Malays. J. Anal. Sci.
Volume 29 Number 3 (2025): 1333
Research Article
Synthesis, biological evaluation and molecular docking analysis of p-tolyldiazenyl
azo derivatives
Kai Wei Yeo1,
Ainaa Nadiah Abd Halim1*, Nor Hisam Zamakshshari1, Surisa
Phornvillay1, Zainab Ngaini1, Davlye Noissy Diosing1,
Akshatha Handattu Shankaranarayana2, and B. R. Prashantha Kumar2
1Faculty of Resource
Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan,
Sarawak, Malaysia
2Department of
Pharmaceutical Chemistry, JSS College of Pharmacy, Sri Shivarathreeshwara
Nagar, Mysuru- 570015, India
*Corresponding author: ahanadiah@unimas.my
Received:
29 August 2024; Revised: 19 November 2024; Accepted: 3 December 2024;
Published: 27 June 2025
Abstract
Impacts of multiresistant bacteria such as Staphylococcus
aureus and Escherichia coli have initiated active research of new
effective drugs. Herein, new p-tolyldiazenyl azo derivatives 1-13
were successfully synthesized through a well-established diazo coupling
reaction of p-toluidine with substituted phenol at ortho, meta
and para positions. The series was obtained in a moderate yield of 58% –
79% and structural elucidation was done using FTIR and NMR spectroscopies. The
antioxidant ability of the compounds 1-13 evaluated by
2,2’-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power
(FRAP) assay outlined a potential activity with IC50 of 26 – 188 ppm
and 12.29 – 182.73 mg/mL Trolox equivalent, respectively. Moreover, the
antibacterial activity of the compounds assessed via the Kirby-Bauer
disc diffusion method against S.aureus and E.coli show moderate
to good inhibition zone of 7.04±0.50 mm to 17.46±0.50 mm as compared to
standard ampicillin (19.29±0.33 mm). Determination of minimum inhibitory
concentration (MIC) through a turbidimetric method towards similar bacteria
strains, gave a MIC values of 84 – 178 ppm (S.aureus) and 112 – 194 ppm (E.coli)
with compound 3 (m-F) (84.37 ppm) and 9 (m-Br)
(112.40 ppm) are better than ampicillin which the MIC were 97.70 ppm and 112.92
ppm for S.aureus and E.coli respectively. The molecular docking
analysis towards MurE and DHFR enzymes reveals that the hydrogen bonding,
hydrophobic and electrostatic interactions with amino acid in the vicinity are
the major contributions to the activities. This study is important in discovering
a potentially new candidate for combating emerging infections.
Keywords: diazotisation, C-coupling, antioxidant,
antibacterial, MIC
References
1.
Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S.,
Akhter, N., Rabaan, A. A., and Alqumber, M. A. A. (2023). Antimicrobial
resistance: A growing serious threat for global public health. Healthcare,
11(13): 1946.
2.
Vidovic, N., and Vidovic, S. (2020).
Antimicrobial resistance and food animals: Influence of livestock environment
on the emergence and dissemination of antimicrobial resistance. Antibiotics,
9(2): 52.
3.
Samreen, Ahmad, I., Malak, H. A., and
Abulreesh, H. H. (2021). Environmental antimicrobial resistance and its
drivers: A potential threat to public health. Journal of Global
Antimicrobial Resistance, 27: 101-111.
4.
Wilson, D. N.,
Hauryliuk, V., Atkinson, G. C., and O’Neill, A. J. (2020). Target protection as a key antibiotic resistance mechanism. Nature
Reviews Microbiology, 18(11): 637-648.
5.
Hasan, T. H., and Al-Harmoosh, R. A.
(2020). Mechanisms of antibiotics resistance in bacteria. Systematic Reviews
in Pharmacy, 11(6): 817-823.
6.
Chen, H., Yang, J., Huang, C., Chen, C.,
and Chen, Y. (2024). Antibacterial activities of functional groups on the
benzene rings in nucleic acid nanocarriers. Materials Today Chemistry,
2024: 4692043.
7.
Kobisy, A. S., Nassar, H. N., Tawfik, S.
M., Elshatoury, E. H., and Aiad, I. (2021). Mitigation of eco-unfriendly and
costly microbial induced corrosion using novel synthesized Schiff base cationic
surfactants. Journal of Chemical Technology and Biotechnology, 96(4):
941-952.
8.
Joydeep, G., and Lavanya, L. M. (2023).
Inhibition of microbial corrosion by green inhibitors: An overview. Iranian
Journal of Chemistry and Chemical Engineering, 42(2): 684-703.
9.
