Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1394

 

Research Article

 

Self-assemble three-dimensional PMMA@Au core-shell film: An ultrasensitive and reproducible SERS substrate

 

Rabiatul Addawiyah Azwa Tahrin1, Marinah Ariffin1, Nur Aida Mohamed Shaul Hamid1, Chan Kiki1, Maisara Abdul Kadir1,3, Sibu C. Padmanabhan2 and Syara Kassim1,3*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, College Green,

Dublin 2, Ireland

3Advanced Nano Materials Research Group (ANoMa), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: syara.kassim@umt.edu.my

 

Received: 18 October 2024; Revised: 23 May 2025; Accepted: 26 May 2025; Published: 19 June 2025

 

Abstract

Surface-enhanced Raman scattering (SERS) is a powerful technique for trace molecular detection, but its practical application is often limited by the lack of cost-effective, stable and reproducible SERS substrates. In order to address this issue, metallodielectric photonic crystals (MDPCs) have gained interest across various fields due to their unique optical properties, with applications including optoelectronics, biotechnology, solar cells and SERS. In this study, homogeneous polymer spheres of polymethyl methacrylate (PMMA) were synthesized and incorporated with gold nanoparticles to form a PMMA@Au core–shell structure. Exploiting a bottom-up technique, thin films of PMMA@Au core–shell substrates were fabricated to investigate their performance in SERS applications using 4-aminothiophenol (4-ATP) as the probe molecule. The findings were validated through UV-Visible spectroscopy, which revealed distinct surface plasmon resonance (SPR) peaks at 520 nm for the synthesized gold nanoparticles and 522 nm for the PMMA@Au core–shell. The morphology of the fabricated thin films was meticulously examined at each stage of the study, providing valuable insights into the structure’s formation and characteristics. This research highlights the significant potential of PMMA@Au MDPCs as a SERS substrate, particularly in enhancing Raman signals and demonstrating the influence of substrate layering on sensitivity and reproducibility. These findings not only deepen the understanding of MDPCs but also offer promising implications for advancing reliable, low-cost SERS-based molecular detection platforms.

 

Keywords: polymethyl methacrylate, gold nanoparticles, metallodielectric photonic crystals, surface-enhanced Raman scattering



References

1.      Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 58(20): 2059–2062.

2.      Johnson, G., and Joannopoulos, J. D. (2003). Introduction to photonic crystals: Bloch’s theorem, band diagrams, and gaps (but no defects). Semantic Scholar, 1–16.

3.      Altunbek, M., Kuku, G., and Culha, M. (2016). Gold nanoparticles in single-cell analysis for surface enhanced Raman scattering. Molecules, 21(12): 1617.

4.      Tahrin, R. A., and Kassim, S. (2018). 3D photonic crystals based poly(methyl methacrylate) for active photonic SERS substrates. IOP Conference Series: Materials Science and Engineering, 440(1): 012018.

5.      Lonergan, A., Hu, C., and O'Dwyer, C. (2020). Filling in the gaps: The nature of light transmission through solvent-filled inverse opal photonic crystals. Physical Review Materials, 4, 065201.

6.      Mizeikis, V., Juodkazis, S., Marcinkevičius, A., Matsuo, S., and Misawa, H. (2001). Tailoring and characterization of photonic crystals. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2(1): 35–69.

7.      Sakakibara, R., Stelmakh, V., Chan, W. R., Geil, R. D., Krämer, S., Savas, T., Ghebrebrhan, M., Joannopoulos, J. D., Soljačić, M., and Čelanović, I. (2022). A high-performance, metallodielectric 2D photonic crystal for thermophotovoltaics. Solar Energy Materials and Solar Cells, 238: 111536.

8.      Wu, F., Liu, T., Chen, M., and Xiao, S. (2022). Photonic bandgap engineering in hybrid one-dimensional photonic crystals containing all-dielectric elliptical metamaterials. Optics Express, 30(19): 33911.

9.      Butt, M. A., Khonina, S. N., and Kazanskiy, N. L. (2021). Recent advances in photonic crystal optical devices: A review. Optics & Laser Technology, 142: 107265.

10.   Liu, B., Monshat, H., Gu, Z., Lu, M., and Zhao, X. (2018). Recent advances in merging photonic crystals and plasmonics for bioanalytical applications. The Analyst, 143(11): 2448–2458.

