Malays. J. Anal. Sci.
Volume 29 Number 3 (2025): 1364
Research
Article
Enhanced
photocatalytic degradation of perfluorooctanoic acid (PFOA) by using MoS2/GO/CMC
composites: Impact of irradiation conditions, solution pH, and stability for
sustainable water treatment
Syafarina Farisa Sateria1, Kavirajaa Pandian
Sambasevam2,3, Ahmad Husaini Mohamed1, Zulhatiqah Zolekafeli1,
and Siti Nor Atika Baharin1,2*
1School of Chemistry and
Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan
Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Malaysia
2Advanced Material for Environmental Remediation (AMER)
Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan
Negeri Sembilan Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan,
Malaysia
3Electrochemical Material and Sensor (EMas) Group, Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: atikabaharin@uitm.edu.my
Received: 29 September 2024;
Revised: 7 April 2025; Accepted: 9 April 2025; Published: 1 June 2025
Abstract
This study investigated the removal of
perfluorooctanoic acid (PFOA) by using molybdenum disulphide-graphene
oxide-carboxymethyl cellulose (MoS2/GO/CMC) composites as a
photocatalyst under various irradiation conditions and solution pH value levels.
The performance of MoS2/GO/CMC was compared with MoS2/CMC
and GO/CMC composites. Under LED light irradiation (12 W, 400–700 nm spectrum
range), the MoS2/GO/CMC composite achieved a maximum PFOA
degradation efficiency of 92.26% within 2 h, outperforming other
photocatalysts. The incorporation of cellulose improved nanoparticle stability
and increased surface-active sites, enhancing degradation efficiency. pH 5 was
found to be optimal for PFOA degradation due to favorable hydrophobic
interactions, while higher pH levels hindered degradation due to Coulombic
repulsion. Increasing LED wattage to 12 W maximised
degradation efficiency by enhancing photodecomposition. These findings provide
valuable insights into optimising PFOA degradation
under different environmental conditions, highlighting the potential of MoS2/GO/CMC
composites for sustainable water treatment solutions.
Keywords: carboxymethyl cellulose, perfluorinated compounds,
photocatalyst, graphene oxide, hydrogels
References
1.
Černá,
M., Grafnetterová, A. P., Dvořáková, D., Pulkrabová, J., Malý, M., Janoš,
T., Vodrážková, N., Tupá,
Z., and Puklová, V. (2020). Biomonitoring of PFOA,
PFOS, and PFNA in human milk from the Czech Republic, time trends, and
estimation of infant’s daily intake. Environmental Research, 188:
109815.
2.
Li,
J., Liu, Y., Song, Y., Cao, L., Dou, Y., Yu, J., Zhang, Y., He, J., Dai, W.,
Yao, C., and Kong, D. (2024). Enhanced and accelerated degradation of PFOA
using visible light—Applying semiconductor carbon nitride as an accelerator. Journal
of Environmental Chemical Engineering, 12(1): 111653.
3.
Zhou,
J., Yan, J., Qi, X., Wang, M., and Yang, M. (2023). Development of a new
matrix-certified reference material for accurate measurement of PFOA and PFOS
in oyster meat powder. Microchemical Journal, 190: 108746.
4.
Wee,
S. Y., and Aris, A. Z. (2023). Revisiting the “forever chemicals”, PFOA and
PFOS exposure in drinking water. NPJ Clean Water, 6(1): 57.
5.
Radoor, S., Karayil, J., Jayakumar, A., Kandel, D. R.,
Kim, J. T., Siengchin, S., and Lee, J. (2024). Recent advances in cellulose- and
alginate-based hydrogels for water and wastewater treatment: A review. Carbohydrate
Polymers, 323: 121339.
6.
Squadrone, S., Ciccotelli, V., Prearo, M., Favaro, L., Scanzio,
T., Foglini, C., and Abete, M. C. (2015). Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid
(PFOA): Emerging contaminants of increasing concern in fish from Lake Varese,
Italy. Environmental Monitoring and Assessment, 187(7): 4427.
7.
Suhaimi,
N. F., Baharin, S. N. A., Jamion, N. A., Mohd Zain,
Z., and Sambasevam, K. P. (2023).
Polyaniline-chitosan modified on screen-printed carbon electrode for the
electrochemical detection of perfluorooctanoic acid. Microchemical Journal,
188: 108502.
