Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1333

 

Research Article

 

Synthesis, biological evaluation and molecular docking analysis of p-tolyldiazenyl azo derivatives

 

Kai Wei Yeo1, Ainaa Nadiah Abd Halim1*, Nor Hisam Zamakshshari1, Surisa Phornvillay1, Zainab Ngaini1, Davlye Noissy Diosing1, Akshatha Handattu Shankaranarayana2, and B. R. Prashantha Kumar2

 

1Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

2Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Sri Shivarathreeshwara Nagar, Mysuru- 570015, India

 

*Corresponding author: ahanadiah@unimas.my

 

Received: 29 August 2024; Revised: 19 November 2024; Accepted: 3 December 2024; Published: 27 June 2025

 

Abstract

Impacts of multiresistant bacteria such as Staphylococcus aureus and Escherichia coli have initiated active research of new effective drugs. Herein, new p-tolyldiazenyl azo derivatives 1-13 were successfully synthesized through a well-established diazo coupling reaction of p-toluidine with substituted phenol at ortho, meta and para positions. The series was obtained in a moderate yield of 58% – 79% and structural elucidation was done using FTIR and NMR spectroscopies. The antioxidant ability of the compounds 1-13 evaluated by 2,2’-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay outlined a potential activity with IC50 of 26 – 188 ppm and 12.29 – 182.73 mg/mL Trolox equivalent, respectively. Moreover, the antibacterial activity of the compounds assessed via the Kirby-Bauer disc diffusion method against S.aureus and E.coli show moderate to good inhibition zone of 7.04±0.50 mm to 17.46±0.50 mm as compared to standard ampicillin (19.29±0.33 mm). Determination of minimum inhibitory concentration (MIC) through a turbidimetric method towards similar bacteria strains, gave a MIC values of 84 – 178 ppm (S.aureus) and 112 – 194 ppm (E.coli) with compound 3 (m-F) (84.37 ppm) and 9 (m-Br) (112.40 ppm) are better than ampicillin which the MIC were 97.70 ppm and 112.92 ppm for S.aureus and E.coli respectively. The molecular docking analysis towards MurE and DHFR enzymes reveals that the hydrogen bonding, hydrophobic and electrostatic interactions with amino acid in the vicinity are the major contributions to the activities. This study is important in discovering a potentially new candidate for combating emerging infections.

 

Keywords: diazotisation, C-coupling, antioxidant, antibacterial, MIC



References

1.        Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., and Alqumber, M. A. A. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11(13): 1946.

2.         Vidovic, N., and Vidovic, S. (2020). Antimicrobial resistance and food animals: Influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics, 9(2): 52.

3.         Samreen, Ahmad, I., Malak, H. A., and Abulreesh, H. H. (2021). Environmental antimicrobial resistance and its drivers: A potential threat to public health. Journal of Global Antimicrobial Resistance, 27: 101-111.

4.         Wilson, D. N., Hauryliuk, V., Atkinson, G. C., and O’Neill, A. J. (2020). Target protection as a key antibiotic resistance mechanism. Nature Reviews Microbiology, 18(11): 637-648.

5.         Hasan, T. H., and Al-Harmoosh, R. A. (2020). Mechanisms of antibiotics resistance in bacteria. Systematic Reviews in Pharmacy, 11(6): 817-823.

6.         Chen, H., Yang, J., Huang, C., Chen, C., and Chen, Y. (2024). Antibacterial activities of functional groups on the benzene rings in nucleic acid nanocarriers. Materials Today Chemistry, 2024: 4692043.

7.         Kobisy, A. S., Nassar, H. N., Tawfik, S. M., Elshatoury, E. H., and Aiad, I. (2021). Mitigation of eco-unfriendly and costly microbial induced corrosion using novel synthesized Schiff base cationic surfactants. Journal of Chemical Technology and Biotechnology, 96(4): 941-952.

8.         Joydeep, G., and Lavanya, L. M. (2023). Inhibition of microbial corrosion by green inhibitors: An overview. Iranian Journal of Chemistry and Chemical Engineering, 42(2): 684-703.

9.         Rao, P., and Mulky, L. (2023). Microbially influenced corrosion and its control measures: A critical review. Journal of Bio- and Tribo-Corrosion, 9(3): 57.

