Wolf, J. A. (2016). Interference
by iron in the determination of boron by ICP-OES in Mehlich-III extracts and
total element digests of tropical forest soils. Communications in Soil
Science and Plant Analysis, 47(21): 2378-2386.
14.
Viso,
E., Zachariadis, G. (2018). Method development of phosphorus and boron
determination in fertilizers by ICP-AES. Separations, 5(3): 36.
15.
Altunay,
N., and Gürkan, R. (2015). Simultaneous determination of antimony and boron in
beverage and dairy products by flame atomic absorption spectrometry after
separation and pre-concentration by cloud point extraction. Food Additives
& Contaminants: Part A, 33(2): 271-281.
16.
Adu,
R. E. Y., Roto, R., and Kuncaka, A. (2021). Spectrophotometric determination of
boron in food products by ester borate distillation into curcumin. Journal
of Chemistry, 15(1): 67-73.
17.
Setyawati,
A. (2020). Analysis methods verification of boron in river water using the UV-Vis
spectrophotometer with curcumin complex as alternative practical educations. International
Journal Chemistry Education Research, 3(2): 60-65.
18.
Korlu,
A. B. O., Yilmaz, S., Sacan, O., Yanardag, R., Yarat, A., and Sahin, F. (2024).
Evaluating boron levels in Turkish mineral waters: A comparative study of three
analytical techniques. Environmental Monitoring Assessment, 196(7): 657.
19.
Khansili,
N. (2023). Advances in material for colorimetric and fluorescent detection of
arsenic. Biosensors and Bioelectronics X, 15(5):100410
20.
Bhat,
A., Tian, F., and Singh, B. (204). Advances in nanomaterials and colorimetric
detection of arsenic in water: Review and future perspectives. Sensors, 24(12):
3889.
21.
Caleb,
J., Alshana, U., Ertaş, N., and Bakırdere, S. (2023). Smartphone digital
image colorimetry combined with dispersive solid-phase microextraction for the
determination of boron in food samples. Food Chemistry, 426: 136528.
22.
Ahmad,
B. I., Ismail, S., Caleb, J., Asir, S., and Usman, A.G. (2025). Smartphone digital
image colorimetry couple with chemometric approach for determination of boron in
nuts prior to deep eutectic solvent liquid–liquid microextraction
A first application of hybrid
chemometrics in SDIC. Analytical Sciences, 2025: 710.
23.
Pena-Pereira,
F., Velázquez, A., Lavilla, I., and Bendicho, C. (2020). A paper-based
colorimetric assay with non-instrumental detection for determination of boron in
water samples. Talanta, 208: 120365.
24.
Priyadarshi,
R., Ezati, P., and Rhim, J. W. (2021). Recent advances in intelligent food
packaging applications using natural food colorants. ACS Food Sci Technol.,
1(2): 124-138.
25.
Rodrigues,
C., Souza, V. G. L., Coelhoso, I., and Fernando, A. L. (2021). Bio-based
sensors for smart food packaging current applications and future trends. Sensors,
21(6): 2148.
26.
Boonkanon,
C., Phatthanawiwat, K., Wongniramaikul, W., and Choodum, A. (2020). Curcumin nanoparticle
doped starch thin film as a green colorimetric sensor for detection of boron. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 224: 117351.
27.
Adu,
R. E. Y., Roto, R., and Kuncaka, A. (2023). Evaluasi dan
modifikasi metode kurkumin untuk analisis boron secara spektrofotometri melalui
distilasi ester borat. Akta
Kimia Indonesia,
8(1): 31.
28.
Adu,
R. E. Y. (2021). A simple analyte volatilization in polytetrafluoroethylene (PTFE)
vessel for spectrophotometric determination of boron. Jurnal Akademika Kimia,
10(2): 98-104.
29.
Thangavel,
S., Dhavile, S. M., Dash, K., and Chaurasia, S. C. (2004). Spectrophotometric determination
of boron in complex matrices by isothermal distillation of borate ester into
curcumin. Analytica Chimica Acta, 502(2): 265-270.
30.
