Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1394
Research Article
Self-assemble
three-dimensional PMMA@Au core-shell film: An ultrasensitive and reproducible SERS
substrate
Rabiatul Addawiyah Azwa Tahrin1, Marinah Ariffin1,
Nur Aida Mohamed Shaul Hamid1, Chan Kiki1, Maisara Abdul
Kadir1,3, Sibu C. Padmanabhan2 and Syara Kassim1,3*
1Faculty of Science and Marine Environment, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Advanced Materials and BioEngineering Research (AMBER)
Centre, Trinity College Dublin, College Green,
Dublin 2, Ireland
3Advanced Nano Materials Research Group (ANoMa),
Faculty of Science and Marine Environment, Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: syara.kassim@umt.edu.my
Received:
18 October 2024; Revised: 23 May 2025; Accepted: 26 May 2025; Published: 19
June 2025
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful
technique for trace molecular detection, but its practical application is often
limited by the lack of cost-effective, stable and reproducible SERS substrates.
In order to address this issue, metallodielectric photonic crystals (MDPCs)
have gained interest across various fields due to their unique optical
properties, with applications including optoelectronics, biotechnology, solar
cells and SERS. In this study, homogeneous polymer spheres of polymethyl
methacrylate (PMMA) were synthesized and incorporated with gold nanoparticles
to form a PMMA@Au core–shell structure. Exploiting a bottom-up technique, thin
films of PMMA@Au core–shell substrates were fabricated to investigate their
performance in SERS applications using 4-aminothiophenol (4-ATP) as the probe
molecule. The findings were validated through UV-Visible spectroscopy, which
revealed distinct surface plasmon resonance (SPR) peaks at 520 nm for the
synthesized gold nanoparticles and 522 nm for the PMMA@Au core–shell. The
morphology of the fabricated thin films was meticulously examined at each stage
of the study, providing valuable insights into the structure’s formation and
characteristics. This research highlights the significant potential of PMMA@Au
MDPCs as a SERS substrate, particularly in enhancing Raman signals and
demonstrating the influence of substrate layering on sensitivity and
reproducibility. These findings not only deepen the understanding of MDPCs but
also offer promising implications for advancing reliable, low-cost SERS-based
molecular detection platforms.
Keywords: polymethyl
methacrylate, gold nanoparticles, metallodielectric photonic crystals,
surface-enhanced Raman scattering
References
1.
Yablonovitch, E. (1987). Inhibited
spontaneous emission in solid-state physics and electronics. Physical Review
Letters, 58(20): 2059–2062.
2.
Johnson, G., and Joannopoulos, J. D. (2003). Introduction to photonic
crystals: Bloch’s theorem, band diagrams, and gaps (but no defects). Semantic
Scholar, 1–16.
3.
Altunbek, M., Kuku, G., and Culha, M. (2016). Gold nanoparticles in
single-cell analysis for surface enhanced Raman scattering. Molecules,
21(12): 1617.
4.
Tahrin, R. A., and Kassim, S. (2018). 3D photonic crystals based
poly(methyl methacrylate) for active photonic SERS substrates. IOP
Conference Series: Materials Science and Engineering, 440(1): 012018.
5.
Lonergan, A., Hu, C., and O'Dwyer, C. (2020). Filling in the gaps: The
nature of light transmission through solvent-filled inverse opal photonic
crystals. Physical Review Materials, 4, 065201.
6.
Mizeikis, V., Juodkazis, S., Marcinkevičius, A., Matsuo, S., and
Misawa, H. (2001). Tailoring and characterization of photonic crystals. Journal
of Photochemistry and Photobiology C: Photochemistry Reviews, 2(1): 35–69.
7.
Sakakibara, R., Stelmakh, V., Chan, W. R., Geil, R. D., Krämer, S., Savas,
T., Ghebrebrhan, M., Joannopoulos, J. D., Soljačić, M., and
Čelanović, I. (2022). A high-performance, metallodielectric 2D
photonic crystal for thermophotovoltaics. Solar Energy Materials and Solar
Cells, 238: 111536.
8.
Wu, F., Liu, T., Chen, M., and Xiao, S. (2022). Photonic bandgap
engineering in hybrid one-dimensional photonic crystals containing
all-dielectric elliptical metamaterials. Optics Express, 30(19): 33911.
9.
Butt, M. A., Khonina, S. N., and Kazanskiy, N. L. (2021). Recent advances
in photonic crystal optical devices: A review. Optics & Laser Technology,
142: 107265.
10.
Liu, B., Monshat, H., Gu, Z., Lu, M., and Zhao, X. (2018). Recent advances
in merging photonic crystals and plasmonics for bioanalytical applications. The
Analyst, 143(11): 2448–2458.
11.
