Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1421

 

Research Article

 

Microplastics contamination on seaweed surface at rocky shore habitat in Port Dickson beaches

 

Nur Sakinah Roslan1, Kodesvaran Yoharasah1, Sabiqah Tuan Anuar2, and Yusof Shuaib Ibrahim2*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia

2Microplastic Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia

 

*Corresponding author:  yusofshuaib@umt.edu.my

 

Received: 27 November 2024; Revised: 6 April 2025; Accepted: 23 April 2025; Published: xx June 2025

 

This article was presented at the 1st National Seminar on Microplastics 2024, held on July 15–16, 2024. The event was organized by the National Water Research Institute of Malaysia, with Nor Salmi Abdullah serving as Guest Editor.

 

Abstract

Microplastics adhering to seaweed likely originate from the surrounding water, where they are dispersed and carried by currents. These microplastics can accumulate on the surface of seaweed over time, posing potential risks to human health through consumption. This study provides a preliminary result of microplastic presence on the surfaces of Padina jamaicensis (Scroll algae) and Caulerpa lentillifera (Seagrape) in Port Dickson beaches, in Malaysia. These species are commonly found in coastal and shallow marine environments, where microplastic pollution is often concentrated. Their distinct morphological, ecological, and physiological characteristics make them ideal for investigations into the mechanism of adherence of microplastics on the surface. The samples were collected from two locations, namely, Pantai Sri Purnama and Pantai Tanjung Biru. The samples were rinsed to collect adhered microplastics on the upper surfaces of the seaweed, and filtered with 1.2 µm glass microfibre membrane filter. Microplastics were observed under a stereomicroscope, categorized based on colour and shapes, and their polymeric composition was determined through Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy. Higher concentrations of microplastics were detected in C. lentillifera (4.183 items/g) as compared to P. jamaicensis (2.103 items/g). Fibre shapes of various colours were isolated from the samples. The analysis also identified compositions predominantly consisting of polyvinyl alcohol (PVA) and polyamide (PA) within the plastic groups. The presence of these polymers may suggest contamination from secondary plastic sources, potentially originating from water activity items such as life jackets, swimming attire, and food packaging materials, which might adhere to the surface of seaweed. This study highlights how anthropogenic activities introduce microplastics into surrounding waters, enhance their accumulation on seaweed surfaces, and pose potential health risks to consumers.

 

Keywords: Malaysia, macroalgae, polymer, human, coastal environment

 


References

1.        Haque, F. and Fan, C. (2023). Fate and impacts of microplastics in the environment: hydrosphere, pedosphere, and atmosphere. Environments, 10(5): 70.

2.        Shi, H., Frias, J., Sayed, A. E. D. H., De-la-Torre, G. E., Choo, J. M., Uddin, S. A., Rajaram, R., Chavanich, S., Najii, A., Fernandez-Severini, M.D., Ibrahim, Y.S. and Su, L. (2023). Small plastic fragments: A bridge between large plastic debris and micro-& nano-plastics. Trends in Analytical Chemistry, 2023: 117308.

3.        Akanyange, S. N., Zhang, Y., Zhao, X., Adom-Asamoah, G., Ature, A. R. A., Anning, C., Tianpeng, C., Zhao, H., Lyu, X. and Crittenden, J. C. (2022). A holistic assessment of microplastic ubiquitousness: Pathway for source identification in the environment. Sustainable Production and Consumption, 33: 113-145.

4.        Ziani, K., Ioniță-Mîndrican, C. B., Mititelu, M., Neacșu, S. M., Negrei, C., Moroșan, E., Drăgănescu, d. and Preda, O. T. (2023). Microplastics: A real global threat for environment and food safety: A state of the art review. Nutrients, 15(3): 617.

5.        Rohais, S., Armitage, J. J., Romero-Sarmiento, M. F., Pierson, J. L., Teles, V., Bauer, D., Cassar, C., Sebag, D., Marie-Hélčne, K. and Pelerin, M. (2024). A source-to-sink perspective of an anthropogenic marker: A first assessment of microplastics concentration, pathways, and accumulation across the environment. Earth-Science Reviews, 2024: 104822.

