Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1422

 

Research Article

 

Colorimetric determination of boron by distilled borate ester into curcumin-gelatin film

 

Risna Erni Yati Adu1*, Maria Magdalena Kolo1, Wilda Lumban Tobing2 and Felicia Taimenas1

 

1Study Program of Chemistry, Faculty of Agriculture, Science and Health, Universitas Timor, Jalan Km. 09 Sasi, Kefamenanu -NTT, Indonesia

2Study Program of Agrotechnology, Faculty of Agriculture, Science and Health, Universitas Timor, Jalan Km. 09 Sasi, Kefamenanu -NTT, Indonesia

 

*Corresponding author: risnaadu12@unimor.ac.id, adoe.risna@yahoo.com

 

Received: 5 December 2024; Revised: 21 March 2025; Accepted: 11 April 2025; Published: 19 June 2025

 

Abstract

A novel green colorimetric sensor for boron was developed by integrating the isothermal distillation system with the curcumin-gelatin film. In this work, curcumin gelatin films were successfully synthesized in various content of curcumin as signaling device and characterized using Fourier Transform Infra-Red (FTIR), Scanning Electron Microscope (SEM) and Thermogravimetric Analysis (TGA). Boron was separated from the sample matrix through isothermal distillation and dehydrated into curcumin-gelatin film to form a red complex compound with color intensity that is proportional to boron content. Film properties such as surface color and tensile strength were improved by increasing curcumin concentration. On the other hand, mechanical and physicochemical characteristics such as water content, swelling index and water solubility decreased along with increasing curcumin concentration. Curcumin concentration has no significant effect on the thermal stability and color brightness of the films. SEM images show an aggregation of gelatin biopolymer matrix when curcumin concentration is increased. Gelatine-Ethanol-Curcumin 2 (GEC2) films showed a good linearity with the coefficient determination (R2) of 0.9918. The three curcumin films give Limit of Detections (LOD) and Limit of Quantifications (LOQ) within the range of 0.11-0.67 mg L-1 and 0.38-2.24 mg L-1 respectively. This proposed method gives precision values for both intra- and inter-day within accepted variable limits (<5% of Relative Standard Deviation) and acceptable recovery between 78.23-92.35 %. Analysis of variance shows that there is no significant difference (calculated f value = 0.002, f table value = 7.7 and df= 4) between boron level determined by UV-Vis Spectrophotometric and colorimetric method in soil samples. These results indicate that the integration of isothermal distillation system with curcumin film can be an alternative method in quantifying boron levels.

 

Keywords: boron, curcumin, colorimetry, film, gelatin

 


References

1.      Arunkumar, B.R., Thippeshappa, G. N., Anjali, M. C., and Prashanth, K. M. (2018). Boron: A critical micronutrient for crop growth and productivity. Journal of Pharmacognosy and Phytochemistry, 7(2): 2738-2741.

2.      Brdar-Jokanović, M. (2020). Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences, 21(4):1424.

3.      García Lozano, M., Peña García, Y., Silva Gonzalez, J. A., Ochoa Bañuelos, C. V., Luevanos Escareño, M. P., and Balagurusamy, N. (2019). Biosensors for food quality and safety monitoring: Fundamentals and applications. In: Enzymes in Food Biotechnology, 691-709.

4.      Zhang, W., Zhang, Q., Xing, Y., Cao, Q., Qin, L., and Fang, K. (2022). Effect of boron toxicity on pollen tube cell wall architecture and the relationship of cell wall components of Castanea mollissima Blume. Frontier Plant Sciences, 13:946781.

5.      Duran, C., Arce-Johnson, P., and Aquea, F. (2018). Methylboronic acid fertilization alleviates boron deficiency symptoms in Arabidopsis thaliana. Planta, 248(1): 221-229.

6.      Galeriani, T. M., Neves, G. O., Santos Ferreira, J. H., Oliveira, R. N., Oliveira, S. L., Calonego, J. C., and Crusciol, C. A. C. (2022). Calcium and boron fertilization improves soybean photosynthetic efficiency and grain yield. Plants., 11(21): 2937.

7.      Sapkota, A., Meccage, E. C., Stougaard, R. N., Tanner, J. P., Peterson, D. M., and Torrion, J. A. (2018). Boron fertilization of irrigated Alfalfa in Montana. Crop Forage & Turfgrass Management, 4(1):1–8.