Rao, P., and Mulky, L. (2023).
Microbially influenced corrosion and its control measures: A critical review. Journal
of Bio- and Tribo-Corrosion, 9(3): 57.
10.
Mezgebe, K., and Mulugeta, E. (2022).
Synthesis and pharmacological activities of azo dye derivatives incorporating
heterocyclic scaffolds: A review. RSC Advances, 12(40): 25932-25946.
11.
Dong, L., Chen, Y., Zhai, F., Tang, L.,
Gao, W., Tang, J., Feng, Y., and Feng, W. (2020). Azobenzene-based solar
thermal energy storage enhanced by gold nanoparticles for rapid,
optically-triggered heat release at room temperature. Journal of Materials
Chemistry A, 8(36): 18668-18676.
12.
Bukia, T., Utiashvili, M.,
Tsiskarishvili, M., Jalalishvili, S., Gogolashvili, A., Tatrishvili, T., and
Petriashvili, G. (2023). Synthesis of some azo dyes based on
2,3,3-Trimethyl-3H-Indolenine. Chemistry and Chemical Technology, 17(3):
549-556.
13.
Tahir, T., Shahzad, M. I., Tabassum, R.,
Rafiq, M., Ashfaq, M., Hassan, M., Kotwica-Mojzych, K., and Mojzych, M. (2021).
Diaryl azo derivatives as anti-diabetic and antimicrobial agents: Synthesis, in
vitro, kinetic and docking studies. Journal of Enzyme Inhibition and
Medicinal Chemistry, 36(1): 1508-1519.
14.
Gičević,
A., Hindija, L., & Karačić, A. (2020). Toxicity of azo dyes in pharmaceutical industry. IFMBE Proceedings,
73: 581-587.
15.
Mughal, E. U., Raja, Q. A., Alzahrani,
A. Y. A., Naeem, N., Sadiq, A., and Bozkurt, E. (2023). Pyrimidine-based azo
dyes: Synthesis, photophysical investigations, solvatochromism explorations and
anti-bacterial activity. Dyes and Pigments, 220(8): 111762.
16.
Wencewicz, T. A. (2019). Crossroads of
antibiotic resistance and biosynthesis. Journal of Molecular Biology,
431(18): 3370-3399.
17.
Biswal, D., Jha, A., & Sen, A.
(2021). Screening donor and acceptor groups for organic azo-based dyes for dye
sensitized solar cells. Journal of Molecular Structure, 1228: 129776.
18.
Oyetade, J. A., Machunda, R. L., and
Hilonga, A. (2022). Photocatalytic degradation of azo dyes in textile
wastewater by Polyaniline composite catalyst-a review. Scientific African,
17: e01305.
19.
Rodriguez, F., Jelken, J., Delpouve, N.,
Laurent, A., Garnier, B., Duvail, J. L., Lagugné-Labarthet, F., and Ishow, E.
(2021). Exploiting light interferences to generate micrometer-high
superstructures from monomeric azo materials with extensive orientational
mobility. Advanced Optical Materials, 9(19): 2100525.
20.
Yu, Q., Li, F., Yin, P., Pang, S.,
Staples, R. J., and Shreeve, J. M. (2021). Bridged and fused triazolic
energetic frameworks with an azo building block towards thermally stable and
applicable propellant ingredients. Journal of Materials Chemistry A, 9(44):
24903-24908.
21.
Saxena, A., and Gupta, S. (2020).
Bioefficacies of microbes for mitigation of azo dyes in textile industry
effluent: A review. BioResources, 15(4): 9858-9881.
22.
Kamoon, R. A., Jawad Al-Mudhafar, M. M.,
and Omar, T. N. A. (2020). Synthesis, characterization and antimicrobial
evaluation of new azo compounds derived from sulfonamides and isatin Schiff
base. International Journal of Drug Delivery Technology, 10(1): 150-155.
23.
Park, J., and Cheon, J. H. (2022).
Updates on conventional therapies for inflammatory bowel diseases:
5-aminosalicylates, corticosteroids, immunomodulators, and anti-TNF-α. Korean
Journal of Internal Medicine, 37(5): 895-905.
24.
Crouwel, F., Buiter, H. J. C., and De
Boer, N. K. (2021). Gut microbiota-driven drug metabolism in inflammatory bowel
disease. Journal of Crohn’s and Colitis, 15(2): 307-315.
25.
Otkur, W., Wang, J., Hou, T., Liu, F.,
Yang, R., Li, Y., Xiang, K., Pei, S., Qi, H., Lin, H., Zhou, H., Zhang, X.,
Piao, H. long, and Liang, X. (2023). Aminosalicylates target GPR35, partly
contributing to the prevention of DSS-induced colitis. European Journal of
Pharmacology, 949: 175719.