Kassim, S., Padmanabhan, S. C., and Pemble, M. E. (2021). Bottom-up
colloidal synthesis of PMMA@Au core-shell based metallodielectric photonic
crystals as substrates for surface-enhanced Raman spectroscopy. Applied
Surface Science, 569: 151014.
12.
Zhou, H., Li, X., Wang, L., Liang, Y., Jialading, A., Wang, Z., and Zhang,
J. (2021). Application of SERS quantitative analysis method in food safety
detection. Reviews in Analytical Chemistry, 40(3): 173–186.
13.
Kim, J., Jang, Y., Kim, N.-J., Kim, H., Yi, G.-C., Shin, Y., and Kim, M.
H., Yoon, S. (2019). Study of chemical enhancement mechanism in non-plasmonic
surface enhanced Raman spectroscopy (SERS). Frontiers in Chemistry, 7:
582.
14.
Han, Q., Zhang, C., Gao, W., Han, Z., Liu, T., Li, C., Wang, Z., He, E.,
and Zheng, H. (2016). Ag-Au alloy nanoparticles: Synthesis and in situ
monitoring SERS of plasmonic catalysis. Sensors and Actuators B: Chemical,
231: 609–614.
15.
Zhang, Z., Deckert-Gaudig, T., and Deckert, V. (2015). Label-free
monitoring of plasmonic catalysis on the nanoscale. The Analyst,
140(13), 4325–4335.
16.
Kassim, S., Tahrin, R. A., and Harun, N. A. (2020). Metallic core-shell
photonic crystals for surface-enhanced Raman scattering (SERS). Plasmonics,
15(5): 1499–1505.
17.
Piras, C. C.,
Fernández-Prieto, S., and De Borggraeve, W. M. (2019). Ball milling: a green
technology for the preparation and functionalisation of nanocellulose
derivatives. Nanoscale Advances, 1(3): 937–947.
18.
Abid, N., Khan, A. M.,
Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan,
Q., and Maqbool, M. (2022). Synthesis of nanomaterials using various top-down
and bottom-up approaches, influencing factors, advantages, and disadvantages: A
review. Advances in Colloid and Interface Science, 300: 102597.
19.
Aldawood, F. K., Andar,
A., and Desai, S. (2024). Investigating laser ablation process parameters for
the fabrication of customized microneedle arrays for therapeutic applications. Pharmaceutics,
16(7): 885.
20.
Garg, R., Spandana
Gonuguntla, Saddam Sk, Muhammad Saqlain Iqbal, Adewumi Oluwasogo Dada, Pal, U.,
and Mohsen Ahmadipour. (2024). Sputtering thin films: Materials, applications,
challenges and future directions. Advances in Colloid and Interface Science,
330: 103203–103203.
21.
Kassim, S., Padmanabhan,
S. C., and Pemble, M. E. (2021). Bottom-up colloidal synthesis of PMMA@Au
core–shell based metallodielectric photonic crystals as substrates for
surface-enhanced Raman spectroscopy. Applied Surface Science, 569: 151014.
22.
Tahrin, R. A., Azma, N. S., Kassim, S., and Harun, N. A. (2017).
Preparation and properties of PMMA nanoparticles as 3D photonic crystals and
its thin film via surfactant-free emulsion polymerization. AIP Conference
Proceedings, 5002286.
23.
Alsharef, M. A., Taha, M. R., and Khan, T. A. (2017). Physical dispersion
of nanocarbons in composites: A review. Jurnal Teknologi, 79: 7646.
24.
Baselga, M., Uranga-Murillo, I., de Miguel, D., Arias, M., Sebastián, V.,
Pardo, J., and Arruebo, M. (2022). Silver nanoparticles–polyethyl eneimine-based
coatings with antiviral activity against SARS-COV-2: A new method to
functionalize filtration media. Materials, 15(14): 4742.
25.
Lin, H., Chen, W., Lu,
L., Chen, H., Chen, Y., Pan, M., Chen, C., Chen, C., Yen, T., and Wan, D.
(2023). Direct Thermal Growth of Gold Nanopearls on 3D Interweaved Hydrophobic
Fibers as Ultrasensitive Portable SERS Substrates for Clinical Applications. Small,
19(28): 7404.
26.
Zhou, T., & Zhang, Z.
(2025). Centrifugation-Induced Stable Colloidal Silver Nanoparticle Aggregates
for Reproducible Surface-Enhanced Raman Scattering Detection. Biosensors,
15(5): 298-298.
27.
Xia, T., Kovochich, M.,
Liong, M., Meng, H., Kabehie, S., George, S., Zink, J. I., and Nel, A. E.
(2009). Polyethyleneimine coating enhances the cellular uptake of mesoporous
silica nanoparticles and allows safe delivery of siRNA and DNA Constructs. ACS
Nano, 3(10): 3273–3286.
28.