6.        Liaqat, S., Hussain, M. and Riaz, J. (2024). Entry of the microplastics in food chain and food web. In Microplastic Pollution. Springer Nature Singapore, Singapore: pp. 289-306.

7.        Pothiraj, C., Gokul, T. A., Kumar, K. R., Ramasubramanian, A., Palanichamy, A., Venkatachalam, K., Palanichamy, A., Venkatachalam, K., Pastorino, P., Barcelň, D., Balaji, P. and Faggio, C. (2023). Vulnerability of microplastics on marine environment: A review. Ecological Indicators, 155: 111058.

8.        Reddy, A. V. K., Shankaraiah, G. and Kumar, P. S. (2023). Toxicity effects of micro-and nanoplastics in terrestrial environment. In micro and nanoplastics in soil: threats to plant-based food. Springer International Publishing, Switzerland: pp. 191-220.

9.        Dawson, E. Y. (1966). Marine botany: an introduction. Holt, Rinehart and Winston, Inc. New York: pp. 371.

10.     Harah, Z. M., Wong, S. C., Sidik, B. J., Arshad, A. and Ogawa, V. (2007). Macroalgae diversity and life forms of inter-tidal rocky shores. Marine Resource. Indonesia: pp. 163-168.

11.     Nirali, M. and Shailesh, M. (2023). Seaweed in marine ecosystem: A review. International Journal of Trend in Scientific Research and Development, 7(1): 426-436.

12.     Lüning, K. (1990). Seaweeds their environment, biogeography and ecophysiology. John Wiley & Sons, America.

13.     Handayani, S., Widhiono, I. and Widyartini, D. S. (2023). Macroalgae diversity and its relationship with environmental conditions in polluted waters of Seribu Islands, Jakarta Bay, Indonesia. Biodiversitas Journal of Biological Diversity, 24(11): 6279-6286.

14.     Kalčíková, G., Rozman, U. and Polechońska, L. (2024). Interactions between microplastics and primary producers in aquatic ecosystems. In Advances in Chemical Pollution, Environmental Management and Protection. Elsevier, Netherlands: pp 91-121.

15.     Cotas, J., Gomes, L., Pacheco, D. and Pereira, L. (2023). Ecosystem services provided by seaweedsHydrobiology, 2(1): 75-96.

16.     Chubarenko, I., Esiukova, E., Bagaev, A., Isachenko, I., Zobkov, M., Bagaeva, M., Khatmullina, L., and Fetisov, S. (2024). Microplastics particles in coastal zone: Approach of physical oceanography. In Microplastic Contamination in Aquatic Environments. Elsevier, Netherlands: pp. 249–310.

17.     Norashikin, A., Muta Hara, Z. and Jafar Sidik, B. (2013). Intertidal seaweeds and their multi-life form; Journal of Fisheries and Aquatic Sciences, 1: 452-461.

18.     Trono, Jr. G.C. (1997). Field guide and atlas of the seaweed resources of the Philippines. Bureau of Agricultural Research, Department of Agriculture and The Marine Science Institute, University of Philippines: pp. 306.

19.     Trono, Jr. G.C. (2004). Field guide and Atlas of the seaweed resources of the Philippines, Bureau of Agricultural Research, Department of Agriculture and The Marine Science Institute, University of Philippines: pp. 261.

20.     Esiukova, E. E., Lobchuk, O. I., Volodina, A. A. and Chubarenko, I. P. (2021). Marine macrophytes retain microplastics. Marine Pollution Bulletin, 171: 112738.

21.     Anuar, S. T., Abdullah, N. S., Yahya, N. K. E., Chin, T. T., Yusof, K. M. K. K., Mohamad, Y., Azmi, A.A., Jaafar, M., Mohamad, N., Khalik, W.M.A.W.M. and Ibrahim, Y. S. (2023). A multidimensional approach for microplastics monitoring in two major tropical river basins, Malaysia. Environmental Research, 227: 115717.

22.     Gao, F., Li, J., Hu, J., Li, X. and Sun, C. (2020). Occurrence of microplastics carried on Ulva prolifera from the Yellow Sea, China. Case Studies in Chemical and Environmental Engineering, 2: 100054.