26.
Cerón-Carrasco, J. P., and Jacquemin, D.
(2021). Using theory to extend the scope of azobenzene drugs in chemotherapy:
Novel combinations for a specific delivery. ChemMedChem, 16(11): 1765-1775.
27.
O’Reilly, C., Mills, S., Rea, M. C.,
Lavelle, A., Ghosh, S., Hill, C., and Ross, R. P. (2023). Interplay between
inflammatory bowel disease therapeutics and the gut microbiome reveals
opportunities for novel treatment approaches. Microbiome Research Reports,
2(4): 35.
28.
Cheng, H. B., Zhang, S., Qi, J., Liang,
X. J., and Yoon, J. (2021). Advances in application of azobenzene as a trigger
in biomedicine: Molecular design and spontaneous assembly. Advanced
Materials, 33(26): 2007290.
29.
Kumar Trivedi, M., Branton, A., Trivedi,
D., Nayak, G., and Singh, R. (2015). Characterization of physical, thermal and
spectroscopic properties of biofield energy treated p-phenylenediamine
and p-toluidine. Journal of Environmental & Analytical Toxicology,
5(6): 1-10.
30.
Obasuyi, E., and Iyekowa, O. (2019).
Synthesis, characterization and antimicrobial of Schfiff Base from 5-Bromo –
Salicylaldehyde and p-toluidine. Journal of Applied Sciences and
Environmental Management, 22(11): 1733.
31.
Ngaini, Z., and Ho,
B. K. (2017). Synthesis and antibacterial activity of
azo and aspirin-azo derivatives. Malaysian Journal of Analytical Sciences,
21(5): 1183-1194.
32.
Ge, W., Cao, S., Shen, F., Wang, Y.,
Ren, J., and Wang, X. (2019). Rapid self-healing, stretchable, moldable,
antioxidant and antibacterial tannic acid-cellulose nanofibril composite
hydrogels. Carbohydrate Polymers, 224(7): 115147.
33.
Olszowy, M. (2019). What is responsible
for antioxidant properties of polyphenolic compounds from plants? Plant
Physiology and Biochemistry, 144: 135-143.
34.
Marinescu, M., Popa, C. V., Tănase,
M. A., Soare, A. C., Tablet, C., Bala, D., Cinteza, L. O., Diţu, L. M.,
Gifu, I. C., and Petcu, C. (2022). Synthesis, characterization, DFT study and
antifungal activities of some novel 2-(Phenyldiazenyl)phenol based azo dyes. Materials,
15(22): 8162.
35.
Ribeiro, A. I., Dias, A. M., and Zille,
A. (2022). Synergistic effects between metal nanoparticles and commercial
antimicrobial agents: A review. ACS Applied Nano Materials, 5(3):
3030-3064.
36.
Abd Halim, A. N., Mohammad Hussin, A.
S., Ngaini, Z., Zamakshshari, N. H., and Haron, I. Z. (2023). Synthesis,
antibacterial potential and in silico molecular docking analysis of triazene
compounds via diazo coupling reactions of an amine. Tetrahedron Letters,
132: 154803.
37.
Frías-Moreno, M. N., Parra-Quezada, R.
A., González-Aguilar, G., Ruíz-Canizales, J., Molina-Corral, F. J., Sepulveda,
D. R., Salas-Salazar, N., and Olivas, G. I. (2021). Quality, bioactive
compounds, antioxidant capacity, and enzymes of raspberries at different
maturity stages, effects of organic vs. conventional fertilization. Foods,
10(5): 953.
38.
Abd Halim, A. N., and Ngaini, Z. (2017).
Synthesis and characterization of halogenated bis(acylthiourea) derivatives and
their antibacterial activities. Phosphorus, Sulfur and Silicon and the
Related Elements, 192(9): 1012-1017.
39.
Muddassir, M., Raza, A., Munir, S.,
Basirat, A., Ahmed, M., Butt, M. S., Dar, O. A., Ahmed, S. S., Shamim, S., and
Naqvi, S. Z. H. (2022). Antibacterial efficacy of silver nanoparticles (AgNPs)
against metallo-β-lactamase and extended spectrum β-lactamase
producing clinically procured isolates of Pseudomonas aeruginosa. Scientific
Reports, 12(1): 1-16.
40.
Muddagoni, N., Bathula, R., Dasari, M., and
Potlapally, S. R. (2021). Homology modeling, virtual screening, prime-mmgbsa,
autodock-identification of inhibitors of fgr protein. Biointerface Research
in Applied Chemistry, 11(4): 11088-11103.
