Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1404

 

Research Article

 

Cold flow improvement of large-branched esterified palm olein for potential green lubricant

 

Loh Lii Jia1*, Diana Kertini Monir1*, and Mohamad Iskandar Jobli2

 

1Department of Chemistry, Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

2Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

 

*Corresponding author: liijia.loh@gmail.com

 

Received: 6 November 2024; Revised: 23 March 2025; Accepted: 23 March 2025; Published: 19 June 2025

 

Abstract

The poor cold flow properties of natural palm olein (POo) limit its application at low temperature environments, particularly in automotive and industrial fluids. This constraint highlights the need for further research to develop value-added lubricants. To address this issue, the olefinic structure of POo was transformed to large-branched esters through epoxidation, alcoholysis, and esterification. A key step involved the use of glycerol for epoxide ring opening enabling the incorporation of three hydroxyl groups to facilitate the formation of large-branched esters. Epoxidation of POo with performic acid resulted in epoxidized POo (EPOo) with a 90.65% yield and 98.14% oxirane conversion. The subsequent ring-opening reaction with glycerol produced a ring-opening intermediate with 85.93% yield. Esterification was performed using oleic acid, linoleic acid, and salicylic acid under optimal condition of 140℃ for 4 hours yielding oleic acid-esterified-POo (OA-EPO), linoleic acid-esterified-POo (LA-EPO), and salicylic acid-esterified-POo (SA-EPO) at 97.46%, 96.19%, and 99.29%, respectively. The products were characterised using the Fourier Transform Infrared (FTIR) spectroscopy, proton (1H), and carbon (13C) Nuclear Magnetic Resonance (NMR) spectroscopy. The results demonstrated a significant improvement in cold flow properties, with a temperature range of -12℃ to -7℃, compared to natural POo at 6℃. These findings provide valuable insights into the potential of large-branched esterified POo as a versatile green lubricant that can operate at low-temperature environments.

 

Keywords: Palm olein, epoxidation, alcoholysis, esterification, green lubricant



References

1.      Nor, N. M., Salih, N., and Salimon, J. (2022). Optimization and lubrication properties of Malaysian crude palm oil fatty acids based neopentyl glycol diester green biolubricant. Renewable Energy, 200: 942-956.

2.      Pinheiro, C. T., Quina, M. J., and Gando-Ferreira, L. M. (2021). Management of waste lubricant oil in Europe: A circular economy approach. Critical Reviews in Environmental Science and Technology, 51(18): 2015-2050.

3.      Lee, D. J., and Song, S. H. (2019). Investigation of epoxidized palm oils as green processing AIDS and activators in rubber composites. International Journal of Polymer Science, 2019 (42): 1-7.

4.      Salih, N. (2021). A review on eco-friendly green biolubricants from renewable and sustainable plant oil sources. Biointerface Research in Applied Chemistry, 11(5): 13303-13327.

5.      Voon, P. T., Lee, S. T., Ng, T. K. W., Ng, Y. T., Yong, X. S., Lee, V. K. M., and Ong, A. S. H. (2019). Intake of palm olein and lipid status in healthy adults: A meta-analysis. Advances in Nutrition, 10(4): 647-659.

6.      Hambali, E., and Puspita, N. N. I. A. (2021). Epoxidation of palm olein as base oil for calcium complex bio grease. International Journal of Oil Palm, 4(1): 22-30.

7.      Tajau, R., Rohani, R., and Salleh, M. Z. (2020). Physicochemical and thermal properties of acrylated palm olein as a promising biopolymer. Journal of Polymers and the Environment, 28 (10): 2734-2748.

8.      Abubakar, A., Ishak, M. Y., and Makmom, A. A. (2021). Impacts of and adaptation to climate change on the oil palm in Malaysia: A systematic review. Environmental Science and Pollution Research, 28: 54339-54361.

9.      Yeong, S. P., Chan, Y. S., Law, M. C., and Ling, J. K. U. (2022). Improving cold flow properties of palm fatty acid distillate biodiesel through vacuum distillation. Journal of Bioresources and Bioproducts, 7(1): 43-51.

10.   Dandan, A., and Samion, S. (2017). Palm oil as an alternative lubricant oil: A brief review. The Colloquium, UTM, 11: 17-19.

11.   Jalil, M. J., Yamin, A. F. M., Azmi, I. S., Jamaludin, S. K., and Daud, A. R. M. (2018). Mechanism and kinetics study in homogenous epoxidation of vegetable oil. International Journal of Engineering & Technology, 7: 124- 126.

12.   Wu, Z., Zheng, T., Wu, L., Lou, H., Xie, Q., Lu, M., Zhang, L., Nie, Y., and Ji, J. (2017). Novel reactor for exothermic heterogeneous reaction systems: Intensification of mass and heat transfer and application to vegetable oil epoxidation. Industrial and Engineering Chemistry Research, 56(18): 5231-5238.

13.   Danov, S. M., Kazantsev, O. A., Esipovich, A. L., Belousov, A. S., Rogozhin, A. E., and Kanakov, E. A. (2017). Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective. Catalysis Science and Technology, 7(17): 3659-3675.

