Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1302
Research Article
Garbage enzyme pineapple waste hybrid
(CA II) nanoflower (GPW-HNF) for VBR dye decolourisation
Joyce Cynthia Jalani, Zatul Iffah
Mohd Arshad*, Rohaida Che Man, Few Ne Chew, Shalyda Md Shaarani, Siti
Kholijah Abdul Mudalip, and Siti Zubaidah Sulaiman
Fakulti Teknologi
Kejuruteraan Kimia dan Proces, Universiti Malaysia Pahang Al-Sultan Abdullah,
Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang, Pahang.
*Corresponding
author: zatul@umpsa.edu.my
Received:
11 September 2024; Revised: 23 March 2025;
Accepted: 27 March 2025; Published: 15 June 2025
Abstract
Victoria blue R (VBR) is a synthetic dye that resists natural
degradation and poses an increasing threat to all forms of life. This research reports
on the development of organic-inorganic hybrid nanoflowers using pineapple
waste garbage enzyme (PGE) as the organic component and calcium (II) ions as
the inorganic component for the decolourisation of VBR dye. The synthesised garbage
enzyme pineapple waste-calcium (II) ions hybrid nanoflowers (GPW-hNFs) were characterised
using BET, EDX, FTIR, FESEM, and XRD analyses. The optimum initial
concentration of VBR dye, amount of nanoflower (NF), pH, sonication time, and
temperature of GPW-hNFs were also studied. The results demonstrated that 0.10 g
of nanoflower, pH 7.4, 30 minutes of sonication, and 37°C, with an initial dye
concentration of 0.06 mg/mL were the optimal conditions to achieve a 90% decolourisation
rate. Furthermore, GPW-hNFs offer a more sustainable solution for VBR dye decolourisation
compared to LACCASE Y120, pineapple waste garbage enzyme (PGE), and hydrogen
peroxide (H₂O₂). Overall, this study suggests that GPW-hNFs have
the potential for real-world wastewater treatment applications.
Keywords: nanoflower, pineapple waste garbage
enzyme, characterisation, dye decolourisation, Victoria Blue R dye.
References
1. Hao, Y. S., Othman, N., and Zaini, M. A. A.
(2023). Methylene blue and Congo red removal by activated carbons: A current
literature. Acta Universitatis Sapientiae, Agriculture and Environment,
14(1): 29-44.
2. 29 polluted rivers identified last year,
says Deputy Environs Minister. The Star. https://www.thestar.com.my/news/nation/2023/06/13/29-polluted-rivers-identified-last-year-says-deputy-environs-minister. [Access online 13 Jun 2023].
3. Mokhtar, Z., Idris, S. H., Kenway, S., and
Pikaar, I. (2024). Analysing the regulatory mechanisms of river pollution in
Malaysia. International Journal of Business, Economics and Law, 31(1):
23-37.
4. El-Adawy, H. A. (2018). Alkali activated
crab shell for the adsorption of Victoria blue from aqueous solution. Al-Azhar
Bulletin of Science, 29(1-A): 91-98.
5. Lee, J. R., Jalani, J. C., Arshad, Z. I. M.,
dos Santos, J. C., Mudalip, S. K. A., Shaarani, S. M., and Sulaiman, S. Z.
(2024). One-factor-at-a-time (OFAT) optimization of victoria blue R dye
biodegradation by pineapple waste garbage enzymes. Journal of Advanced
Research in Applied Sciences and Engineering Technology, 35(2): 1-10.
6. Jarvin, M., Inbanathan, S. S. R., Rosaline,
D. R., Prabha, A. J., and Dhas, S. M. B. (2022). A study of the structural,
morphological, and optical properties of shock treated SnO2 nanoparticles:
removal of Victoria blue dye. Heliyon, 8(6): e09653.
7. Mishra, S. R., Roy, P., Gadore, V., and
Ahmaruzzaman, M. (2023). A combined experimental and modeling approach to
elucidate the adsorption mechanism for sustainable water treatment via
In2S3-anchored chitosan. Scientific Reports, 13(1): 18051.
8. Gomaa, O. M., Linz, J. E., and Reddy, C. A.
(2008). Decolorization of Victoria blue by the white rot fungus, Phanerochaete
chrysosporium. World Journal of Microbiology and Biotechnology, 24:
2349-2356.
9. Jalani, J. C., Arshad, Z. I. M., Rumaizi, S.
M. A., Man, R. C., Shaarani, S. M., Mudalip, S. K. A., and Sulaiman, S. Z.
(2024). Decolorization of Victoria blue dye by garbage enzyme from pineapple
waste: Remediation efficacy and statistical optimization of fermentation
condition. In AIP Conference Proceedings, 3014(1): 07007.
10. Maghraby, Y. R., El-Shabasy, R. M., Ibrahim,
A. H., and Azzazy, H. M. E. S. (2023). Enzyme immobilization technologies and
industrial applications. ACS omega, 8(6): 5184-5196.
11. Lee, S. W., Cheon, S. A., Kim, M. I., and Park, T. J.
(2015). Organic–inorganic hybrid nanoflowers: types, characteristics, and
future prospects. Journal of nanobiotechnology, 13: 1-10.
12. Jafari-Nodoushan, H., Mojtabavi, S., Faramarzi, M. A.,
and Samadi, N. (2022). Organic-inorganic hybrid nanoflowers: The known, the
unknown, and the future. Advances in Colloid and Interface Science, 309:
102780.