41.
Kumar, Ashutosh, and Zhang, K. Y. J.
(2013). Investigation on the effect of key water molecules on docking
performance in CSARdock exercise. Journal of Chemical Information and
Modeling, 53(8): 1880-1892.
42.
Owoloye, A. J.,
Ligali, F. C., Enejoh, O. A., Musa, A. Z., Aina, O., Idowu, E. T., and Oyebola,
K. M. (2022). Molecular docking, simulation and
binding free energy analysis of small molecules as Pf HT1 inhibitors. PLoS
ONE, 17(7): 1-18.
43.
Alogheli, H., Olanders, G., Schaal, W.,
Brandt, P., and Karlén, A. (2017). Docking of macrocycles: comparing rigid and
flexible docking in glide. Journal of Chemical Information and Modeling,
57(2): 190-202.
44.
Islam, A. U., Hadni, H., Ali, F.,
Abuzreda, A., and Kawsar, S. M. A. (2024). Synthesis, antimicrobial activity,
molecular docking, molecular dynamics simulation, and ADMET properties of the
mannopyranoside derivatives as antimicrobial agents. Journal of Taibah
University for Science, 18(1): 2327101.
45.
Smołka, S., and Krukiewicz, K.
(2023). Catalyst design through grafting of diazonium salts—A critical review
on catalyst stability. International Journal of Molecular Sciences,
24(16): 12575.
46.
Firth, J. D., and Fairlamb, I. J. S.
(2020). A need for caution in the preparation and application of synthetically
versatile aryl diazonium tetrafluoroborate salts. Organic Letters, 22(18):
7057-7059.
47.
Mitrović, A., Wild, S., Lloret, V.,
Fickert, M., Assebban, M., Márkus, B. G., Simon, F., Hauke, F., Abellán, G., and
Hirsch, A. (2021). Interface amorphization of two-dimensional black phosphorus
upon treatment with diazonium salts. Chemistry - A European Journal, 27(10):
3361-3366.
48.
Schotten, C., Leprevost, S. K., Yong, L.
M., Hughes, C. E., Harris, K. D. M., and Browne, D. L. (2020). Comparison of
the thermal stabilities of diazonium salts and their corresponding triazenes. Organic
Process Research and Development, 24(10): 2336-2341.
49.
Malík, I., Bukovský, M., Andriamainty,
F., and Gališinová, J. (2013). Antimicrobial effect of
para-alkoxyphenylcarbamic acid esters containing substituted N-phenylpiperazine
moiety. Brazilian Journal of Microbiology, 44: 457-463.
50.
Ngaini, Z.,
Rasin, F., Wan Zullkiplee, W. S. H., and Abd Halim, A. N. (2020). Synthesis and molecular design of mono aspirinate
thiourea-azo hybrid molecules as potential antibacterial agents. Phosphorus,
Sulfur and Silicon and the Related Elements, 196(3): 275-282.
51.
Ravi, B. N., J, K.,
M, M. N., Kumar, V., & Kandgal, S. (2020). Synthesis, characterization and pharmacological evaluation of
2-aminothiazole incorporated azo dyes. Journal of Molecular Structure,
1204: 127493.
52.
Bugakov, M., Boiko, N., Abramchuk, S.,
Zhu, X., and Shibaev, V. (2020). Azobenzene-containing liquid crystalline block
copolymer supramolecular complexes as a platform for photopatternable colorless
materials. Journal of Materials Chemistry C, 8(4): 1225-1230.
53.
He, S., Tang, M., Zhang, Z., Liu, H.,
Luo, M., and Sun, H. (2020). Hypoglycemic effects of phenolic compound-rich
aqueous extract from water dropwort (Oenanthe javanica DC.) on
streptozotocin-induced diabetic mice. New Journal of Chemistry, 44(14):
5190-5200.
54.
Liu, Y., Long, S., Zhang, S., Tan, Y.,
Wang, T., Wu, Y., Jiang, T., Liu, X., Peng, D., and Liu, Z. (2021). Synthesis
and antioxidant activities of berberine 9-O-benzoic acid derivatives. RSC
Advances, 11(29):17611-17621.
55.
Dey, K. K., and Ghosh, M. (2020).
Determination of chemical shift anisotropy tensor and molecular correlation
time of proton pump inhibitor omeprazole by solid state NMR measurements. New
Journal of Chemistry, 44(44): 19393-19403.
56.
Novakovic, M., Battistel, M. D.,
Azurmendi, H. F., Concilio, M. G., Freedberg, D. I., and Frydman, L. (2021).
