Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1364

 

Research Article

 

Enhanced photocatalytic degradation of perfluorooctanoic acid (PFOA) by using MoS2/GO/CMC composites: Impact of irradiation conditions, solution pH, and stability for sustainable water treatment

 

Syafarina Farisa Sateria1, Kavirajaa Pandian Sambasevam2,3, Ahmad Husaini Mohamed1, Zulhatiqah Zolekafeli1, and Siti Nor Atika Baharin1,2*

 

1School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Malaysia

2Advanced Material for Environmental Remediation (AMER) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

3Electrochemical Material and Sensor (EMas) Group, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: atikabaharin@uitm.edu.my

 

Received: 29 September 2024; Revised: 7 April 2025; Accepted: 9 April 2025; Published: 1 June 2025

 

Abstract

This study investigated the removal of perfluorooctanoic acid (PFOA) by using molybdenum disulphide-graphene oxide-carboxymethyl cellulose (MoS2/GO/CMC) composites as a photocatalyst under various irradiation conditions and solution pH value levels. The performance of MoS2/GO/CMC was compared with MoS2/CMC and GO/CMC composites. Under LED light irradiation (12 W, 400–700 nm spectrum range), the MoS2/GO/CMC composite achieved a maximum PFOA degradation efficiency of 92.26% within 2 h, outperforming other photocatalysts. The incorporation of cellulose improved nanoparticle stability and increased surface-active sites, enhancing degradation efficiency. pH 5 was found to be optimal for PFOA degradation due to favorable hydrophobic interactions, while higher pH levels hindered degradation due to Coulombic repulsion. Increasing LED wattage to 12 W maximised degradation efficiency by enhancing photodecomposition. These findings provide valuable insights into optimising PFOA degradation under different environmental conditions, highlighting the potential of MoS2/GO/CMC composites for sustainable water treatment solutions.

 

Keywords: carboxymethyl cellulose, perfluorinated compounds, photocatalyst, graphene oxide, hydrogels

 


References

1.        Černá, M., Grafnetterová, A. P., Dvořáková, D., Pulkrabová, J., Malý, M., Janoš, T., Vodrážková, N., Tupá, Z., and Puklová, V. (2020). Biomonitoring of PFOA, PFOS, and PFNA in human milk from the Czech Republic, time trends, and estimation of infant’s daily intake. Environmental Research, 188: 109815.

2.        Li, J., Liu, Y., Song, Y., Cao, L., Dou, Y., Yu, J., Zhang, Y., He, J., Dai, W., Yao, C., and Kong, D. (2024). Enhanced and accelerated degradation of PFOA using visible light—Applying semiconductor carbon nitride as an accelerator. Journal of Environmental Chemical Engineering, 12(1): 111653.

3.        Zhou, J., Yan, J., Qi, X., Wang, M., and Yang, M. (2023). Development of a new matrix-certified reference material for accurate measurement of PFOA and PFOS in oyster meat powder. Microchemical Journal, 190: 108746.

4.        Wee, S. Y., and Aris, A. Z. (2023). Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water. NPJ Clean Water, 6(1): 57.

5.        Radoor, S., Karayil, J., Jayakumar, A., Kandel, D. R., Kim, J. T., Siengchin, S., and Lee, J. (2024). Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydrate Polymers, 323: 121339.

6.        Squadrone, S., Ciccotelli, V., Prearo, M., Favaro, L., Scanzio, T., Foglini, C., and Abete, M. C. (2015). Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): Emerging contaminants of increasing concern in fish from Lake Varese, Italy. Environmental Monitoring and Assessment, 187(7): 4427.

7.        Suhaimi, N. F., Baharin, S. N. A., Jamion, N. A., Mohd Zain, Z., and Sambasevam, K. P. (2023). Polyaniline-chitosan modified on screen-printed carbon electrode for the electrochemical detection of perfluorooctanoic acid. Microchemical Journal, 188: 108502.