8.
Zhang,
L., Si, C., Zeng, F., Duan, X., Zhang, D., Xu, W., and Shi, J. (2024).
Persulfate activation for efficient remediation of perfluorooctanoic acid
(PFOA) and perfluorooctane sulfonic acid (PFOS) in
water: Mechanisms, removal efficiency, and future prospects.
Journal of Environmental Chemical Engineering, 12(1): 111422.
9.
Vierke, L., Staude, C., Biegel-Engler, A.,
Drost, W., and Schulte, C. (2012). Perfluorooctanoic acid (PFOA)—Main concerns
and regulatory developments in Europe from an environmental point of view. Environmental
Sciences Europe, 24(1): 16.
10.
Mohamad
Haron, D. E., Yoneda, M., Hod, R., Wahab, M. I. A., and Aziz, M. Y. (2022).
Perfluoroalkyl and polyfluoroalkyl substances, bisphenol and paraben compounds
in dust collected from residential homes in Klang Valley, Malaysia. Human
Ecological Risk Assessment, 28(8): 827-843.
11.
Mohamad
Haron, D. E., Yoneda, M., Ahmad, E. D., and Aziz, M. Y. (2023). PFAS,
bisphenol, and paraben in Malaysian food and estimated dietary intake. Food
Additives & Contaminants: Part B, 16(2): 161-175.
12.
Nguyen,
M. D., Sivaram, A. K., Megharaj, M., Webb, L.,
Adhikari, S., Thomas, M., Surapaneni, A., Moon, E. M., and Milne, N. A. (2023).
Investigation on removal of perfluorooctanoic acid (PFOA), perfluorooctane
sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) using water treatment sludge and biochar. Chemosphere,
338: 139412.
13.
Hussain,
F. A., Janisse, S. E., Heffern, M. C., Kinyua, M., and Velázquez, J. M. (2022).
Adsorption of perfluorooctanoic acid from water by pH-modulated Brönsted acid and base sites in mesoporous hafnium oxide
ceramics. IScience, 25(4): 104138.
14.
Das,
S., and Ronen, A. (2022). A review on removal and destruction of per-and
polyfluoroalkyl substances (PFAS) by novel membranes. Membranes, 12: 662.
15.
Karimi
Douna, B., and Yousefi, H. (2023). Removal of PFAS by biological methods. Asian
Pacific Journal of Environmental Cancer, 6(1): 53-68.
16.
Duinslaeger, N., and Radjenovic, J. (2022).
Electrochemical degradation of per- and polyfluoroalkyl substances (PFAS) using
low-cost graphene sponge electrodes. Water Research, 213: 118148.
17.
Sateria,
S. F., Norsham, I. N., Sambasevam,
K. P., and Baharin, S. N. A. (2023). Photocatalytic
degradation of perfluorooctanoic acid (PFOA) using molybdenum disulphide-graphene oxide composite via Box-Behnken design
optimization. MJChem, 25(3): 368-377.
18.
Norsham, I. N. M., Sambasevam,
K. P., Shahabuddin, S., Jawad, A. H., and Baharin, S.
N. A. (2022). Photocatalytic degradation of perfluorooctanoic acid (PFOA) via
MoS2/rGO for water purification using indoor
fluorescent irradiation. Journal of Environmental Chemical Engineering,
10(5): 108466.
19.
Pavel,
M., Anastasescu, C., State, R.-N., Vasile, A., Papa,
F., and Balint, I. (2023). Photocatalytic degradation of organic and inorganic
pollutants to harmless end products: Assessment of practical application
potential for water and air cleaning. Catalysts, 13(2): 380.
20.
Zheng,
X., Wang, H., Wen, J., and Peng, H. (2021). In2S3-NiS
co-decorated MoO3@MoS2 composites for enhancing the
solar-light induced CO2 photoreduction activity. International
Journal of Hydrogen Energy, 46(74): 36848-36858.
21.
Jia,
F., Yao, Z., and Jiang, Z. (2012). Solvothermal synthesis ZnS-In2S3-Ag2S
solid solution coupled with TiO2-xSx nanotubes film for
photocatalytic hydrogen production. International Journal of Hydrogen Energy,
37(4): 3048-3055.
22.