11.   Kassim, S., Padmanabhan, S. C., and Pemble, M. E. (2021). Bottom-up colloidal synthesis of PMMA@Au core-shell based metallodielectric photonic crystals as substrates for surface-enhanced Raman spectroscopy. Applied Surface Science, 569: 151014.

12.   Zhou, H., Li, X., Wang, L., Liang, Y., Jialading, A., Wang, Z., and Zhang, J. (2021). Application of SERS quantitative analysis method in food safety detection. Reviews in Analytical Chemistry, 40(3): 173–186.

13.   Kim, J., Jang, Y., Kim, N.-J., Kim, H., Yi, G.-C., Shin, Y., and Kim, M. H., Yoon, S. (2019). Study of chemical enhancement mechanism in non-plasmonic surface enhanced Raman spectroscopy (SERS). Frontiers in Chemistry, 7: 582.

14.   Han, Q., Zhang, C., Gao, W., Han, Z., Liu, T., Li, C., Wang, Z., He, E., and Zheng, H. (2016). Ag-Au alloy nanoparticles: Synthesis and in situ monitoring SERS of plasmonic catalysis. Sensors and Actuators B: Chemical, 231: 609–614.

15.   Zhang, Z., Deckert-Gaudig, T., and Deckert, V. (2015). Label-free monitoring of plasmonic catalysis on the nanoscale. The Analyst, 140(13), 4325–4335.

16.   Kassim, S., Tahrin, R. A., and Harun, N. A. (2020). Metallic core-shell photonic crystals for surface-enhanced Raman scattering (SERS). Plasmonics, 15(5): 1499–1505.

17.   Piras, C. C., Fernández-Prieto, S., and De Borggraeve, W. M. (2019). Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Advances, 1(3): 937–947.

18.   Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., and Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300: 102597.

19.   Aldawood, F. K., Andar, A., and Desai, S. (2024). Investigating laser ablation process parameters for the fabrication of customized microneedle arrays for therapeutic applications. Pharmaceutics, 16(7): 885.

20.   Garg, R., Spandana Gonuguntla, Saddam Sk, Muhammad Saqlain Iqbal, Adewumi Oluwasogo Dada, Pal, U., and Mohsen Ahmadipour. (2024). Sputtering thin films: Materials, applications, challenges and future directions. Advances in Colloid and Interface Science, 330: 103203–103203.

21.   Kassim, S., Padmanabhan, S. C., and Pemble, M. E. (2021). Bottom-up colloidal synthesis of PMMA@Au core–shell based metallodielectric photonic crystals as substrates for surface-enhanced Raman spectroscopy. Applied Surface Science, 569: 151014.

22.   Tahrin, R. A., Azma, N. S., Kassim, S., and Harun, N. A. (2017). Preparation and properties of PMMA nanoparticles as 3D photonic crystals and its thin film via surfactant-free emulsion polymerization. AIP Conference Proceedings,  5002286.

23.   Alsharef, M. A., Taha, M. R., and Khan, T. A. (2017). Physical dispersion of nanocarbons in composites: A review. Jurnal Teknologi, 79: 7646.

24.   Baselga, M., Uranga-Murillo, I., de Miguel, D., Arias, M., Sebastián, V., Pardo, J., and Arruebo, M. (2022). Silver nanoparticles–polyethyl eneimine-based coatings with antiviral activity against SARS-COV-2: A new method to functionalize filtration media. Materials, 15(14): 4742.

25.   Lin, H., Chen, W., Lu, L., Chen, H., Chen, Y., Pan, M., Chen, C., Chen, C., Yen, T., and Wan, D. (2023). Direct Thermal Growth of Gold Nanopearls on 3D Interweaved Hydrophobic Fibers as Ultrasensitive Portable SERS Substrates for Clinical Applications. Small, 19(28): 7404.

26.   Zhou, T., & Zhang, Z. (2025). Centrifugation-Induced Stable Colloidal Silver Nanoparticle Aggregates for Reproducible Surface-Enhanced Raman Scattering Detection. Biosensors, 15(5): 298-298.

27.   Xia, T., Kovochich, M., Liong, M., Meng, H., Kabehie, S., George, S., Zink, J. I., and Nel, A. E. (2009). Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA Constructs. ACS Nano, 3(10): 3273–3286.