The incorporation of labile protons into multidimensional NMR analyses: Glycan
structures revisited. Journal of the American Chemical Society, 143(23):
8935-8948.
57.
Cihang Yu. (2022). Exploring the
Properties of Selectively Fluorinated Janus Cyclohexane Rings. University
of St Andrews.
58.
Nizar, S. N. A. M., Ab Rahman, S. N. F.,
Zaini, M. F., Anizaim, A. H., Abdul Razak, I., and Arshad, S. (2020). The
photovoltaic performance of sensitizers for organic solar cells containing
fluorinated chalcones with different halogen substituents. Crystals,
11(11): 1357.
59.
Al-Salami, B. K., Hameed, A. J., and
Al-Rubaie, A. Z. (2021). Synthesis, antimicrobial, antioxidant and structural
studies of some new sulfa drug containing an azo-azomethine group. Egyptian
Journal of Chemistry, 64(2): 751-759.
60.
El-Lateef, H. M. A., El-Dabea, T.,
Khalaf, M. M., and Abu-Dief, A. M. (2023). Recent overview of potent
antioxidant activity of coordination compounds. Antioxidants, 12(2): 213.
61.
Al Zahrani, N. A., El-Shishtawy, R. M.,
Elaasser, M. M., and Asiri, A. M. (2020). Synthesis of novel chalcone-based
phenothiazine derivatives as antioxidant and anticancer agents. Molecules,
25(19): 1-15.
62.
Muğlu, H., Çavuş, M. S.,
Bakır, T. K., and Yakan, H. (2022). Synthesis of new
bis(thiosemicarbazone) derivatives and DFT analysis of antioxidant
characteristics in relation to HAT and SET reactions. Journal of the Indian
Chemical Society, 99(12), 100789.
63.
Setiawan, V., Phangestu, S., Grace
Soetikno, A., Arianti, A., and Kohar, I. (2021). Rapid screening analysis of
antioxidant activities in green tea products using DPPH and FRAP. Pharmaceutical
Journal of Indonesia, 7(1): 9-14.
64.
Peng, Z., Wang, G., Zeng, Q. H., Li, Y.,
Wu, Y., Liu, H., Wang, J. J., and Zhao, Y. (2021). Synthesis, antioxidant and
anti-tyrosinase activity of 1,2,4-triazole hydrazones as antibrowning agents. Food
Chemistry, 341: 128265.
65.
Alfieri, M. L., Moccia, F., D’errico,
G., Panzella, L., D’ischia, M., and Napolitano, A. (2020). Acid treatment
enhances the antioxidant activity of enzymatically synthesized phenolic
polymers. Polymers, 12(11): 2544.
66.
Parcheta, M., Świsłocka, R.,
Orzechowska, S., Akimowicz, M., Choińska, R., and Lewandowski, W. (2021).
Recent developments in effective antioxidants: The structure and antioxidant
properties. Materials, 14(8): 1984.
67.
Ingole, V. V.,
Mhaske, P. C., and Katade, S. R. (2022). Phytochemistry and pharmacological aspects of Tridax procumbens (L.): A
systematic and comprehensive review. Phytomedicine Plus, 2(1):
100199.
68.
Marchi, R. C., Campos, I. A. S.,
Santana, V. T., and Carlos, R. M. (2022). Chemical implications and
considerations on techniques used to assess the in vitro antioxidant activity
of coordination compounds. Coordination Chemistry Reviews, 451: 214275.
69.
Benzie, I. F. F., and Devaki, M. (2018).
The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic
antioxidant capacity: Concepts, procedures, limitations and applications. Measurement
of Antioxidant Activity and Capacity: Recent Trends and Applications, 77-106.
70.
Abdellatif, A. A. H., Alhathloul, S. S.,
Aljohani, A. S. M., Maswadeh, H., Abdallah, E. M., Hamid Musa, K., & El
Hamd, M. A. (2022). Green synthesis of silver nanoparticles incorporated
aromatherapies utilized for their antioxidant and antimicrobial activities
against some clinical bacterial isolates. Bioinorganic Chemistry and
Applications, 2022(1): 2432758.
71.
Gulcin, İ. (2020). Antioxidants and
antioxidant methods: An updated overview. Archives of Toxicology, 94(3):
651-715.
72.
Barcena, H. S., Chen, P., and Tuachi, A.
(2015). Synthetic anthocyanidins and their antioxidant properties. SpringerPlus,
4(1): 4–8.
73.
Shakir, R. M., Jasim, H. S., Saoud, S.
