Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1302

 

Research Article

 

Garbage enzyme pineapple waste hybrid (CA II) nanoflower (GPW-HNF) for VBR dye decolourisation

 

Joyce Cynthia Jalani, Zatul Iffah Mohd Arshad*, Rohaida Che Man, Few Ne Chew, Shalyda Md Shaarani, Siti Kholijah Abdul Mudalip, and Siti Zubaidah Sulaiman

 

Fakulti Teknologi Kejuruteraan Kimia dan Proces, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang, Pahang.

 

*Corresponding author: zatul@umpsa.edu.my

 

Received: 11 September 2024; Revised: 23 March  2025; Accepted: 27 March 2025; Published: 15 June 2025

 

Abstract

Victoria blue R (VBR) is a synthetic dye that resists natural degradation and poses an increasing threat to all forms of life. This research reports on the development of organic-inorganic hybrid nanoflowers using pineapple waste garbage enzyme (PGE) as the organic component and calcium (II) ions as the inorganic component for the decolourisation of VBR dye. The synthesised garbage enzyme pineapple waste-calcium (II) ions hybrid nanoflowers (GPW-hNFs) were characterised using BET, EDX, FTIR, FESEM, and XRD analyses. The optimum initial concentration of VBR dye, amount of nanoflower (NF), pH, sonication time, and temperature of GPW-hNFs were also studied. The results demonstrated that 0.10 g of nanoflower, pH 7.4, 30 minutes of sonication, and 37°C, with an initial dye concentration of 0.06 mg/mL were the optimal conditions to achieve a 90% decolourisation rate. Furthermore, GPW-hNFs offer a more sustainable solution for VBR dye decolourisation compared to LACCASE Y120, pineapple waste garbage enzyme (PGE), and hydrogen peroxide (H₂O₂). Overall, this study suggests that GPW-hNFs have the potential for real-world wastewater treatment applications.

 

Keywords: nanoflower, pineapple waste garbage enzyme, characterisation, dye decolourisation, Victoria Blue R dye.



References

1.    Hao, Y. S., Othman, N., and Zaini, M. A. A. (2023). Methylene blue and Congo red removal by activated carbons: A current literature. Acta Universitatis Sapientiae, Agriculture and Environment, 14(1): 29-44.

2.    29 polluted rivers identified last year, says Deputy Environs Minister. The Star. https://www.thestar.com.my/news/nation/2023/06/13/29-polluted-rivers-identified-last-year-says-deputy-environs-minister. [Access online  13 Jun 2023].

3.    Mokhtar, Z., Idris, S. H., Kenway, S., and Pikaar, I. (2024). Analysing the regulatory mechanisms of river pollution in Malaysia. International Journal of Business, Economics and Law, 31(1): 23-37.

4.    El-Adawy, H. A. (2018). Alkali activated crab shell for the adsorption of Victoria blue from aqueous solution. Al-Azhar Bulletin of Science, 29(1-A): 91-98.

5.    Lee, J. R., Jalani, J. C., Arshad, Z. I. M., dos Santos, J. C., Mudalip, S. K. A., Shaarani, S. M., and Sulaiman, S. Z. (2024). One-factor-at-a-time (OFAT) optimization of victoria blue R dye biodegradation by pineapple waste garbage enzymes. Journal of Advanced Research in Applied Sciences and Engineering Technology, 35(2): 1-10.

6.    Jarvin, M., Inbanathan, S. S. R., Rosaline, D. R., Prabha, A. J., and Dhas, S. M. B. (2022). A study of the structural, morphological, and optical properties of shock treated SnO2 nanoparticles: removal of Victoria blue dye. Heliyon, 8(6): e09653.

7.    Mishra, S. R., Roy, P., Gadore, V., and Ahmaruzzaman, M. (2023). A combined experimental and modeling approach to elucidate the adsorption mechanism for sustainable water treatment via In2S3-anchored chitosan. Scientific Reports, 13(1): 18051.

8.    Gomaa, O. M., Linz, J. E., and Reddy, C. A. (2008). Decolorization of Victoria blue by the white rot fungus, Phanerochaete chrysosporium. World Journal of Microbiology and Biotechnology, 24: 2349-2356.

9.    Jalani, J. C., Arshad, Z. I. M., Rumaizi, S. M. A., Man, R. C., Shaarani, S. M., Mudalip, S. K. A., and Sulaiman, S. Z. (2024). Decolorization of Victoria blue dye by garbage enzyme from pineapple waste: Remediation efficacy and statistical optimization of fermentation condition. In AIP Conference Proceedings, 3014(1): 07007.

10.  Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., and Azzazy, H. M. E. S. (2023). Enzyme immobilization technologies and industrial applications. ACS omega, 8(6): 5184-5196.

11.  Lee, S. W., Cheon, S. A., Kim, M. I., and Park, T. J. (2015). Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects. Journal of nanobiotechnology, 13: 1-10.

12.  Jafari-Nodoushan, H., Mojtabavi, S., Faramarzi, M. A., and Samadi, N. (2022). Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future. Advances in Colloid and Interface Science, 309: 102780.