8.        Zhang, L., Si, C., Zeng, F., Duan, X., Zhang, D., Xu, W., and Shi, J. (2024). Persulfate activation for efficient remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in water: Mechanisms, removal efficiency, and future prospects. Journal of Environmental Chemical Engineering, 12(1): 111422.

9.        Vierke, L., Staude, C., Biegel-Engler, A., Drost, W., and Schulte, C. (2012). Perfluorooctanoic acid (PFOA)—Main concerns and regulatory developments in Europe from an environmental point of view. Environmental Sciences Europe, 24(1): 16.

10.     Mohamad Haron, D. E., Yoneda, M., Hod, R., Wahab, M. I. A., and Aziz, M. Y. (2022). Perfluoroalkyl and polyfluoroalkyl substances, bisphenol and paraben compounds in dust collected from residential homes in Klang Valley, Malaysia. Human Ecological Risk Assessment, 28(8): 827-843.

11.     Mohamad Haron, D. E., Yoneda, M., Ahmad, E. D., and Aziz, M. Y. (2023). PFAS, bisphenol, and paraben in Malaysian food and estimated dietary intake. Food Additives & Contaminants: Part B, 16(2): 161-175.

12.     Nguyen, M. D., Sivaram, A. K., Megharaj, M., Webb, L., Adhikari, S., Thomas, M., Surapaneni, A., Moon, E. M., and Milne, N. A. (2023). Investigation on removal of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) using water treatment sludge and biochar. Chemosphere, 338: 139412.

13.     Hussain, F. A., Janisse, S. E., Heffern, M. C., Kinyua, M., and Velázquez, J. M. (2022). Adsorption of perfluorooctanoic acid from water by pH-modulated Brönsted acid and base sites in mesoporous hafnium oxide ceramics. IScience, 25(4): 104138.

14.     Das, S., and Ronen, A. (2022). A review on removal and destruction of per-and polyfluoroalkyl substances (PFAS) by novel membranes. Membranes, 12: 662.

15.     Karimi Douna, B., and Yousefi, H. (2023). Removal of PFAS by biological methods. Asian Pacific Journal of Environmental Cancer, 6(1): 53-68.

16.     Duinslaeger, N., and Radjenovic, J. (2022). Electrochemical degradation of per- and polyfluoroalkyl substances (PFAS) using low-cost graphene sponge electrodes. Water Research, 213: 118148.

17.     Sateria, S. F., Norsham, I. N., Sambasevam, K. P., and Baharin, S. N. A. (2023). Photocatalytic degradation of perfluorooctanoic acid (PFOA) using molybdenum disulphide-graphene oxide composite via Box-Behnken design optimization. MJChem, 25(3): 368-377.

18.     Norsham, I. N. M., Sambasevam, K. P., Shahabuddin, S., Jawad, A. H., and Baharin, S. N. A. (2022). Photocatalytic degradation of perfluorooctanoic acid (PFOA) via MoS2/rGO for water purification using indoor fluorescent irradiation. Journal of Environmental Chemical Engineering, 10(5): 108466.

19.     Pavel, M., Anastasescu, C., State, R.-N., Vasile, A., Papa, F., and Balint, I. (2023). Photocatalytic degradation of organic and inorganic pollutants to harmless end products: Assessment of practical application potential for water and air cleaning. Catalysts, 13(2): 380.

20.     Zheng, X., Wang, H., Wen, J., and Peng, H. (2021). In2S3-NiS co-decorated MoO3@MoS2 composites for enhancing the solar-light induced CO2 photoreduction activity. International Journal of Hydrogen Energy, 46(74): 36848-36858.

21.     Jia, F., Yao, Z., and Jiang, Z. (2012). Solvothermal synthesis ZnS-In2S3-Ag2S solid solution coupled with TiO2-xSx nanotubes film for photocatalytic hydrogen production. International Journal of Hydrogen Energy, 37(4): 3048-3055.