Sintayehu Leshe Kitaw, Darge, H. F., Kefyalew Dagnew Addisu,
Thankachan, D., Ahmed, Y. W., Chen, Y. S., Hailemichael Tegenu, Candra, A., Wu,
T.-Y., Gou, Y.-X., and Tsai, H.-C. (2023). Fabrication of Ag nanostar and
PEI-based SERS substrate for sensitive and rapid detection of SO2: Application
for detection of sulfite residues in beer. Spectrochimica Acta Part a
Molecular and Biomolecular Spectroscopy, 302: 123113–123113.
29.
Fang, J., Zhu, J., Fu,
M., Gu, Y., Li, G., Hou, H., Lin, Z., Chen, X., and Li, X. (2020). A SERS
substrate with remarkable reproducibility: Adsorbing and detecting both
hydrophobic and hydrophilic molecules using rGO/PEI/PAA/CD-AgNP nanocomposites.
Applied Surface Science, 542: 148708–148708.
30.
Zhang, R.-C., Sun, D., Zhang, R., Lin, W.-F., Macias-Montero, M., Patel,
J., Askari, S., McDonald, C., Mariotti, D., and Maguire, P. (2017). Gold
nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric
pressure plasma and their potential for fuel cell electrocatalytic application.
Scientific Reports, 7: 46682.
31.
Yang, K., Chen, Y., Yan, S., and Yang, W. (2023). Nanostructured surface
plasmon resonance sensors: Toward narrow linewidths. Heliyon, 9: e16598.
32.
Chen, T., Xin, J., Chang,
S. J., Chen, C., and Liu, J. (2023). Surface plasmon resonance (SPR) combined
technology: A powerful tool for investigating interface phenomena. Advanced
Materials Interfaces, 2202202.
33.
Silva, Pauling, L., and
Gustavo. (2025). Stability, resuspensibility, and evaluation as SERS substrates
of gold nanoparticle–chitosan nanocomposites. Plasmonics, 2025: 02748.
34.
Ge, K., Hu, Y., and Li,
G. (2022). Recent Progress on Solid Substrates for Surface-Enhanced Raman
Spectroscopy Analysis. Biosensors, 12(11): 941.
35.
Britto Hurtado, R., Cortez-Valadez, M., Ramírez-Rodríguez, L. P.,
Larios-Rodriguez, E., Alvarez, R. A. B., Rocha-Rocha, O., Delgado-Beleño, Y.,
Martinez-Nuñez, C. E., Arizpe-Chávez, H., Hernández-Martínez, A. R., and
Flores-Acosta, M. (2016). Instant synthesis of gold nanoparticles at room
temperature and SERS applications. Physics Letters A, 380(29-30):
2658–2663.
36.
Sørensen, L. K., Khrennikov, D. E., Gerasimov, V. S., Ershov, A. E.,
Polyutov, S. P., Karpov, S. V., and Ågren, H. (2022). Nature of the anomalous
size dependence of resonance red shifts in ultrafine plasmonic nanoparticles. Journal
of Physical Chemistry. C, 126(39): 16804–16814.
37.
Liang, L., Wu, J., Yin,
Z., Kong, C., Pervikov, A., Shi, H., Li, X., and Qiu, A. (2024). Synthesis of
FCC structure Fe10Co25Ni34Cu23Al8 high-entropy-alloy nanoparticles by
electrical wire explosion: For electromagnetic wave absorption. Applied
Physics Letters, 124(5): 187760.
38.
Zhang, F., Zhao, J., and
Zhang, X. (2023). Estimation of relative standard deviation related to limit of
detection and limit of quantitation. AHFE International, 2023: 1003050.
39. Visbal, C. A., Cervantes, W. R.,
Marín, L., Betancourt, J., Angélica Pérez, Diosa, J. E., Rodríguez, L. A., and
Mosquera-Vargas, E. (2024). The fabrication of gold nanostructures as SERS substrates
for the detection of contaminants in water. Nanomaterials, 14(18):
1525–1525.
40. Qin, M., Wang, C., Zhu, J., Yong, L.,
Wang, H., and Yang, L. (2021). Synthesis of differently sized gold
nanoparticles for SERS applications in the detection of malachite. Spectroscopy,
36(4): 41–46.
41. Wen, B., Yang, J., Hu, C., Cai, J., and
Zhou, J. (2023). Top‐down fabrication of ordered nanophotonic structures
for biomedical applications. Advanced Materials Interfaces, 11(5): 856.
42. Wu, H.-Y., Lin, H.-C., Hung, G.-Y.,
Tu, C.-S., Liu, T.-Y., Hong, C.-H., Yu, G., and Hsu, J.-C. (2022). High sensitivity
SERS substrate of a few nanometers single-layer silver thickness fabricated by
DC magnetron sputtering technology. Nanomaterials, 12(16): 2742.