13.  Altinkaynak, C., Tavlasoglu, S., Kalin, R., Sadeghian, N., Ozdemir, H., Ocsoy, I., and Özdemir, N. (2017). A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere, 182: 122-128.

14.  Verma, M.K., Gupta, A. and Kumar, R. (2023). Fabrication, characterization and application of Se doped Bi2S3 nanoflowers for the efficient removal of toxic methylene blue dye. Materials Today: Proceedings, 2023: 319.

15.  Yin, Y., Xiao, Y., Lin, G., Xiao, Q., Lin, Z., and Cai, Z. (2015). An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. Journal of Materials Chemistry B, 3(11): 2295-2300.

16.  Boran, F., Birhanli, E., Yeşilada, Ö., and Özbey, E. (2019). Comparison of indigo carmine decolorization by Pseudomonas aeruginosa and crude laccase enzyme from Funalia trogii. Turkish Journal of Biology, 43(1): 37-46.

17.  Magalhăes, S., Goodfellow, B.J. and Nunes, A. (2021). FTIR spectroscopy in biomedical research: how to get the most out of its potential. Applied Spectroscopy Reviews, 56(8–10):869-907.

18.  Zhao, L., Guanhua, N., Hui, W., Qian, S., Gang, W., Bingyou, J., and Chao, Z. (2020). Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy. Fuel, 272: 117705.

19.  Pellenz, L., de Oliveira, C.R.S., da Silva Júnior, A.H., da Silva, L.J.S., da Silva, L., de Souza, A.A.U., Ulson, S.M.D.A.G., Borba, F.H. and da Silva, A. (2023). A comprehensive guide for characterization of adsorbent materials. Separation and Purification Technology, 305: 122435.

20.  Nguyen, D.T., Nguyen, T.T., Nguyen, H.P.T., Khuat, H.B., Nguyen, T.H., Tran, V.K., Chang, S.W., Nguyen-Tri, P., Nguyen, D.D. and La, D.D. (2021). Activated carbon with ultrahigh surface area derived from sawdust biowaste for the removal of rhodamine B in water. Environmental Technology & Innovation, 24: 101811.

21.  Adekunle, A.S., Oyekunle, J.A., Durosinmi, L.M., Oluwafemi, O.S., Olayanju, D.S., Akinola, A.S., Obisesan, O.R., Akinyele, O.F. and Ajayeoba, T.A. (2020). Potential of cobalt and cobalt oxide nanoparticles as nanocatalyst towards dyes degradation in wastewater. Nano-Structures & Nano-Objects, 21: 100405.

22.  Barathi, S., Aruljothi, K. N., Karthik, C., and Padikasan, I. A. (2020). Optimization for enhanced ecofriendly decolorization and detoxification of Reactive Blue160 textile dye by Bacillus subtilis. Biotechnology Reports, 28: e00522.

23.  Coria-Oriundo, L.L., Battaglini, F. and Wirth, S.A. (2021). Efficient decolorization of recalcitrant dyes at neutral/alkaline pH by a new bacterial laccase-mediator system. Ecotoxicology and Environmental Safety, 217: 112237.

24.  Alhayali, N. I., Özpozan, N. K., Dayan, S., Özdemir, N. A. L. A. N., and Yılmaz, B. S. (2021). Catalase/Fe3O4@ Cu2+ hybrid biocatalytic nanoflowers fabrication and efficiency in the reduction of organic pollutants. Polyhedron, 194: 114888.

25.  Wu, C. H. (2008). Effects of sonication on decolorization of CI Reactive Red 198 in UV/ZnO system. Journal of hazardous materials, 153(3): 1254-1261.

26.  Xu, X. R., Li, H. B., Wang, W. H., and Gu, J. D. (2005). Decolorization of dyes and textile wastewater by potassium permanganate. Chemosphere, 59(6): 893-898.

27.  Mirzadeh, S. S., Khezri, S. M., Rezaei, S., Forootanfar, H., Mahvi, A. H., and Faramarzi, M. A. (2014). Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. Journal of Environmental Health Science and Engineering, 12: 1-9.

28.  Bhoosreddy, G. L. (2014). Decolorization and biodegradation of direct blue 2B by Mix Consortia of Bacillus. IOSR Journal of Pharmceutical Biological Sciences, 9(2): 34-40.

29.  Brugnari, T., Braga, D. M., Dos Santos, C. S. A., Torres, B. H. C., Modkovski, T. A., Haminiuk, C. W. I., and Maciel, G. M. (2021). Laccases as green and versatile biocatalysts: from lab to enzyme market—an overview. Bioresources and Bioprocessing, 8: 1-29.

30.  Arshad, Z. I. M., Amid, A., Yusof, F., Sulaiman, S. Z., Mudalip, S. K. A., Man, R. C., and Shaarani, S. M. (2017). Comparison of purification methods to purify recombinant bromelain from Escherichia coli BL21-A1. Malaysian Journal of Analytical Sciences, 21(4): 958-971.

31.  Morsy, S. A. G. Z., Ahmad Tajudin, A., Ali, M. S. M., and Shariff, F. M. (2020). Current development in decolorization of synthetic dyes by immobilized laccases. Frontiers in microbiology, 11: 572309.