10.       Mezgebe, K., and Mulugeta, E. (2022). Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: A review. RSC Advances, 12(40): 25932-25946.

11.       Dong, L., Chen, Y., Zhai, F., Tang, L., Gao, W., Tang, J., Feng, Y., and Feng, W. (2020). Azobenzene-based solar thermal energy storage enhanced by gold nanoparticles for rapid, optically-triggered heat release at room temperature. Journal of Materials Chemistry A, 8(36): 18668-18676.

12.       Bukia, T., Utiashvili, M., Tsiskarishvili, M., Jalalishvili, S., Gogolashvili, A., Tatrishvili, T., and Petriashvili, G. (2023). Synthesis of some azo dyes based on 2,3,3-Trimethyl-3H-Indolenine. Chemistry and Chemical Technology, 17(3): 549-556.

13.       Tahir, T., Shahzad, M. I., Tabassum, R., Rafiq, M., Ashfaq, M., Hassan, M., Kotwica-Mojzych, K., and Mojzych, M. (2021). Diaryl azo derivatives as anti-diabetic and antimicrobial agents: Synthesis, in vitro, kinetic and docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1): 1508-1519.

14.       Gičević, A., Hindija, L., & Karačić, A. (2020). Toxicity of azo dyes in pharmaceutical industry. IFMBE Proceedings, 73: 581-587.

15.       Mughal, E. U., Raja, Q. A., Alzahrani, A. Y. A., Naeem, N., Sadiq, A., and Bozkurt, E. (2023). Pyrimidine-based azo dyes: Synthesis, photophysical investigations, solvatochromism explorations and anti-bacterial activity. Dyes and Pigments, 220(8): 111762.

16.       Wencewicz, T. A. (2019). Crossroads of antibiotic resistance and biosynthesis. Journal of Molecular Biology, 431(18): 3370-3399.

17.       Biswal, D., Jha, A., & Sen, A. (2021). Screening donor and acceptor groups for organic azo-based dyes for dye sensitized solar cells. Journal of Molecular Structure, 1228: 129776.

18.       Oyetade, J. A., Machunda, R. L., and Hilonga, A. (2022). Photocatalytic degradation of azo dyes in textile wastewater by Polyaniline composite catalyst-a review. Scientific African, 17: e01305.

19.       Rodriguez, F., Jelken, J., Delpouve, N., Laurent, A., Garnier, B., Duvail, J. L., Lagugné-Labarthet, F., and Ishow, E. (2021). Exploiting light interferences to generate micrometer-high superstructures from monomeric azo materials with extensive orientational mobility. Advanced Optical Materials, 9(19): 2100525.

20.       Yu, Q., Li, F., Yin, P., Pang, S., Staples, R. J., and Shreeve, J. M. (2021). Bridged and fused triazolic energetic frameworks with an azo building block towards thermally stable and applicable propellant ingredients. Journal of Materials Chemistry A, 9(44): 24903-24908.

21.       Saxena, A., and Gupta, S. (2020). Bioefficacies of microbes for mitigation of azo dyes in textile industry effluent: A review. BioResources, 15(4): 9858-9881.

22.       Kamoon, R. A., Jawad Al-Mudhafar, M. M., and Omar, T. N. A. (2020). Synthesis, characterization and antimicrobial evaluation of new azo compounds derived from sulfonamides and isatin Schiff base. International Journal of Drug Delivery Technology, 10(1): 150-155.

23.       Park, J., and Cheon, J. H. (2022). Updates on conventional therapies for inflammatory bowel diseases: 5-aminosalicylates, corticosteroids, immunomodulators, and anti-TNF-α. Korean Journal of Internal Medicine, 37(5): 895-905.

24.       Crouwel, F., Buiter, H. J. C., and De Boer, N. K. (2021). Gut microbiota-driven drug metabolism in inflammatory bowel disease. Journal of Crohn’s and Colitis, 15(2): 307-315.