13. Altinkaynak, C., Tavlasoglu, S., Kalin, R.,
Sadeghian, N., Ozdemir, H., Ocsoy, I., and Özdemir, N. (2017). A hierarchical
assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+
nanobiocatalyst and its effective use in dye decolorization. Chemosphere,
182: 122-128.
14. Verma, M.K., Gupta, A. and Kumar, R. (2023).
Fabrication, characterization and application of Se doped Bi2S3 nanoflowers for
the efficient removal of toxic methylene blue dye. Materials Today:
Proceedings, 2023: 319.
15. Yin, Y., Xiao, Y., Lin, G., Xiao, Q., Lin, Z.,
and Cai, Z. (2015). An enzyme–inorganic hybrid nanoflower based immobilized
enzyme reactor with enhanced enzymatic activity. Journal of Materials
Chemistry B, 3(11): 2295-2300.
16. Boran, F., Birhanli, E., Yeşilada, Ö.,
and Özbey, E. (2019). Comparison of indigo carmine decolorization by Pseudomonas
aeruginosa and crude laccase enzyme from Funalia trogii. Turkish
Journal of Biology, 43(1): 37-46.
17. Magalhăes, S., Goodfellow, B.J. and Nunes, A.
(2021). FTIR spectroscopy in biomedical research: how to get the most out of
its potential. Applied Spectroscopy Reviews, 56(8–10):869-907.
18. Zhao, L., Guanhua, N., Hui, W., Qian, S.,
Gang, W., Bingyou, J., and Chao, Z. (2020). Molecular structure
characterization of lignite treated with ionic liquid via FTIR and XRD
spectroscopy. Fuel, 272: 117705.
19. Pellenz, L., de Oliveira, C.R.S., da Silva
Júnior, A.H., da Silva, L.J.S., da Silva, L., de Souza, A.A.U., Ulson,
S.M.D.A.G., Borba, F.H. and da Silva, A. (2023). A comprehensive guide for
characterization of adsorbent materials. Separation and Purification
Technology, 305: 122435.
20. Nguyen, D.T., Nguyen, T.T., Nguyen, H.P.T.,
Khuat, H.B., Nguyen, T.H., Tran, V.K., Chang, S.W., Nguyen-Tri, P., Nguyen,
D.D. and La, D.D. (2021). Activated carbon with ultrahigh surface area derived
from sawdust biowaste for the removal of rhodamine B in water. Environmental
Technology & Innovation, 24: 101811.
21. Adekunle, A.S., Oyekunle, J.A., Durosinmi,
L.M., Oluwafemi, O.S., Olayanju, D.S., Akinola, A.S., Obisesan, O.R., Akinyele,
O.F. and Ajayeoba, T.A. (2020). Potential of cobalt and cobalt oxide
nanoparticles as nanocatalyst towards dyes degradation in wastewater.
Nano-Structures & Nano-Objects, 21: 100405.
22. Barathi, S., Aruljothi, K. N., Karthik, C.,
and Padikasan, I. A. (2020). Optimization for enhanced ecofriendly
decolorization and detoxification of Reactive Blue160 textile dye by Bacillus
subtilis. Biotechnology Reports, 28: e00522.
23. Coria-Oriundo, L.L., Battaglini, F. and Wirth,
S.A. (2021). Efficient decolorization of recalcitrant dyes at neutral/alkaline
pH by a new bacterial laccase-mediator system. Ecotoxicology and
Environmental Safety, 217: 112237.
24. Alhayali, N. I., Özpozan, N. K., Dayan, S.,
Özdemir, N. A. L. A. N., and Yılmaz, B. S. (2021). Catalase/Fe3O4@
Cu2+ hybrid biocatalytic nanoflowers fabrication and efficiency in
the reduction of organic pollutants. Polyhedron, 194: 114888.
25. Wu, C. H. (2008). Effects of sonication on
decolorization of CI Reactive Red 198 in UV/ZnO system. Journal of hazardous
materials, 153(3): 1254-1261.
26. Xu, X. R., Li, H. B., Wang, W. H., and Gu, J.
D. (2005). Decolorization of dyes and textile wastewater by potassium
permanganate. Chemosphere, 59(6): 893-898.
27. Mirzadeh, S. S., Khezri, S. M., Rezaei, S.,
Forootanfar, H., Mahvi, A. H., and Faramarzi, M. A. (2014). Decolorization of
two synthetic dyes using the purified laccase of Paraconiothyrium variabile
immobilized on porous silica beads. Journal of Environmental Health Science
and Engineering, 12: 1-9.
28. Bhoosreddy, G. L. (2014). Decolorization and
biodegradation of direct blue 2B by Mix Consortia of Bacillus. IOSR Journal
of Pharmceutical Biological Sciences, 9(2): 34-40.
29. Brugnari, T., Braga, D. M., Dos Santos, C. S.
A., Torres, B. H. C., Modkovski, T. A., Haminiuk, C. W. I., and Maciel, G. M.
(2021). Laccases as green and versatile biocatalysts: from lab to enzyme
market—an overview. Bioresources and Bioprocessing, 8: 1-29.
30. Arshad, Z. I. M., Amid, A., Yusof, F.,
Sulaiman, S. Z., Mudalip, S. K. A., Man, R. C., and Shaarani, S. M. (2017).
Comparison of purification methods to purify recombinant bromelain from
Escherichia coli BL21-A1. Malaysian Journal of Analytical Sciences,
21(4): 958-971.
31. Morsy, S. A. G. Z., Ahmad Tajudin, A., Ali, M.
S. M., and Shariff, F. M. (2020). Current development in decolorization of
synthetic dyes by immobilized laccases. Frontiers in microbiology, 11:
572309.