23.     Saley, A. M., Smart, A. C., Bezerra, M. F., Burnham, T. L. U., Capece, L. R., Lima, L. F. O., Carsh, A.C., Williams, S.L. and Morgan, S. G. (2019). Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area. Marine Pollution Bulletin, 146: 54-59.

24.     Feng, Z., Zhang, T., Wang, J., Huang, W., Wang, R., Xu, J., Fu, G. and Gao, G. (2020). Spatio-temporal features of microplastics pollution in macroalgae growing in an important mariculture area, China. Science of the Total Environment, 719: 137490.

25.     Li, Q., Su, L., Ma, C., Feng, Z. and Shi, H. (2022). Plastic debris in coastal macroalgae. Environmental Research, 205: 112464.

26.     Ng, K. L., Suk, K. F., Cheung, K. W., Shek, R. H. T., Chan, S. M. N., Tam, N. F. Y., Cheung, S.G., Fang, J.K.H. and Lo, H. S. (2022). Macroalgal morphology mediates microplastic accumulation on thallus and in sediments. Science of the Total Environment, 825: 153987.

27.     Patria, M. P., Kholis, N., Anggreini, D. and Buyong, F. (2023). Abundance and distribution of microplastics in seawater, sediment, and macroalgae sea grapes Caulerpa Racemosa from Semak Daun Island, Jakarta Bay, Indonesia. Biodiversitas Journal of Biological Diversity, 24(6): 3424-3430.

28.     Klomjit, A., Sutthacheep, M. and Yeemin, T. (2021). Occurrence of microplastics in edible seaweeds from aquaculture. Ramkhamhaeng  International Journal of Science and Technology, 4(2): 38-44.

29.     Ismail, M. F., Ramaiya, S. D., and Awang, M. A. (2022). Seaweed (Caulerpa lentillifera): A potential sustainable food source. e-Proceeding 2nd International Scientific Conference on Indigenous Crops: pp. 25.

30.     Pham, D. T., Kim, J., Lee, S. H., Kim, J., Kim, D., Hong, S., Jung, J. and Kwon, J. H. (2023). Analysis of microplastics in various foods and assessment of aggregate human exposure via food consumption in Korea. Environmental Pollution, 322: 121153.

31.     Ferreira, H. C. and Lôbo-Hajdu, G. (2023). Microplastics in coastal and oceanic surface waters and their role as carriers of pollutants of emerging concern in marine organisms. Marine Environmental Research, 188: 106021.

32.     Inobeme, A., Shahnawaz, M., Adetunji, C. O., Mathew, J. T., Adetuyi, B. O., Popoola, O. A., Olaitan, F.Y., Akinbo, O., Kolawole O.M., Oyewola, O.A. and Yerima, M. B. (2024). Microplastic as a pathogenic vector to cause diseases in marine biota. Microplastic Pollution: 321-349.

33.     McIlwraith, H. K., Lindeque, P. K., Miliou, A., Tolhurst, T. J., and Cole, M. (2024). Microplastic shape influences fate in vegetated wetlands. Environmental Pollution, 345: 123492.

34.     Gallage, S. (2023). Microplastics in commercial seafood (invertebrates) and seaweeds. Microplastics in the Ecosphere: Air, Water, Soil, and Food: 369-380.

35.     Jiang, Y., Niu, S. and Wu, J. (2024). The role of algae in regulating the fate of microplastics: A review for processes, mechanisms, and influencing factors. Science of the Total Environment, 2024: 175227.

36.     Salomone, V. N., Passucci, V. and Areco, M. M. (2023). Microplastic pollution in marine environments: exploring sources, sinks and consequences with a focus on algal interactions. Regional Studies in Marine Science: 103270.

37.     Huang, S., Jiang, R., Craig, N. J., Deng, H., He, W., Li, J. Y. and Su, L. (2023). Accumulation and re-distribution of microplastics via aquatic plants and macroalgae-a review of field studies. Marine Environmental Research, 187: 105951.