8.      Shrestha, S., Becker, M., Lamers, J. P. A., and Wimmer, M. A. (2020). Boron and zinc fertilizer applications are essential in emerging vegetablebased crop rotations in Nepal. Journal Plant Nutrition Soil Sciences, 183(4): 439-454.

9.      Peng, Z. K., and Liu, Z. N. (2019). Accurate determination of boron content in halite by ICP-OES and ICP-MS. International Journal of Analytical Chemistry, 2019(1):1-5.

10.   Standish, C. D., Chalk, T. B., Babila, T. L., Milton, J. A., Palmer, M. R., and Foster, G. L. (2019). The effect of matrix interferences on In Situ boron isotope analysis by laser ablation multicollector inductively coupled plasma mass spectrometry. Rapid Communication Mass Spectrometry, 33(10): 959-968.

11.   Currie, R. B., Kanji, B., Bruce, A., and Schmidt, R. G. (2021). Use of LA-ICP-MS for determination of elemental concentrations of boron in preservative treated solid wood and engineered wood panels. Holzforschung, 75(2): 195-198.

12.   Robbika, O. I., Rohyami, Y., and Hadriansyah, H. (2022). Critical quality control on determination of boron using ICP-OES with gravimetric method. Indonesian Journal of Chemical Analysis, 5(2): 103-110.

13.   Turner, B. L., Bielnicka, A. W., Dalling, J. W., and Wolf, J. A. (2016). Interference by iron in the determination of boron by ICP-OES in Mehlich-III extracts and total element digests of tropical forest soils. Communications in Soil Science and Plant Analysis, 47(21): 2378-2386.

14.   Viso, E., Zachariadis, G. (2018). Method development of phosphorus and boron determination in fertilizers by ICP-AES. Separations, 5(3): 36.

15.   Altunay, N., and Gürkan, R. (2015). Simultaneous determination of antimony and boron in beverage and dairy products by flame atomic absorption spectrometry after separation and pre-concentration by cloud point extraction. Food Additives & Contaminants: Part A, 33(2): 271-281.

16.   Adu, R. E. Y., Roto, R., and Kuncaka, A. (2021). Spectrophotometric determination of boron in food products by ester borate distillation into curcumin. Journal of Chemistry, 15(1): 67-73.

17.   Setyawati, A. (2020). Analysis methods verification of boron in river water using the UV-Vis spectrophotometer with curcumin complex as alternative practical educations. International Journal Chemistry Education Research, 3(2): 60-65.

18.   Korlu, A. B. O., Yilmaz, S., Sacan, O., Yanardag, R., Yarat, A., and Sahin, F. (2024). Evaluating boron levels in Turkish mineral waters: A comparative study of three analytical techniques. Environmental Monitoring Assessment, 196(7): 657.

19.   Khansili, N. (2023). Advances in material for colorimetric and fluorescent detection of arsenic. Biosensors and Bioelectronics X, 15(5):100410

20.   Bhat, A., Tian, F., and Singh, B. (204). Advances in nanomaterials and colorimetric detection of arsenic in water: Review and future perspectives. Sensors, 24(12): 3889.

21.   Caleb, J., Alshana, U., Ertaş, N., and Bakırdere, S. (2023). Smartphone digital image colorimetry combined with dispersive solid-phase microextraction for the determination of boron in food samples. Food Chemistry, 426: 136528.

22.   Ahmad, B. I., Ismail, S., Caleb, J., Asir, S., and Usman, A.G. (2025). Smartphone digital image colorimetry couple with chemometric approach for determination of boron in nuts prior to deep eutectic solvent liquid–liquid  microextraction


        A first application of hybrid chemometrics in SDIC. Analytical Sciences, 2025: 710.

23.   Pena-Pereira, F., Velázquez, A., Lavilla, I., and Bendicho, C. (2020). A paper-based colorimetric assay with non-instrumental detection for determination of boron in water samples. Talanta, 208: 120365.

24.   Priyadarshi, R., Ezati, P., and Rhim, J. W. (2021). Recent advances in intelligent food packaging applications using natural food colorants. ACS Food Sci Technol., 1(2): 124-138.

25.   Rodrigues, C., Souza, V. G. L., Coelhoso, I., and Fernando, A. L. (2021). Bio-based sensors for smart food packaging current applications and future trends. Sensors, 21(6): 2148.

26.   Boonkanon, C., Phatthanawiwat, K., Wongniramaikul, W., and Choodum, A. (2020). Curcumin nanoparticle doped starch thin film as a green colorimetric sensor for detection of boron. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224: 117351.