A., Hussain, D. F., and Ali, K. F. (2022). Synthesis, antioxidant,
antibacterial and docking structure of new dihydro-pyrimidine derivatives
containing multi phenol. Journal of Pharmaceutical Negative Results,
13(2): 57-68.
74.
Halim, A. N., Yeo, K. W., Zamakshshari,
N. H., Phornvillay, S., Ngaini, Z., and Diosing, D. N. (2024). Preparation, in
vitro and in silico antioxidant and antibacterial studies of
4-aminoacetanilide azo derivatives. Journal of the Indian Chemical Society,
101(11): 101341.
75.
Farmanzadeh, D., and Najafi, M. (2016).
Novel trolox derivatives as antioxidants: A DFT investigation. Journal of
the Serbian Chemical Society, 81(3): 277-290.
76.
Yang, J., Chen, J., Hao, Y., and Liu, Y.
(2021). Identification of the DPPH radical scavenging reaction adducts of
ferulic acid and sinapic acid and their structure-antioxidant activity
relationship. LWT, 146: 111411.
77.
Chen, J., Yang, J., Ma, L., Li, J.,
Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity
relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of
phenolic acids. Scientific Reports, 10(1): 2611.
78.
Witwit, I. N., and Al-Waili, M. K.
(2021). New azo ligand synthesis, characterization, and bacterial inhibition
investigation as a derivative of 4,5-diphenylimidazole with some transition
metal ions. International Journal of Drug Delivery Technology, 11(4): 1251-1257.
79.
Ahghari, M. R.,
Soltaninejad, V., and Maleki, A. (2020). Synthesis of nickel nanoparticles by a green and convenient method as a
magnetic mirror with antibacterial activities. Scientific Reports, 10(1):
1-10.
80.
Liew, S. K., Malagobadan, S., Arshad, N.
M., and Nagoor, N. H. (2020). A review of the structure—activity relationship
of natural and synthetic antimetastatic compounds. Biomolecules, 10(1): 138.
81.
Batovska, D.,
Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M., and Najdenski, H.
(2009). Examination of growth inhibitory
properties of synthetic chalcones for which antibacterial activity was
predicted. European Journal of Medicinal Chemistry, 44(5): 2211-2218.
82.
Moreno, L., Párraga, J., Galán, A.,
Cabedo, N., Primo, J., and Cortes, D. (2012). Synthesis of new antimicrobial
pyrrolo[2,1-a]isoquinolin-3-ones. Bioorganic and Medicinal Chemistry, 20(22):
6589-6597.
83.
Kosikowska, U.,
Wujec, M., Trotsko, N., Płonka, W., Paneth, P., & Paneth, A. (2021). Antibacterial activity of fluorobenzoylthiosemicarbazides and
their cyclic analogues with 1,2,4-triazole scaffold. Molecules, 26(1):
170.
84.
Domínguez, A. V., Algaba, R. A.,
Canturri, A. M., Villodres, Á. R., and Smani, Y. (2020). Antibacterial activity
of colloidal silver against gram-negative and gram-positive bacteria. Antibiotics,
9(1): 36.
85.
Pohan, J., and Rahmawati, F. (2022). The
effect of mangosteen pericarp (Garcinia mangostana Linn) extract on
inhibits the growth of bacteria Escherichia coli ATCC 25922 and bacteria
Staphylococcus aureus ATCC 25923. International Journal of Research
in Pharmacy and Pharmaceutical Sciences, 7(2): 29-38.
86.
Luo, Z., Yue, S., Chen, T., She, P., Wu,
Y., and Wu, Y. (2020). Reduced growth of Staphylococcus aureus under
high glucose conditions is associated with decreased pentaglycine expression. Frontiers
in Microbiology, 11: 537290.
87.
Ortega-Buitrago, O., Chaves-Bedoya, G., and
Ortiz-Rojas, L. Y. (2021). Chemical composition and antimicrobial activity of
ethanolic bark and leave extract of Zanthoxylum Caribaeum Lam. from Norte de
Santander, Colombia. Revista de Chimie, 72(4): 152-161.
88.
Sinsinwar, S., and Vadivel, V. (2020).
Catechin isolated from cashew nut shell exhibits antibacterial activity against
clinical isolates of MRSA through ROS-mediated oxidative stress. Applied
Microbiology and Biotechnology, 104: 8279-8297.
89.
Juariah, S., Bakar, F. I. A., Bakar, M.
F. A., and Endrini, S. (2023). Antibacterial potential of Curcuma caesia
Roxb ethanol extract against nosocomial infections. Bali Medical Journal,
12(2): 1959-1963.