25.       Otkur, W., Wang, J., Hou, T., Liu, F., Yang, R., Li, Y., Xiang, K., Pei, S., Qi, H., Lin, H., Zhou, H., Zhang, X., Piao, H. long, and Liang, X. (2023). Aminosalicylates target GPR35, partly contributing to the prevention of DSS-induced colitis. European Journal of Pharmacology, 949: 175719.

26.       Cerón-Carrasco, J. P., and Jacquemin, D. (2021). Using theory to extend the scope of azobenzene drugs in chemotherapy: Novel combinations for a specific delivery. ChemMedChem, 16(11): 1765-1775.

27.       O’Reilly, C., Mills, S., Rea, M. C., Lavelle, A., Ghosh, S., Hill, C., and Ross, R. P. (2023). Interplay between inflammatory bowel disease therapeutics and the gut microbiome reveals opportunities for novel treatment approaches. Microbiome Research Reports, 2(4): 35.

28.       Cheng, H. B., Zhang, S., Qi, J., Liang, X. J., and Yoon, J. (2021). Advances in application of azobenzene as a trigger in biomedicine: Molecular design and spontaneous assembly. Advanced Materials, 33(26): 2007290.

29.       Kumar Trivedi, M., Branton, A., Trivedi, D., Nayak, G., and Singh, R. (2015). Characterization of physical, thermal and spectroscopic properties of biofield energy treated p-phenylenediamine and p-toluidine. Journal of Environmental & Analytical Toxicology, 5(6): 1-10.

30.       Obasuyi, E., and Iyekowa, O. (2019). Synthesis, characterization and antimicrobial of Schfiff Base from 5-Bromo – Salicylaldehyde and p-toluidine. Journal of Applied Sciences and Environmental Management, 22(11): 1733.

31.       Ngaini, Z., and Ho, B. K. (2017). Synthesis and antibacterial activity of azo and aspirin-azo derivatives. Malaysian Journal of Analytical Sciences, 21(5): 1183-1194.

32.       Ge, W., Cao, S., Shen, F., Wang, Y., Ren, J., and Wang, X. (2019). Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels. Carbohydrate Polymers, 224(7): 115147.

33.       Olszowy, M. (2019). What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry, 144: 135-143.

34.       Marinescu, M., Popa, C. V., Tănase, M. A., Soare, A. C., Tablet, C., Bala, D., Cinteza, L. O., Diţu, L. M., Gifu, I. C., and Petcu, C. (2022). Synthesis, characterization, DFT study and antifungal activities of some novel 2-(Phenyldiazenyl)phenol based azo dyes. Materials, 15(22): 8162.

35.       Ribeiro, A. I., Dias, A. M., and Zille, A. (2022). Synergistic effects between metal nanoparticles and commercial antimicrobial agents: A review. ACS Applied Nano Materials, 5(3): 3030-3064.

36.       Abd Halim, A. N., Mohammad Hussin, A. S., Ngaini, Z., Zamakshshari, N. H., and Haron, I. Z. (2023). Synthesis, antibacterial potential and in silico molecular docking analysis of triazene compounds via diazo coupling reactions of an amine. Tetrahedron Letters, 132: 154803.

37.       Frías-Moreno, M. N., Parra-Quezada, R. A., González-Aguilar, G., Ruíz-Canizales, J., Molina-Corral, F. J., Sepulveda, D. R., Salas-Salazar, N., and Olivas, G. I. (2021). Quality, bioactive compounds, antioxidant capacity, and enzymes of raspberries at different maturity stages, effects of organic vs. conventional fertilization. Foods, 10(5): 953.

38.       Abd Halim, A. N., and Ngaini, Z. (2017). Synthesis and characterization of halogenated bis(acylthiourea) derivatives and their antibacterial activities. Phosphorus, Sulfur and Silicon and the Related Elements, 192(9): 1012-1017.

39.       Muddassir, M., Raza, A., Munir, S., Basirat, A., Ahmed, M., Butt, M. S., Dar, O. A., Ahmed, S. S., Shamim, S., and Naqvi, S. Z. H. (2022). Antibacterial efficacy of silver nanoparticles (AgNPs) against metallo-β-lactamase and extended spectrum β-lactamase producing clinically procured isolates of Pseudomonas aeruginosa. Scientific Reports, 12(1): 1-16.