Mohseni‐Shahri,
F. S., and Moeinpour, F. (2023). Development of a pH‐Sensing indicator
for shrimp freshness monitoring: Curcumin and anthocyanin‐loaded
gelatin films. Food Science & Nutrition, 11(7): 3898-3910.
31.
Musso,
Y. S., Salgado, P. R, and Mauri, A. N. (2017). Smart edible films based on
gelatin and curcumin. Food Hydrocolloids, 66: 8-15.
32.
Roy,
S., and Rhim, J. W. (2020). Preparation of antimicrobial and antioxidant
gelatin/curcumin composite films for active food packaging applications. Colloids
and Surfaces B: Biointerfaces, 188: 110761.
33.
Rubini,
K., Boanini, E., Parmeggiani, S., and Bigi, A. (2021). Curcumin-functionalized
gelatin films: antioxidant materials with modulated physico-chemical
properties. Polymers, 13(11): 1824.
34.
Musso,
Y. S., Salgado, P. R., and Mauri, A. N. (2019). Smart gelatin films prepared
using red cabbage (Brassica oleracea L.) extracts as solvent. Food
Hydrocolloids, 89: 674-681.
35.
Taghinia,
P., Abdolshahi, A., Sedaghati, S., and Shokrollahi, B. (2021). Smart edible
films based on mucilage of Lallemantia Iberica seed incorporated with
curcumin for freshness monitoring. Food Science & Nutrition, 9(2): 1222-1231.
36.
Rostami,
H., and Esfahani, A. A. (2019). Development a smart edible nanocomposite based on
mucilage of melissa officinalis seed/montmorillonite (MMT)/curcumin. International
Journal of Biological Macromolecules, 141: 171-177.
37.
Roy,
S., and Rhim, J. W. (2021). Gelatin-based film integrated with copper sulfide
nanoparticles for active packaging applications. Applied Sciences, 11(14):
6307.
38.
Wang,
F., Wang, R., Pan, Y., Du, M., Zhao, Y., and Liu, H. (2022). Gelatin/chitosan
films are incorporated with curcumin based on photodynamic inactivation
technology for antibacterial food packaging. Polymers, 14(8):1600.
39.
Pereira,
P. F., and Andrade, C. T. (2017). Optimized pH-responsive film based on a
eutectic mixture-plasticized chitosan. Carbohydrate Polymers, 165: 238-246.
40.
Wu,
C., Sun, J., Chen, M., Ge, Y., Ma, J., Hu, Y., Pang, J., and Yan, Z. (2019). Effect
of oxidized chitin nanocrystals and curcumin into chitosan films for seafood
freshness monitoring. Food Hydrocolloids, 95: 308-317.
41.
Liu, Y., Cai, Y., Jiang, X., Wu, J., and Le, X. (2016). Molecular interactions,
characterization and antimicrobial activity of curcumin–chitosan blend films. Food
Hydrocolloids: 52: 564-572.
42.
Luo,
N., Varaprasad, K., Reddy, G. V. S., Rajulu, A. V., and Zhang, J. (2012). Preparation
and characterization of cellulose/curcumin composite films. RSC Advances,
2(22): 8483.
43.
Chiaoprakobkij,
N., Suwanmajo, T., Sanchavanakit, N., and Phisalaphong, M. (2020). Curcumin-loaded
bacterial cellulose/ alginate/gelatin as a multifunctional biopolymer composite
film. Molecules, 25(17): 3800.
44.
Das,
M. P., Suguna, P. R., Prasad, K., Vijaylakshmi J. V., and Renuka, M. (2017). Extraction
and characterization of gelatin: a functional biopolymer. International Journal
Pharmacy and Pharmaceutical Sciences, 9(9):239.
45.
Chen,
Z., Xia, Y., Liao, S., Huang, Y., Li, Y., He, Y., Tong, Z., and Li, B. (2014). Thermal
degradation kinetics study of curcumin with nonlinear methods. Food
Chemistry, 155: 81-
86.
46.
Liu,
J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., and Jiang, S. (2018). Films
based on κ-carrageenan incorporated with curcumin for freshness
monitoring. Food Hydrocolloids, 83: 134-142.