90.
Kowalska-Krochmal, B., and Dudek-Wicher,
R. (2021). The minimum inhibitory concentration of antibiotics: Methods,
interpretation, clinical relevance. Pathogens, 10(2): 165.
91.
Li, J., Rao, X., Shang, S., Gao, Y.,
& Song, J. (2012). Synthesis and antibacterial activity of amide
derivatives from acrylopimaric acid. BioResources, 7(2): 1961-1971.
92.
Malladi, S., Nadh, R. V., Babu, K. S., and
Babu, P. S. (2017). Synthesis and antibacterial activity studies of 2,4-di
substituted furan derivatives. Beni-Suef University Journal of Basic and
Applied Sciences, 6(4): 345-353.
93.
Mardirossian, M., Rubini, M., Adamo, M.
F. A., Scocchi, M., Saviano, M., Tossi, A., Gennaro, R., and Caporale, A.
(2021). Natural and synthetic halogenated amino acids—structural and bioactive
features in antimicrobial peptides and peptidomimetics. Molecules,
26(23): 7401.
94.
Al-Wahaibi, L. H., Alagappan, K.,
Gomila, R. M., Blacque, O., Frontera, A., Percino, M. J., El-Emam, A. A., and
Thamotharan, S. (2023). A combined crystallographic and theoretical
investigation of noncovalent interactions in
1,3,4-oxadiazole-2-thione-N-Mannich derivatives: In vitro bioactivity and
molecular docking. RSC Advances, 13(48): 34064-34077.
95.
Cañete-Molina, Á., Espinosa-Bustos, C.,
González-Castro, M., Faúndez, M., Mella, J., Tapia, R. A., Cabrera, A. R.,
Brito, I., Aguirre, A., and Salas, C. O. (2018). Bromination-a versatile tool
for drugs optimization. The Medical-Surgical Journal, 122(3): 614-626.
96.
Kanwal, Khan, K. M., Chigurupati, S.,
Ali, F., Younus, M., Aldubayan, M., Wadood, A., Khan, H., Taha, M., and
Perveen, S. (2021). Indole-3-acetamides: As potential antihyperglycemic and
antioxidant agents; synthesis, in vitro α-amylase inhibitory
activity, structure-activity relationship, and in silico studies. ACS
Omega, 6(3): 2264-2275.
97.
Olchowik-Grabarek, E., Sękowski,
S., Kwiatek, A., Płaczkiewicz, J., Abdulladjanova, N., Shlyonsky, V.,
Swiecicka, I., and Zamaraeva, M. (2022). The structural changes in the
membranes of Staphylococcus aureus caused by hydrolysable tannins
witness their antibacterial activity. Membranes, 12: 1124.
98.
Das, A., Das, A., and Banik, B. K.
(2021). Influence of dipole moments on the medicinal activities of diverse
organic compounds. Journal of the Indian Chemical Society, 98(2):
100005.
99.
Kuzey, N. G., Özgür, M., Cemaloğlu,
R., Asmafiliz, N., Kılıç, Z., Açık, L., Aydın, B., and
Hökelek, T. (2020). Mono- and dispirocyclotriphosphazenes containing
4-bromobenzyl pendant arm(s): Synthesis, spectroscopy, crystallography and
biological activity studies. Journal of Molecular Structure, 1220:
128658.
100.
Rashdan, H. R. M., Shehadi, I. A., and
Abdelrahman, M. T. (2021). Antibacterial activities and molecular docking of
novel sulfone biscompound containing bioactive 1,2,3-triazole moiety. Molecules,
26(16): 4817.
101.
Kumar, Ankit, Singh, P., Singh, E.,
Jain, M., Muthukumaran, J., and Singh, A. K. (2024). In silico
strategies for identifying therapeutic candidates against Acinetobacter
baumannii: Spotlight on the UDP-N-acetylmuramoyl-L-alanine-D-gluta mate:meso-diaminopimelate ligase (MurE). Journal
of Biomolecular Structure and Dynamics, 1-15.
102.
Aragaw, W. W., Negatu, D. A., Bungard,
C. J., Dartois, V. A., Marrouni, A. El, Elliott, B., Olsen, D. B., Warrass, R.,
and Dick, T. (2024). Pharmacological validation of dihydrofolate reductase
as a drugtarget in Mycobacterium abscessus. 68(1): e00717-23.
103.
Muzaffar-Ur-Rehman, M., Suryakant, C.
K., Chandu, A., Kumar, B. K., Joshi, R. P., Jadav, S. R., Sankaranarayanan, M.,
and Vasan, S. S. (2024). Molecular docking and dynamics identify potential
drugs to be repurposed as SARS-CoV-2 inhibitors. Journal of Computational
Biophysics and Chemistry, 1-23.