40.       Muddagoni, N., Bathula, R., Dasari, M., and Potlapally, S. R. (2021). Homology modeling, virtual screening, prime-mmgbsa, autodock-identification of inhibitors of fgr protein. Biointerface Research in Applied Chemistry, 11(4): 11088-11103.

41.       Kumar, Ashutosh, and Zhang, K. Y. J. (2013). Investigation on the effect of key water molecules on docking performance in CSARdock exercise. Journal of Chemical Information and Modeling, 53(8): 1880-1892.

42.       Owoloye, A. J., Ligali, F. C., Enejoh, O. A., Musa, A. Z., Aina, O., Idowu, E. T., and Oyebola, K. M. (2022). Molecular docking, simulation and binding free energy analysis of small molecules as Pf HT1 inhibitors. PLoS ONE, 17(7): 1-18.

43.       Alogheli, H., Olanders, G., Schaal, W., Brandt, P., and Karlén, A. (2017). Docking of macrocycles: comparing rigid and flexible docking in glide. Journal of Chemical Information and Modeling, 57(2): 190-202.

44.       Islam, A. U., Hadni, H., Ali, F., Abuzreda, A., and Kawsar, S. M. A. (2024). Synthesis, antimicrobial activity, molecular docking, molecular dynamics simulation, and ADMET properties of the mannopyranoside derivatives as antimicrobial agents. Journal of Taibah University for Science, 18(1): 2327101.

45.       Smołka, S., and Krukiewicz, K. (2023). Catalyst design through grafting of diazonium salts—A critical review on catalyst stability. International Journal of Molecular Sciences, 24(16): 12575.

46.       Firth, J. D., and Fairlamb, I. J. S. (2020). A need for caution in the preparation and application of synthetically versatile aryl diazonium tetrafluoroborate salts. Organic Letters, 22(18): 7057-7059.

47.       Mitrović, A., Wild, S., Lloret, V., Fickert, M., Assebban, M., Márkus, B. G., Simon, F., Hauke, F., Abellán, G., and Hirsch, A. (2021). Interface amorphization of two-dimensional black phosphorus upon treatment with diazonium salts. Chemistry - A European Journal, 27(10): 3361-3366.

48.       Schotten, C., Leprevost, S. K., Yong, L. M., Hughes, C. E., Harris, K. D. M., and Browne, D. L. (2020). Comparison of the thermal stabilities of diazonium salts and their corresponding triazenes. Organic Process Research and Development, 24(10): 2336-2341.

49.       Malík, I., Bukovský, M., Andriamainty, F., and Gališinová, J. (2013). Antimicrobial effect of para-alkoxyphenylcarbamic acid esters containing substituted N-phenylpiperazine moiety. Brazilian Journal of Microbiology, 44: 457-463.

50.       Ngaini, Z., Rasin, F., Wan Zullkiplee, W. S. H., and Abd Halim, A. N. (2020). Synthesis and molecular design of mono aspirinate thiourea-azo hybrid molecules as potential antibacterial agents. Phosphorus, Sulfur and Silicon and the Related Elements, 196(3): 275-282.

51.       Ravi, B. N., J, K., M, M. N., Kumar, V., & Kandgal, S. (2020). Synthesis, characterization and pharmacological evaluation of 2-aminothiazole incorporated azo dyes. Journal of Molecular Structure, 1204: 127493.

52.       Bugakov, M., Boiko, N., Abramchuk, S., Zhu, X., and Shibaev, V. (2020). Azobenzene-containing liquid crystalline block copolymer supramolecular complexes as a platform for photopatternable colorless materials. Journal of Materials Chemistry C, 8(4): 1225-1230.

53.       He, S., Tang, M., Zhang, Z., Liu, H., Luo, M., and Sun, H. (2020). Hypoglycemic effects of phenolic compound-rich aqueous extract from water dropwort (Oenanthe javanica DC.) on streptozotocin-induced diabetic mice. New Journal of Chemistry, 44(14): 5190-5200.

54.       Liu, Y., Long, S., Zhang, S., Tan, Y., Wang, T., Wu, Y., Jiang, T., Liu, X., Peng, D., and Liu, Z. (2021). Synthesis and antioxidant activities of berberine 9-O-benzoic acid derivatives. RSC Advances, 11(29):17611-17621.