14.   Jalil, M. J., Rani, N. H. A., Yamin, A. F. M., Anuar, N. R. A., Azmi, I. S., and Hadi, A. (2019). Epoxidation reaction parameter of palm olein for synthesis of dihydrostearic acid (DHSA) via hydrolysis reaction. IOP Conference Series: Materials Science and Engineering, 551(1): 012001.

15.   Nor, N. M., Derawi, D., and Salimon, J. (2018). The optimization of RBD palm oil epoxidation process using D-optimal design. Sains Malaysiana, 47(7): 1359-1367.

16.   Yunus, M. Z. M., Jamaludin, S. K., Karim, S. F. A., Gani, A. A., and Sauki, A. (2018). Catalytic efficiency of titanium dioxide (TiO2) and zeolite ZSM-5 catalysts in the in-situ epoxidation of palm olein. IOP Conference Series: Materials Science and Engineering, 358(1): 012070.

17.   Prociak, A., Malewska, E., Kurańska, M., Bąk, S., and Budny, P. (2018). Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Industrial Crops and Products, 115: 69-77.

18.   Uprety, B. K., Reddy, J. V., Dalli, S. S., and Rakshit, S. K. (2017). Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams. Bioresource Technology, 235: 309-315.

19.   Noor, N. M., Ismail, T. N. M. T., Noor, M. A. M., Palam, K. D. P., Sattar, M. N., Hanzah, N. Ain, Adnan, S., and Kian, Y. S. (2022). Physicochemical properties of palm olein-based polyols prepared using homogeneous and heterogeneous catalysts. Journal of Oil Palm Research, 34(1): 167-176.

20.   Ho, Y. H., Parthiban, A., Thian, M. C., Ban, Z. H., and Siwayanan, P. (2022). Acrylated biopolymers derived via epoxidation and subsequent acrylation of vegetable oils. International Journal of Polymer Science, 2022 (2): 1-12.

21.   Nor, N. M., and Salimon, J. (2023). Synthesis and characterization of palm oil pentaerythritol ester-based biolubricant from Malaysia palm oil. Malaysian Journal of Analytical Sciences, 27(4): 716-727.

22.   Wai, P. T., Jiang, P., Shen, Y., Zhang, P., Gu, Q., and Leng, Y. (2019). Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Advances, 9(65): 38119-38136.

23.   Tavassoli-Kafrani, M. H., Voort, F. R. V. D., and Curtis, J. M. (2017). The use of ATR-FTIR spectroscopy to measure changes in the oxirane content and iodine value of vegetable oils during epoxidation. European Journal of Lipid Science and Technology, 119(7): 1-11.

24.   Jurid, L. S., Zubairi, S. I., Kasim, Z. M., and Kadir, I. A. A. (2020). The effect of repetitive frying on physicochemical properties of refined, bleached and deodorized Malaysian Tenera palm olein during deep-fat frying. Arabian Journal of Chemistry, 13(7): 6149-6160.

25.   Nduka, J. K. C., Omozuwa, P. O., and Imanah, O. E. (2021). Effect of heating time on the physicochemical properties of selected vegetable oils. Arabian Journal of Chemistry, 14(4): 103063.

26.   Samidin, S., Salih, N., and Salimon, J. (2021). Synthesis and characterization of trimethylolpropane based esters as green biolubricant basestock. Biointerface Research in Applied Chemistry, 11(5): 13638-13651.

27.   Yeong, S. P., Chan, Y. S., Law, M. C., and Ling, J. K. U. (2022). Improving cold flow properties of palm fatty acid distillate biodiesel through vacuum distillation. Journal of Bioresources and Bioproducts, 7(1): 43-51.

28.   Solomons, T. W. G., Fryhle, C. B., and Snyder, S. A. (2014). Organic Chemistry, 11th edition. John Wiley & Sons, United States: pp. 789-791.

29.   Ahmed, R. A., Rashid, S., and Huddersman, K. (2023). Esterification of stearic acid using novel protonated and crosslinked amidoximated polyacrylonitrile ion exchange fibres. Journal of Industrial and Engineering Chemistry, 119: 550-573.

30.   Xu, J., Kong, L., Deng, L., Mazza, G., Wang, F., Baeyens, J., and Nie, K. (2021). The conversion of linoleic acid into hydroxytetrahydrofuran-structured bio-lubricant. Journal of Environmental Management, 291: 112692.

31.   Kopchev, V. P., and Bayryamov, S. G. (2022). Study on the most important factors for the optimization of the oleic acid esterification with trimethylolpropane. Journal of Chemical Technology and Metallurgy, 57(6): 1104-1113.

32.   Wahyudi, D., Fawzi, M., Cahyono, B., and Artanti, D. (2020). Influences of marine environment to the characteristics of palm oil biodiesel during storage. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 79(1): 81-90.

33.   Gordon, A. J., and Ford, R. A. (1973). The chemist's companion: A handbook of practical data, techniques, and references. John Wiley & Sons, Canada: pp. 448-452.

34.   Ghodke, S., Dandekar, P., and Jain, R. (2021). Simplified evaluation aided by mathematical calculation for characterization of polyols by hydroxyl value determination. International Journal of Polymer Analysis and Characterization, 26(2): 169-178.

35.   Bahadi, M., Salimon, J., and Derawi, D. (2021). Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification. Renewable Energy, 171: 981- 993.