Ghasemipour, P., Fattahi, M., Rasekh, B., and Yazdian, F. (2020). Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and
reduced graphene oxide (RGO) for photocatalytic degradation of aniline. Scientific
Reports, 10(1): 4414.
23.
Fotiou,
D., Lykos, C., and Konstantinou, I. (2024). Photocatalytic removal of the
antidepressant fluoxetine from aqueous media using TiO2 P25 and g-C3N4
catalysts. Journal of Environmental Chemical Engineering, 12(1): 111677.
24.
Liu, J., Du, J., Su, Y., and Zhao, H. (2019). A facile solvothermal synthesis of
3D magnetic MoS2/Fe3O4 nanocomposites with
enhanced peroxidase-mimicking activity and colorimetric detection of perfluorooctane sulfonate. Microchemical Journal,
149: 104019.
25.
Zhang,
J., Wu, J., Yu, J., Zhang, X., He, J., and Zhang, J. (2017). Application of
ionic liquids for dissolving cellulose and fabricating cellulose-based
materials: State of the art and future trends. In Materials Chemistry
Frontiers, 1(7): 1273-1290.
26.
Yan,
H., Liu, L., Wang, R., Zhu, W., Ren, X., Luo, L., Zhang, X., Luo, S., Ai, X.,
and Wang, J. (2020). Binary composite MoS2/TiO2 nanotube
arrays as a recyclable and efficient photocatalyst for solar water
disinfection. Chemical Engineering Journal, 401: 126052.
27.
Ikram,
M., Imran, M., Hayat, S., Shahzadi, A., Haider, A., Naz, S., Ul-Hamid, A., Nabgan, W., Fazal, I., and Ali, S. (2022). MoS2/cellulose-doped
ZnO nanorods for catalytic, antibacterial, and
molecular docking studies. Nanoscale Advances, 4(1): 211-22.
28.
Bashir,
B., Khalid, M. U., Aadil, M., Zulfiqar, S., Warsi, M. F., Agboola, P. O., and
Shakir, I. (2021). CuxNi1-xO nanostructures and their nanocomposites with
reduced graphene oxide: Synthesis, characterization, and photocatalytic
applications. Ceramics International, 47(3): 3603-3613.
29.
Ghosh,
J. P., Langford, C. H., and Achari, G. (2008). Characterization of an LED-based
photoreactor to degrade 4-chlorophenol in an aqueous medium using coumarin
(C-343) sensitized TiO2. Journal of Physical Chemistry A,
112(41): 10310-10314.
30.
Wang,
X., and Lim, T. T. (2010). Solvothermal synthesis of C-N codoped
TiO2 and photocatalytic evaluation for bisphenol A degradation using
a visible-light irradiated LED photoreactor. Applied Catalysis B:
Environmental, 100(1–2): 355-364.
31.
Chen,
Y., Cui, J., Liang, Y., Chen, X., and Li, Y. (2021). Synthesis of magnetic
carboxymethyl cellulose/graphene oxide nanocomposites for adsorption of copper
from aqueous solution. International Journal of Energy Research, 45(3):
3988-3998.
32.
Khan, S. A., Shah, L. A., Shah, M.,
and Jamil, I. (2021). Engineering 3D polymer network hydrogels for biomedical
applications: A review. Polymer Bulletin, 79(4): 2685-2705.
33.
Shah, I., Adnan, R., Wan Ngah, W.
S., and Mohamed, N. (2015). Iron impregnated activated carbon as an efficient
adsorbent for the removal of methylene blue: Regeneration and kinetics studies.
PLoS ONE, 10(4): 0122603.
34.
Hidayat, S., Ardiaksa,
P., Riveli, N., and Rahayu, I. (2018). Synthesis and
characterization of carboxymethyl cellulose (CMC) from salak-fruit
seeds as anode binder for lithium-ion battery. Journal of Physics:
Conference Series, 1080(1): 012017.
35.
Lalithambika,
K. C., Shanmugapriya, K., and Sriram, S. (2019). Photocatalytic activity of MoS2
nanoparticles: An experimental and DFT analysis. Applied Physics A,
125(12): 817.
36.
Hosseini,
S. A., Mashaykhi, S., and Babaei, S. (2016). Graphene
oxide/zinc oxide nanocomposite: A superior adsorbent for removal of methylene
blue statistical analysis by response surface methodology (RSM). South
African Journal of Chemistry, 69: 105-112.