55.       Dey, K. K., and Ghosh, M. (2020). Determination of chemical shift anisotropy tensor and molecular correlation time of proton pump inhibitor omeprazole by solid state NMR measurements. New Journal of Chemistry, 44(44): 19393-19403.

56.       Novakovic, M., Battistel, M. D., Azurmendi, H. F., Concilio, M. G., Freedberg, D. I., and Frydman, L. (2021). The incorporation of labile protons into multidimensional NMR analyses: Glycan structures revisited. Journal of the American Chemical Society, 143(23): 8935-8948.

57.       Cihang Yu. (2022). Exploring the Properties of Selectively Fluorinated Janus Cyclohexane Rings. University of St Andrews.

58.       Nizar, S. N. A. M., Ab Rahman, S. N. F., Zaini, M. F., Anizaim, A. H., Abdul Razak, I., and Arshad, S. (2020). The photovoltaic performance of sensitizers for organic solar cells containing fluorinated chalcones with different halogen substituents. Crystals, 11(11): 1357.

59.       Al-Salami, B. K., Hameed, A. J., and Al-Rubaie, A. Z. (2021). Synthesis, antimicrobial, antioxidant and structural studies of some new sulfa drug containing an azo-azomethine group. Egyptian Journal of Chemistry, 64(2): 751-759.

60.       El-Lateef, H. M. A., El-Dabea, T., Khalaf, M. M., and Abu-Dief, A. M. (2023). Recent overview of potent antioxidant activity of coordination compounds. Antioxidants, 12(2): 213.

61.       Al Zahrani, N. A., El-Shishtawy, R. M., Elaasser, M. M., and Asiri, A. M. (2020). Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents. Molecules, 25(19): 1-15.

62.       Muğlu, H., Çavuş, M. S., Bakır, T. K., and Yakan, H. (2022). Synthesis of new bis(thiosemicarbazone) derivatives and DFT analysis of antioxidant characteristics in relation to HAT and SET reactions. Journal of the Indian Chemical Society, 99(12), 100789.

63.       Setiawan, V., Phangestu, S., Grace Soetikno, A., Arianti, A., and Kohar, I. (2021). Rapid screening analysis of antioxidant activities in green tea products using DPPH and FRAP. Pharmaceutical Journal of Indonesia, 7(1): 9-14.

64.       Peng, Z., Wang, G., Zeng, Q. H., Li, Y., Wu, Y., Liu, H., Wang, J. J., and Zhao, Y. (2021). Synthesis, antioxidant and anti-tyrosinase activity of 1,2,4-triazole hydrazones as antibrowning agents. Food Chemistry, 341: 128265.

65.       Alfieri, M. L., Moccia, F., D’errico, G., Panzella, L., D’ischia, M., and Napolitano, A. (2020). Acid treatment enhances the antioxidant activity of enzymatically synthesized phenolic polymers. Polymers, 12(11): 2544.

66.       Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., and Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8): 1984.

67.       Ingole, V. V., Mhaske, P. C., and Katade, S. R. (2022). Phytochemistry and pharmacological aspects of Tridax procumbens (L.): A systematic and comprehensive review. Phytomedicine Plus, 2(1): 100199.

68.       Marchi, R. C., Campos, I. A. S., Santana, V. T., and Carlos, R. M. (2022). Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coordination Chemistry Reviews, 451: 214275.

69.       Benzie, I. F. F., and Devaki, M. (2018). The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications, 77-106.

70.       Abdellatif, A. A. H., Alhathloul, S. S., Aljohani, A. S. M., Maswadeh, H., Abdallah, E. M., Hamid Musa, K., & El Hamd, M. A. (2022). Green synthesis of silver nanoparticles incorporated aromatherapies utilized for their antioxidant and antimicrobial activities against some clinical bacterial isolates. Bioinorganic Chemistry and Applications, 2022(1): 2432758.

71.       Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3): 651-715.

72.       Barcena, H. S., Chen, P., and Tuachi, A. (2015). Synthetic anthocyanidins and their antioxidant properties. SpringerPlus, 4(1): 4–8.