28.   Sintayehu Leshe Kitaw, Darge, H. F., Kefyalew Dagnew Addisu, Thankachan, D., Ahmed, Y. W., Chen, Y. S., Hailemichael Tegenu, Candra, A., Wu, T.-Y., Gou, Y.-X., and Tsai, H.-C. (2023). Fabrication of Ag nanostar and PEI-based SERS substrate for sensitive and rapid detection of SO2: Application for detection of sulfite residues in beer. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy, 302: 123113–123113.

29.   Fang, J., Zhu, J., Fu, M., Gu, Y., Li, G., Hou, H., Lin, Z., Chen, X., and Li, X. (2020). A SERS substrate with remarkable reproducibility: Adsorbing and detecting both hydrophobic and hydrophilic molecules using rGO/PEI/PAA/CD-AgNP nanocomposites. Applied Surface Science, 542: 148708–148708.

30.   Zhang, R.-C., Sun, D., Zhang, R., Lin, W.-F., Macias-Montero, M., Patel, J., Askari, S., McDonald, C., Mariotti, D., and Maguire, P. (2017). Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application. Scientific Reports, 7: 46682.

31.   Yang, K., Chen, Y., Yan, S., and Yang, W. (2023). Nanostructured surface plasmon resonance sensors: Toward narrow linewidths. Heliyon, 9: e16598.

32.   Chen, T., Xin, J., Chang, S. J., Chen, C., and Liu, J. (2023). Surface plasmon resonance (SPR) combined technology: A powerful tool for investigating interface phenomena. Advanced Materials Interfaces, 2202202.

33.   Silva, Pauling, L., and Gustavo. (2025). Stability, resuspensibility, and evaluation as SERS substrates of gold nanoparticle–chitosan nanocomposites. Plasmonics, 2025: 02748.

34.   Ge, K., Hu, Y., and Li, G. (2022). Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. Biosensors, 12(11): 941.

35.   Britto Hurtado, R., Cortez-Valadez, M., Ramírez-Rodríguez, L. P., Larios-Rodriguez, E., Alvarez, R. A. B., Rocha-Rocha, O., Delgado-Beleño, Y., Martinez-Nuñez, C. E., Arizpe-Chávez, H., Hernández-Martínez, A. R., and Flores-Acosta, M. (2016). Instant synthesis of gold nanoparticles at room temperature and SERS applications. Physics Letters A, 380(29-30): 2658–2663.

36.   Sørensen, L. K., Khrennikov, D. E., Gerasimov, V. S., Ershov, A. E., Polyutov, S. P., Karpov, S. V., and Ågren, H. (2022). Nature of the anomalous size dependence of resonance red shifts in ultrafine plasmonic nanoparticles. Journal of Physical Chemistry. C, 126(39): 16804–16814.

37.   Liang, L., Wu, J., Yin, Z., Kong, C., Pervikov, A., Shi, H., Li, X., and Qiu, A. (2024). Synthesis of FCC structure Fe10Co25Ni34Cu23Al8 high-entropy-alloy nanoparticles by electrical wire explosion: For electromagnetic wave absorption. Applied Physics Letters, 124(5): 187760.

38.   Zhang, F., Zhao, J., and Zhang, X. (2023). Estimation of relative standard deviation related to limit of detection and limit of quantitation. AHFE International, 2023: 1003050.

39.   Visbal, C. A., Cervantes, W. R., Marín, L., Betancourt, J., Angélica Pérez, Diosa, J. E., Rodríguez, L. A., and Mosquera-Vargas, E. (2024). The fabrication of gold nanostructures as SERS substrates for the detection of contaminants in water. Nanomaterials, 14(18): 1525–1525.

40.   Qin, M., Wang, C., Zhu, J., Yong, L., Wang, H., and Yang, L. (2021). Synthesis of differently sized gold nanoparticles for SERS applications in the detection of malachite. Spectroscopy, 36(4): 41–46.

41.   Wen, B., Yang, J., Hu, C., Cai, J., and Zhou, J. (2023). Top‐down fabrication of ordered nanophotonic structures for biomedical applications. Advanced Materials Interfaces, 11(5): 856.

42.   Wu, H.-Y., Lin, H.-C., Hung, G.-Y., Tu, C.-S., Liu, T.-Y., Hong, C.-H., Yu, G., and Hsu, J.-C. (2022). High sensitivity SERS substrate of a few nanometers single-layer silver thickness fabricated by DC magnetron sputtering technology. Nanomaterials, 12(16): 2742.