22.     Ghasemipour, P., Fattahi, M., Rasekh, B., and Yazdian, F. (2020). Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalytic degradation of aniline. Scientific Reports, 10(1): 4414.

23.     Fotiou, D., Lykos, C., and Konstantinou, I. (2024). Photocatalytic removal of the antidepressant fluoxetine from aqueous media using TiO2 P25 and g-C3N4 catalysts. Journal of Environmental Chemical Engineering, 12(1): 111677.

24.     Liu, J., Du, J., Su, Y., and Zhao, H. (2019). A facile solvothermal synthesis of 3D magnetic MoS2/Fe3O4 nanocomposites with enhanced peroxidase-mimicking activity and colorimetric detection of perfluorooctane sulfonate. Microchemical Journal, 149: 104019.

25.     Zhang, J., Wu, J., Yu, J., Zhang, X., He, J., and Zhang, J. (2017). Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: State of the art and future trends. In Materials Chemistry Frontiers, 1(7): 1273-1290.

26.     Yan, H., Liu, L., Wang, R., Zhu, W., Ren, X., Luo, L., Zhang, X., Luo, S., Ai, X., and Wang, J. (2020). Binary composite MoS2/TiO2 nanotube arrays as a recyclable and efficient photocatalyst for solar water disinfection. Chemical Engineering Journal, 401: 126052.

27.     Ikram, M., Imran, M., Hayat, S., Shahzadi, A., Haider, A., Naz, S., Ul-Hamid, A., Nabgan, W., Fazal, I., and Ali, S. (2022). MoS2/cellulose-doped ZnO nanorods for catalytic, antibacterial, and molecular docking studies. Nanoscale Advances, 4(1): 211-22.

28.     Bashir, B., Khalid, M. U., Aadil, M., Zulfiqar, S., Warsi, M. F., Agboola, P. O., and Shakir, I. (2021). CuxNi1-xO nanostructures and their nanocomposites with reduced graphene oxide: Synthesis, characterization, and photocatalytic applications. Ceramics International, 47(3): 3603-3613.

29.     Ghosh, J. P., Langford, C. H., and Achari, G. (2008). Characterization of an LED-based photoreactor to degrade 4-chlorophenol in an aqueous medium using coumarin (C-343) sensitized TiO2. Journal of Physical Chemistry A, 112(41): 10310-10314.

30.     Wang, X., and Lim, T. T. (2010). Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Applied Catalysis B: Environmental, 100(1–2): 355-364.

31.     Chen, Y., Cui, J., Liang, Y., Chen, X., and Li, Y. (2021). Synthesis of magnetic carboxymethyl cellulose/graphene oxide nanocomposites for adsorption of copper from aqueous solution. International Journal of Energy Research, 45(3): 3988-3998.

32.     Khan, S. A., Shah, L. A., Shah, M., and Jamil, I. (2021). Engineering 3D polymer network hydrogels for biomedical applications: A review. Polymer Bulletin, 79(4): 2685-2705.

33.     Shah, I., Adnan, R., Wan Ngah, W. S., and Mohamed, N. (2015). Iron impregnated activated carbon as an efficient adsorbent for the removal of methylene blue: Regeneration and kinetics studies. PLoS ONE, 10(4): 0122603.

34.     Hidayat, S., Ardiaksa, P., Riveli, N., and Rahayu, I. (2018). Synthesis and characterization of carboxymethyl cellulose (CMC) from salak-fruit seeds as anode binder for lithium-ion battery. Journal of Physics: Conference Series, 1080(1): 012017.

35.     Lalithambika, K. C., Shanmugapriya, K., and Sriram, S. (2019). Photocatalytic activity of MoS2 nanoparticles: An experimental and DFT analysis. Applied Physics A, 125(12): 817.

36.     Hosseini, S. A., Mashaykhi, S., and Babaei, S. (2016). Graphene oxide/zinc oxide nanocomposite: A superior adsorbent for removal of methylene blue statistical analysis by response surface methodology (RSM). South African Journal of Chemistry, 69: 105-112.