73.       Shakir, R. M., Jasim, H. S., Saoud, S. A., Hussain, D. F., and Ali, K. F. (2022). Synthesis, antioxidant, antibacterial and docking structure of new dihydro-pyrimidine derivatives containing multi phenol. Journal of Pharmaceutical Negative Results, 13(2): 57-68.

74.       Halim, A. N., Yeo, K. W., Zamakshshari, N. H., Phornvillay, S., Ngaini, Z., and Diosing, D. N. (2024). Preparation, in vitro and in silico antioxidant and antibacterial studies of 4-aminoacetanilide azo derivatives. Journal of the Indian Chemical Society, 101(11): 101341.

75.       Farmanzadeh, D., and Najafi, M. (2016). Novel trolox derivatives as antioxidants: A DFT investigation. Journal of the Serbian Chemical Society, 81(3): 277-290.

76.       Yang, J., Chen, J., Hao, Y., and Liu, Y. (2021). Identification of the DPPH radical scavenging reaction adducts of ferulic acid and sinapic acid and their structure-antioxidant activity relationship. LWT, 146: 111411.

77.       Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1): 2611.

78.       Witwit, I. N., and Al-Waili, M. K. (2021). New azo ligand synthesis, characterization, and bacterial inhibition investigation as a derivative of 4,5-diphenylimidazole with some transition metal ions. International Journal of Drug Delivery Technology, 11(4): 1251-1257.

79.       Ahghari, M. R., Soltaninejad, V., and Maleki, A. (2020). Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Scientific Reports, 10(1): 1-10.

80.       Liew, S. K., Malagobadan, S., Arshad, N. M., and Nagoor, N. H. (2020). A review of the structure—activity relationship of natural and synthetic antimetastatic compounds. Biomolecules, 10(1): 138.

81.       Batovska, D., Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M., and Najdenski, H. (2009). Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. European Journal of Medicinal Chemistry, 44(5): 2211-2218.

82.       Moreno, L., Párraga, J., Galán, A., Cabedo, N., Primo, J., and Cortes, D. (2012). Synthesis of new antimicrobial pyrrolo[2,1-a]isoquinolin-3-ones. Bioorganic and Medicinal Chemistry, 20(22): 6589-6597.

83.       Kosikowska, U., Wujec, M., Trotsko, N., Płonka, W., Paneth, P., & Paneth, A. (2021). Antibacterial activity of fluorobenzoylthiosemicarbazides and their cyclic analogues with 1,2,4-triazole scaffold. Molecules, 26(1): 170.

84.       Domínguez, A. V., Algaba, R. A., Canturri, A. M., Villodres, Á. R., and Smani, Y. (2020). Antibacterial activity of colloidal silver against gram-negative and gram-positive bacteria. Antibiotics, 9(1): 36.

85.       Pohan, J., and Rahmawati, F. (2022). The effect of mangosteen pericarp (Garcinia mangostana Linn) extract on inhibits the growth of bacteria Escherichia coli ATCC 25922 and bacteria Staphylococcus aureus ATCC 25923. International Journal of Research in Pharmacy and Pharmaceutical Sciences, 7(2): 29-38.

86.       Luo, Z., Yue, S., Chen, T., She, P., Wu, Y., and Wu, Y. (2020). Reduced growth of Staphylococcus aureus under high glucose conditions is associated with decreased pentaglycine expression. Frontiers in Microbiology, 11: 537290.

87.       Ortega-Buitrago, O., Chaves-Bedoya, G., and Ortiz-Rojas, L. Y. (2021). Chemical composition and antimicrobial activity of ethanolic bark and leave extract of Zanthoxylum Caribaeum Lam. from Norte de Santander, Colombia. Revista de Chimie, 72(4): 152-161.

88.       Sinsinwar, S., and Vadivel, V. (2020). Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress. Applied Microbiology and Biotechnology, 104: 8279-8297.

89.       Juariah, S., Bakar, F. I. A., Bakar, M. F. A., and Endrini, S. (2023). Antibacterial potential of Curcuma caesia Roxb ethanol extract against nosocomial infections. Bali Medical Journal, 12(2): 1959-1963.