37.
Bera,
M., Chandravati, Gupta, P., and Maji, P. K. (2017). Facile one-pot synthesis of
graphene oxide by sonication-assisted mechanochemical approach and its surface
chemistry. Journal of Nanoscience and Nanotechnology, 18(2): 902-912.
38.
Bordallo,
E., Torneiro, M., and Lazzari, M. (2020). Dissolution
of amorphous nifedipine from micelle-forming carboxymethylcellulose
derivatives. Carbohydrate Polymers, 247: 116699.
39.
Heidarpour, H., Golizadeh,
M., Padervand, M., Karimi, A., Vossoughi, M., and
Tavakoli, M. H. (2020). In-situ formation and entrapment of Ag/AgCl
photocatalyst inside cross-linked carboxymethyl cellulose beads: A novel
photoactive hydrogel for visible-light-induced photocatalysis. Journal of
Photochemistry and Photobiology A: Chemistry, 398: 112559.
40.
Zou,
L., Qu, R., Gao, H., Guan, X., Qi, X., Liu, C., Zhang, Z., and Lei, X. (2019).
MoS2/RGO hybrids prepared by a hydrothermal route as a highly
efficient catalyst for sonocatalytic degradation of
methylene blue. Results in Physics, 14: 102458.
41.
Jubu, P. R., Yam, F. K., Igba, V. M.,
and Beh, K. P. (2020). Tauc-plot scale and
extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study
of β-Ga2O3. Journal of Solid
State Chemistry, 290: 121576.
42.
Park,
K., Ali, I., and Kim, J. O. (2018). Photodegradation of perfluorooctanoic acid
by graphene oxide-deposited TiO2 nanotube arrays in aqueous phase. Journal
of Environmental Management, 218: 333-339.
43.
Mancilla,
H. B., Cerrón, M. R., Aroni, P. G., Paucar, J. E. P., Tovar, C. T., Jindal, M.
K., and Gowrisankar, G. (2022). Effective removal of Cr (VI) ions using
low-cost biomass leaves (Sambucus nigra L.) in aqueous solution. Environmental
Science and Pollution Research, 2022: 1-14.
44.
Omorogie, M. O., Babalola, J. O., Unuabonah, E. I., Song, W., and Gong, J. R. (2016).
Efficient chromium abstraction from aqueous solution using a low-cost
biosorbent: Nauclea diderrichii
seed biomass waste. Journal of Saudi Chemical Society, 20(1): 49-57.
45.
Santoso,
S. P., Angkawijaya, A. E., Bundjaja,
V., Hsieh, C. W., Go, A. W., Yuliana, M., Hsu, H. Y., Tran-Nguyen, P. L., Soetaredjo, F. E., and Ismadji,
S. (2021). TiO2/guar gum hydrogel composite for adsorption and
photodegradation of methylene blue. International Journal of Biological
Macromolecules, 193(Pt A): 721-733.
46.
Ali,
R., Ooi, B. S., (2012). Photodegradation of New Methylene Blue N in aqueous
solution using zinc oxide and titanium dioxide as catalysts. Jurnal
Teknologi, 45: 31-42.
47.
Shi, K., Qian, G., Yi, W., Tang, W., Liu, F., Li, Y.,
Yang, C., Xiang, Y., and Yao, H. (2024). Magnetic photocatalytic
nano-semiconductors prepared from carbon quantum dots compounded with copper
ferrate and their application in dye wastewater treatment. Journal of
Environmental Chemical Engineering, 12(1): 111737.
48.
Pervaiz, M., Ur Rehman, M., Ali, F.,
Younas, U., Sillanpaa, M., Kausar, R., Alothman, A.
A., Ouladsmane, M., and Mazid, M. A. (2023).
Biomolecule protective and photocatalytic potential of cellulose supported MoS2/GO
nanocomposite. Bioinorganic Chemistry and Applications, 2023: 3634726.
49.
Thomas, H. R., Day, S. P., Woodruff,
W. E., Vallés, C., Young, R. J., Kinloch, I. A.,
Morley, G. W., Hanna, J. V., Wilson, N. R., and Rourke, J. P. (2013).
Deoxygenation of graphene oxide: Reduction or cleaning? Chemistry of
Materials, 25(18): 3580-3588.