37.     Bera, M., Chandravati, Gupta, P., and Maji, P. K. (2017). Facile one-pot synthesis of graphene oxide by sonication-assisted mechanochemical approach and its surface chemistry. Journal of Nanoscience and Nanotechnology, 18(2): 902-912.

38.     Bordallo, E., Torneiro, M., and Lazzari, M. (2020). Dissolution of amorphous nifedipine from micelle-forming carboxymethylcellulose derivatives. Carbohydrate Polymers, 247: 116699.

39.     Heidarpour, H., Golizadeh, M., Padervand, M., Karimi, A., Vossoughi, M., and Tavakoli, M. H. (2020). In-situ formation and entrapment of Ag/AgCl photocatalyst inside cross-linked carboxymethyl cellulose beads: A novel photoactive hydrogel for visible-light-induced photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 398: 112559.

40.     Zou, L., Qu, R., Gao, H., Guan, X., Qi, X., Liu, C., Zhang, Z., and Lei, X. (2019). MoS2/RGO hybrids prepared by a hydrothermal route as a highly efficient catalyst for sonocatalytic degradation of methylene blue. Results in Physics, 14: 102458.

41.     Jubu, P. R., Yam, F. K., Igba, V. M., and Beh, K. P. (2020). Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study of β-Ga2O3. Journal of Solid State Chemistry, 290: 121576.

42.     Park, K., Ali, I., and Kim, J. O. (2018). Photodegradation of perfluorooctanoic acid by graphene oxide-deposited TiO2 nanotube arrays in aqueous phase. Journal of Environmental Management, 218: 333-339.

43.     Mancilla, H. B., Cerrón, M. R., Aroni, P. G., Paucar, J. E. P., Tovar, C. T., Jindal, M. K., and Gowrisankar, G. (2022). Effective removal of Cr (VI) ions using low-cost biomass leaves (Sambucus nigra L.) in aqueous solution. Environmental Science and Pollution Research, 2022: 1-14.

44.     Omorogie, M. O., Babalola, J. O., Unuabonah, E. I., Song, W., and Gong, J. R. (2016). Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii seed biomass waste. Journal of Saudi Chemical Society, 20(1): 49-57.

45.     Santoso, S. P., Angkawijaya, A. E., Bundjaja, V., Hsieh, C. W., Go, A. W., Yuliana, M., Hsu, H. Y., Tran-Nguyen, P. L., Soetaredjo, F. E., and Ismadji, S. (2021). TiO2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue. International Journal of Biological Macromolecules, 193(Pt A): 721-733.

46.     Ali, R., Ooi, B. S., (2012). Photodegradation of New Methylene Blue N in aqueous solution using zinc oxide and titanium dioxide as catalysts. Jurnal Teknologi, 45: 31-42.

47.     Shi, K., Qian, G., Yi, W., Tang, W., Liu, F., Li, Y., Yang, C., Xiang, Y., and Yao, H. (2024). Magnetic photocatalytic nano-semiconductors prepared from carbon quantum dots compounded with copper ferrate and their application in dye wastewater treatment. Journal of Environmental Chemical Engineering, 12(1): 111737.

48.     Pervaiz, M., Ur Rehman, M., Ali, F., Younas, U., Sillanpaa, M., Kausar, R., Alothman, A. A., Ouladsmane, M., and Mazid, M. A. (2023). Biomolecule protective and photocatalytic potential of cellulose supported MoS2/GO nanocomposite. Bioinorganic Chemistry and Applications, 2023: 3634726.

49.     Thomas, H. R., Day, S. P., Woodruff, W. E., Vallés, C., Young, R. J., Kinloch, I. A., Morley, G. W., Hanna, J. V., Wilson, N. R., and Rourke, J. P. (2013). Deoxygenation of graphene oxide: Reduction or cleaning? Chemistry of Materials, 25(18): 3580-3588.