90.       Kowalska-Krochmal, B., and Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10(2): 165.

91.       Li, J., Rao, X., Shang, S., Gao, Y., & Song, J. (2012). Synthesis and antibacterial activity of amide derivatives from acrylopimaric acid. BioResources, 7(2): 1961-1971.

92.       Malladi, S., Nadh, R. V., Babu, K. S., and Babu, P. S. (2017). Synthesis and antibacterial activity studies of 2,4-di substituted furan derivatives. Beni-Suef University Journal of Basic and Applied Sciences, 6(4): 345-353.

93.       Mardirossian, M., Rubini, M., Adamo, M. F. A., Scocchi, M., Saviano, M., Tossi, A., Gennaro, R., and Caporale, A. (2021). Natural and synthetic halogenated amino acids—structural and bioactive features in antimicrobial peptides and peptidomimetics. Molecules, 26(23): 7401.

94.       Al-Wahaibi, L. H., Alagappan, K., Gomila, R. M., Blacque, O., Frontera, A., Percino, M. J., El-Emam, A. A., and Thamotharan, S. (2023). A combined crystallographic and theoretical investigation of noncovalent interactions in 1,3,4-oxadiazole-2-thione-N-Mannich derivatives: In vitro bioactivity and molecular docking. RSC Advances, 13(48): 34064-34077.

95.       Cañete-Molina, Á., Espinosa-Bustos, C., González-Castro, M., Faúndez, M., Mella, J., Tapia, R. A., Cabrera, A. R., Brito, I., Aguirre, A., and Salas, C. O. (2018). Bromination-a versatile tool for drugs optimization. The Medical-Surgical Journal, 122(3): 614-626.

96.       Kanwal, Khan, K. M., Chigurupati, S., Ali, F., Younus, M., Aldubayan, M., Wadood, A., Khan, H., Taha, M., and Perveen, S. (2021). Indole-3-acetamides: As potential antihyperglycemic and antioxidant agents; synthesis, in vitro α-amylase inhibitory activity, structure-activity relationship, and in silico studies. ACS Omega, 6(3): 2264-2275.

97.       Olchowik-Grabarek, E., Sękowski, S., Kwiatek, A., Płaczkiewicz, J., Abdulladjanova, N., Shlyonsky, V., Swiecicka, I., and Zamaraeva, M. (2022). The structural changes in the membranes of Staphylococcus aureus caused by hydrolysable tannins witness their antibacterial activity. Membranes, 12: 1124.

98.       Das, A., Das, A., and Banik, B. K. (2021). Influence of dipole moments on the medicinal activities of diverse organic compounds. Journal of the Indian Chemical Society, 98(2): 100005.

99.       Kuzey, N. G., Özgür, M., Cemaloğlu, R., Asmafiliz, N., Kılıç, Z., Açık, L., Aydın, B., and Hökelek, T. (2020). Mono- and dispirocyclotriphosphazenes containing 4-bromobenzyl pendant arm(s): Synthesis, spectroscopy, crystallography and biological activity studies. Journal of Molecular Structure, 1220: 128658.

100.    Rashdan, H. R. M., Shehadi, I. A., and Abdelrahman, M. T. (2021). Antibacterial activities and molecular docking of novel sulfone biscompound containing bioactive 1,2,3-triazole moiety. Molecules, 26(16): 4817.

101.    Kumar, Ankit, Singh, P., Singh, E., Jain, M., Muthukumaran, J., and Singh, A. K. (2024). In silico strategies for identifying therapeutic candidates against Acinetobacter baumannii: Spotlight on the UDP-N-acetylmuramoyl-L-alanine-D-gluta  mate:meso-diaminopimelate ligase (MurE). Journal of Biomolecular Structure and Dynamics, 1-15.

102.    Aragaw, W. W., Negatu, D. A., Bungard, C. J., Dartois, V. A., Marrouni, A. El, Elliott, B., Olsen, D. B., Warrass, R., and Dick, T. (2024). Pharmacological validation of dihydrofolate reductase as a drugtarget in Mycobacterium abscessus. 68(1): e00717-23.