104.
Shawon, J., Khan, A. M., Shahriar, I.,
& Halim, M. A. (2021). Improving the binding affinity and interaction of
5-Pentyl-2-Phenoxyphenol against Mycobacterium Enoyl ACP reductase by
computational approach. Informatics in Medicine Unlocked, 23: 100528.
105.
Kortemme, T., Morozov, A. V., and Baker,
D. (2003). An orientation-dependent hydrogen bonding potential improves
prediction of specificity and structure for proteins and protein-protein
complexes. Journal of Molecular Biology, 326(4): 1239-1259.
106.
Chen, D., Oezguen, N., Urvil, P.,
Ferguson, C., Dann, S. M., and Savidge, T. C. (2016). Regulation of
protein-ligand binding affinity by hydrogen bond pairing. Science Advances,
2(3): e1501240.
107.
Kamel, M. S., Belal, A., Aboelez, M. O.,
Shokr, E. K., Abdel-Ghany, H., Mansour, H. S., Shawky, A. M., and El-Remaily,
M. A. E. A. A. A. (2022). Microwave-assisted synthesis, biological activity
evaluation, molecular docking, and ADMET studies of some novel pyrrolo [2,3-b]
pyrrole derivatives. Molecules, 27(7): 2061.
108.
Hanee, U., Rahman,
M. R., and Matin, M. M. (2021). Synthesis, PASS,
in silico ADMET and thermodynamic studies of some galactopyranoside
esters. Physical Chemistry Research, 9(4): 591-603.
109.
dos Santos, K. L., Marques, D. S. C.,
Jacob, I. T., da Silva, P. R., Machado, D. C., Souza, T. R. C. L., de Oliveira,
J. F., Almeida, S. M. V., Filho, I. J. da C., and de Lima, M. do C. A. (2024). In
silico prediction of ADMET parameters and in vitro evaluation of
antioxidant and cytotoxic activities promoted by indole-thiosemicarbazone
compounds. Anais Da Academia Brasileira de Ciencias, 96(3):
e20230811.
110.
Ito, J., Lemus, H.,
& Wu, T. (2023). Serum phosphorus, serum bicarbonate, and
renal function in relation to liver CYP1A2 activity. Diagnostics, 13(18):
2996.
111.
de Jong, L. M., Boussallami, S.,
Sánchez-López, E., Giera, M., Tushuizen, M. E., Hoekstra, M., Hawinkels, L. J.
A. C., Rissmann, R., Swen, J. J., and Manson, M. L. (2023). The impact of
CYP2C19 genotype on phenoconversion by concomitant medication. Frontiers in
Pharmacology, 14: 1201906.
112.
Zhou, Y.,
Nevosadová, L., Eliasson, E., and Lauschke, V. M. (2023). Global distribution of functionally important CYP2C9 alleles
and their inferred metabolic consequences. Human Genomics, 17(1): 15.
113.
Daina, A., Michielin, O., and Zoete, V.
(2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness
and medicinal chemistry friendliness of small molecules. Scientific Reports,
7(1): 42717.
114.
Chalkha, M., Nour, H., Chebbac, K.,
Nakkabi, A., Bahsis, L., Bakhouch, M., Akhazzane, M., Bourass, M., Chtita, S.,
Bin Jardan, Y. A., Augustyniak, M., Bourhia, M., Aboul-Soud, M. A. M., and El
Yazidi, M. (2022). Synthesis, characterization, DFT mechanistic study,
antimicrobial activity, molecular modeling, and ADMET properties of novel
pyrazole-isoxazoline hybrids. ACS Omega, 7(50): 46731-46744.
115.
Çapan, İ., Hawash, M., Jaradat, N.,
Sert, Y., Servi, R., and Koca, İ. (2023). Design, synthesis, molecular
docking and biological evaluation of new carbazole derivatives as anticancer,
and antioxidant agents. BMC Chemistry, 17(1): 60.
116.
Olaokun, O. O., and Zubair, M. S.
(2023). Antidiabetic activity, molecular docking, and ADMET properties of
compounds isolated from bioactive ethyl acetate fraction of ficus lutea leaf
extract. Molecules, 28(23): 7717.
117.
Klimoszek, D., Jeleń, M.,
Dołowy, M., & Morak-Młodawska, B. (2024). Study of the
lipophilicity and ADMET parameters of new anticancer diquinothiazines with
pharmacophore substituents. Pharmaceutic als, 17(6): 725.