27.   Adu, R. E. Y., Roto, R., and Kuncaka, A. (2023). Evaluasi dan modifikasi metode kurkumin untuk analisis boron secara spektrofotometri melalui distilasi ester borat. Akta Kimia Indonesia, 8(1): 31.

28.   Adu, R. E. Y. (2021). A simple analyte volatilization in polytetrafluoroethylene (PTFE) vessel for spectrophotometric determination of boron. Jurnal Akademika Kimia, 10(2): 98-104.

29.   Thangavel, S., Dhavile, S. M., Dash, K., and Chaurasia, S. C. (2004). Spectrophotometric determination of boron in complex matrices by isothermal distillation of borate ester into curcumin. Analytica Chimica Acta, 502(2): 265-270.

30.   Mohseni‐Shahri, F. S., and Moeinpour, F. (2023). Development of a pH‐Sensing indicator for shrimp freshness monitoring: Curcumin and anthocyaninloaded gelatin films. Food Science & Nutrition, 11(7): 3898-3910.

31.   Musso, Y. S., Salgado, P. R, and Mauri, A. N. (2017). Smart edible films based on gelatin and curcumin. Food Hydrocolloids, 66: 8-15.

32.   Roy, S., and Rhim, J. W. (2020). Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging applications. Colloids and Surfaces B: Biointerfaces, 188: 110761.

33.   Rubini, K., Boanini, E., Parmeggiani, S., and Bigi, A. (2021). Curcumin-functionalized gelatin films: antioxidant materials with modulated physico-chemical properties. Polymers, 13(11): 1824.

34.   Musso, Y. S., Salgado, P. R., and Mauri, A. N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocolloids, 89: 674-681.

35.   Taghinia, P., Abdolshahi, A., Sedaghati, S., and Shokrollahi, B. (2021). Smart edible films based on mucilage of Lallemantia Iberica seed incorporated with curcumin for freshness monitoring. Food Science & Nutrition, 9(2): 1222-1231.

36.   Rostami, H., and Esfahani, A. A. (2019). Development a smart edible nanocomposite based on mucilage of melissa officinalis seed/montmorillonite (MMT)/curcumin. International Journal of Biological Macromolecules, 141: 171-177.

37.   Roy, S., and Rhim, J. W. (2021). Gelatin-based film integrated with copper sulfide nanoparticles for active packaging applications. Applied Sciences, 11(14): 6307.

38.   Wang, F., Wang, R., Pan, Y., Du, M., Zhao, Y., and Liu, H. (2022). Gelatin/chitosan films are incorporated with curcumin based on photodynamic inactivation technology for antibacterial food packaging. Polymers, 14(8):1600.

39.   Pereira, P. F., and Andrade, C. T. (2017). Optimized pH-responsive film based on a eutectic mixture-plasticized chitosan. Carbohydrate Polymers, 165: 238-246.

40.   Wu, C., Sun, J., Chen, M., Ge, Y., Ma, J., Hu, Y., Pang, J., and Yan, Z. (2019). Effect of oxidized chitin nanocrystals and curcumin into chitosan films for seafood freshness monitoring. Food Hydrocolloids, 95: 308-317.

41.   Liu, Y., Cai, Y., Jiang, X., Wu, J., and Le, X. (2016). Molecular interactions, characterization and antimicrobial activity of curcumin–chitosan blend films. Food Hydrocolloids: 52: 564-572.

42.   Luo, N., Varaprasad, K., Reddy, G. V. S., Rajulu, A. V., and Zhang, J. (2012). Preparation and characterization of cellulose/curcumin composite films. RSC Advances, 2(22): 8483.

43.   Chiaoprakobkij, N., Suwanmajo, T., Sanchavanakit, N., and Phisalaphong, M. (2020). Curcumin-loaded bacterial cellulose/ alginate/gelatin as a multifunctional biopolymer composite film. Molecules, 25(17): 3800.

44.   Das, M. P., Suguna, P. R., Prasad, K., Vijaylakshmi J. V., and Renuka, M. (2017). Extraction and characterization of gelatin: a functional biopolymer. International Journal Pharmacy and Pharmaceutical Sciences, 9(9):239.

45.   Chen, Z., Xia, Y., Liao, S., Huang, Y., Li, Y., He, Y., Tong, Z., and Li, B. (2014). Thermal degradation kinetics study of curcumin with nonlinear methods. Food Chemistry, 155: 81-


86.

46.   Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., and Jiang, S. (2018). Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids, 83: 134-142.