103.    Muzaffar-Ur-Rehman, M., Suryakant, C. K., Chandu, A., Kumar, B. K., Joshi, R. P., Jadav, S. R., Sankaranarayanan, M., and Vasan, S. S. (2024). Molecular docking and dynamics identify potential drugs to be repurposed as SARS-CoV-2 inhibitors. Journal of Computational Biophysics and Chemistry, 1-23.

104.    Shawon, J., Khan, A. M., Shahriar, I., & Halim, M. A. (2021). Improving the binding affinity and interaction of 5-Pentyl-2-Phenoxyphenol against Mycobacterium Enoyl ACP reductase by computational approach. Informatics in Medicine Unlocked, 23: 100528.

105.    Kortemme, T., Morozov, A. V., and Baker, D. (2003). An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. Journal of Molecular Biology, 326(4): 1239-1259.

106.    Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., and Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3): e1501240.

107.    Kamel, M. S., Belal, A., Aboelez, M. O., Shokr, E. K., Abdel-Ghany, H., Mansour, H. S., Shawky, A. M., and El-Remaily, M. A. E. A. A. A. (2022). Microwave-assisted synthesis, biological activity evaluation, molecular docking, and ADMET studies of some novel pyrrolo [2,3-b] pyrrole derivatives. Molecules, 27(7): 2061.

108.    Hanee, U., Rahman, M. R., and Matin, M. M. (2021). Synthesis, PASS, in silico ADMET and thermodynamic studies of some galactopyranoside esters. Physical Chemistry Research, 9(4): 591-603.

109.    dos Santos, K. L., Marques, D. S. C., Jacob, I. T., da Silva, P. R., Machado, D. C., Souza, T. R. C. L., de Oliveira, J. F., Almeida, S. M. V., Filho, I. J. da C., and de Lima, M. do C. A. (2024). In silico prediction of ADMET parameters and in vitro evaluation of antioxidant and cytotoxic activities promoted by indole-thiosemicarbazone compounds. Anais Da Academia Brasileira de Ciencias, 96(3): e20230811.

110.    Ito, J., Lemus, H., & Wu, T. (2023). Serum phosphorus, serum bicarbonate, and renal function in relation to liver CYP1A2 activity. Diagnostics, 13(18): 2996.

111.    de Jong, L. M., Boussallami, S., Sánchez-López, E., Giera, M., Tushuizen, M. E., Hoekstra, M., Hawinkels, L. J. A. C., Rissmann, R., Swen, J. J., and Manson, M. L. (2023). The impact of CYP2C19 genotype on phenoconversion by concomitant medication. Frontiers in Pharmacology, 14: 1201906.

112.    Zhou, Y., Nevosadová, L., Eliasson, E., and Lauschke, V. M. (2023). Global distribution of functionally important CYP2C9 alleles and their inferred metabolic consequences. Human Genomics, 17(1): 15.

113.    Daina, A., Michielin, O., and Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1): 42717.

114.    Chalkha, M., Nour, H., Chebbac, K., Nakkabi, A., Bahsis, L., Bakhouch, M., Akhazzane, M., Bourass, M., Chtita, S., Bin Jardan, Y. A., Augustyniak, M., Bourhia, M., Aboul-Soud, M. A. M., and El Yazidi, M. (2022). Synthesis, characterization, DFT mechanistic study, antimicrobial activity, molecular modeling, and ADMET properties of novel pyrazole-isoxazoline hybrids. ACS Omega, 7(50): 46731-46744.

115.    Çapan, İ., Hawash, M., Jaradat, N., Sert, Y., Servi, R., and Koca, İ. (2023). Design, synthesis, molecular docking and biological evaluation of new carbazole derivatives as anticancer, and antioxidant agents. BMC Chemistry, 17(1): 60.

116.    Olaokun, O. O., and Zubair, M. S. (2023). Antidiabetic activity, molecular docking, and ADMET properties of compounds isolated from bioactive ethyl acetate fraction of ficus lutea leaf extract. Molecules, 28(23): 7717.

117.    Klimoszek, D., Jeleń, M., Dołowy, M., & Morak-Młodawska, B. (2024). Study of the lipophilicity and ADMET parameters of new anticancer diquinothiazines with pharmacophore substituents. Pharmaceutic als, 17(6): 725.