38.     Seng, N., Lai, S., Fong, J., Saleh, M. F., Cheng, C., Cheok, Z. Y. and Todd, P. A. (2020). Early evidence of microplastics on seagrass and macroalgae. Marine and Freshwater Research, 71(8): 922-928.

39.     Goss, H., Jaskiel, J. and Rotjan, R. (2018). Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Marine Pollution Bulletin, 135: 1085-1089.

40.     Priyadarshini, S., Jagatee, S. and Das, A. P. (2024). Synthetic fabrics and microfiber pollution–an assessment of their global impact. In renewable energy generation and value addition from environmental microfiber pollution through advanced greener solution. Springer Nature Publisher, Switzerland: pp. 137-157.

41.     Tyagi, M. (2024). Water contamination and impacts of synthetic microfibers pollutants to the global ecosystem. In sustainable microbial technology for synthetic and cellulosic microfiber bioremediation. Springer Nature Publisher, Switzerland: pp. 157-181.

42.     Gutow, L., Eckerlebe, A., Giménez, L. and Saborowski, R. (2016). Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environmental Science & Technology, 50(2): 915-923.

43.     He, S., Wei, Y., Yang, C. and He, Z. (2022). Interactions of microplastics and soil pollutants in soil-plant systems. Environmental Pollution, 315: 120357.

44.     Jiang, Y., Niu, S. and Wu, J. (2024). The role of algae in regulating the fate of microplastics: A review for processes, mechanisms, and influencing factors. Science of the Total Environment: 175227.

45.     Annisa, N., Mahmud, M., Fatimah, A., Khotidjah, N., Riduan, R., Mahyudin, R. P., Nirtha, I., Firdausy, M.A., Sumatri, I. and Prasetia, H. (2024). Identification of microplastic types in the Martapura River's water, sediment, and fish using FTIR (Case Study: Loktangga Village and Teluk Muara Kelayan) South Kalimantan. E3S Web of Conferences, 503: 01001.

46.     Akyildiz, S. H., Fiore, S., Bruno, M., Sezgin, H., Yalcin-Enis, I., Yalcin, B. and Bellopede, R. (2024). Release of microplastic fibers from synthetic textiles during household washing. Environmental Pollution, 357: 124455.

47.     Nafisyah, A. L., Iswandi, H. S., Karisma, A. D., Nindarwi, D. D., Praveena, S. M. and Schneider, F. (2023). Microplastic abundance in Surabaya mangrove areas during the wet season. IOP Conference Series: Earth and Environmental Science, 1273(1): 012059.

48.     Gopakumar, A. N., Ccanccapa-Cartagena, A., Bell, K. and Salehi, M. (2024). Development of crosslinked polyvinyl alcohol nanofibrous membrane for microplastic removal from water. Journal of Applied Polymer Science, 141(22): e55428.

49.     Jamil, N., Husin, H., Alfida, A. W., Aman, Z. and Hassan, Z. (2018). Characterization and preparation of polyvinyl alcohol (PVA) as inhibitor in formation of hydrates. International Journal of Current Research in Science Engineering & Technology, 1(578): 578-584.

50.     Karmaker, N., Karmaker, H. and Khan, R. A. (2021). A review on PVA based biodegradable films: A new hope for plastic pollution remediation. Journal of Asian and African Social Science and Humanities, 7 (1): 26-37.

51.     Rahman, L. and Goswami, J. (2023). Poly (vinyl alcohol) as sustainable and eco-friendly packaging: A review. Journal of Packaging Technology and Research, 7(1): 1-10.

52.     Couți, N., Porfire, A., Iovanov, R., Crișan, A. G., Iurian, S., Casian, T. and Tomuță, I. (2024). Polyvinyl alcohol, a versatile excipient for pharmaceutical 3D printing. Polymers, 16(4): 517.

53.     Zainuddin, A. H., Aris, A. Z., Zaki, M. R. M., Yusoff, F. M. and Wee, S. Y. (2022). Occurrence, potential sources and ecological risk estimation of microplastic towards coastal and estuarine zones in Malaysia. Marine Pollution Bulletin, 174: 113282.