Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 807

 

Research Article

 

Determination of mercury in cosmetic creams via chitosan-stabilized silver nanoparticle-assisted spectrophotometry

 

Hendri Wasito1,2*, Astriana Dian Wahdani2, and Dadan Hermawan3

 

1Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia.

2Analytical Chemistry for Pharmaceutical and Health Research Group, Department of Pharmacy, Jenderal Soedirman University, Purwokerto, Indonesia.

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia.

 

*Corresponding author: hendri.wasito@unsoed.ac.id

 

Received: 1 April 2023; Revised: 28 March 2025; Accepted: 15 April 2025; Published: 24 April 2025

 

Abstract

Mercury, a toxic heavy metal, continues to be illicitly added to skin-lightening cosmetics despite global bans, posing severe health risks. This study aimed to develop an accurate and rapid method for mercury detection in cosmetic creams using chitosan-stabilized silver nanoparticles (CS-AgNPs). The method leverages Hg²-induced discoloration of CS-AgNPs, validated for linearity, accuracy, precision, the limit of detection (LOD), and the limit of quantification (LOQ). Synthesized CS-AgNPs exhibited a characteristic surface plasmon resonance (SPR) peak at 420 nm, with an average particle size of 207 nm. The assay demonstrated excellent linearity ( > 0.97) across 20-100 μg mL‑1 Hg2+, with recoveries of 95-101%, and precision (RSD <5%). Detection and quantification limits were 3.6 μg mL‑1 (LOD) and 12.01 μg mL‑1 (LOQ), respectively. Based on the experimental findings, CS-AgNPs demonstrate high selectivity and promise for routine mercury analysis in cream samples, exhibiting suitable analytical performance for their intended purpose.

 

Keywords: Chitosan-stabilized silver nanoparticles, colorimetric detection, cosmetic safety, mercury determination

 


References

1.        Pollock, S., Taylor, S., Oyerinde, O., Nurmohamed, S., Dlova, N., Sarkar, R., Galadari, H., Manela-Azulay, M., Chung, H.S., Handog, E. and Kourosh, S.A. (2021) The dark side of skin lightening: an international collaboration and review of a public health issue affecting dermatology. International Journal of Women’s Dermatology, 7: 158.

2.        Hamann, C.R., Boonchai, W., Wen, L., Sakanashi, E.N., Chu, C.-Y., Hamann, K., Hamann, C.P., Sinniah, K. and Hamann, D. (2014). Spectrometric analysis of mercury content in 549 skin-lightening products: is mercury toxicity a hidden global health hazard? Journal of the American Academy of Dermatology, 70: 281-287.

3.        Rohman, A. and Wijayanti, E. (2015). Development and validation of atomic absorption spectrometry for the determination of zink and mercury analyzer for determination of mercury in cream cosmetics. Journal of Food and Pharmaceutical Sciences, 3: 23-26.

4.        Gao, Y., Shi, Z., Zong, Q., Wu, P., Su, J. and Liu, R. (2014). Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid. Analytica Chimica Acta, 812: 6-11.

5.        Zheng, C., Tang, J., Pan, X., Shen, H., Hu, Z., Zhang, J., Wang, L., Wu, P. and Tan, Y. (2025). Development and validation of a high-performance liquid chromatography-inductively coupled plasma mass spectrometry method for the simultaneous determination of arsenic and mercury species in human urine. Chemosensors, Multidisciplinary Digital Publishing Institute, 13: 78.

6.        Wang, W., Bao, N., Yuan, W., Si, N., Bai, H., Li, H. and Zhang, Q. (2019). Simultaneous determination of lead, arsenic, and mercury in cosmetics using a plastic based disposable electrochemical sensor. Microchemical Journal, 148: 240-247.

7.        Abels, K., Salvo-Halloran, E.M., White, D., Ali, M., Agarwal, N.R., Leung, V., Ali, M., Sidawi, M., Capretta, A., Brennan, J.D., Nease, J. and Filipe, C.D.M. (2021). Quantitative point-of-care colorimetric assay modeling using a handheld colorimeter. ACS Omega, 6: 22439-22446.

8.        Joudeh, N. and Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology, 20: 262.

9.        Omole, R.K., Torimiro, N., Alayande, S.O. and Ajenifuja, E. (2018). Silver nanoparticles synthesized from bacillus subtilis for detection of deterioration in the post-harvest spoilage of fruit. Sustainable Chemistry and Pharmacy, 10: 33-40.

10.     Ibrahim, N.H., Taha, G.M., Hagaggi, N.A. and Moghazy, M.A. (2024). Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals. BMC Chemistry, 18: 7.

11.     Salem, H., Samir, E., Salem, H. and Samir, E. (2018). Determination of cefotaxime, cefoperazone, ceftazidime and cefadroxil using surface plasmon resonance band of silver nanoparticles. Brazilian Journal of Pharmaceutical Sciences, 54: e17565.

12.     Sun, X., Cheng, H., Li, M., Chen, J., Li, D., Liu,  B., Jiang, Y., Duan, X. and Hu, J. (2022). Collision electrochemical synthesis of metal nanoparticles using electrons as green reducing agent. ACS Applied Materials & Interfaces, 14: 57189-57196.

13.     Aldebasi, S., Tar, H., S. Alnafisah, A., Beji, L., Kouki, N., Morlet-Savary, F., Alminderej, F.M., Aroua, L.M. and Lalevée, J. (2023). Photochemical synthesis of noble metal nanoparticles: influence of metal salt concentration on size and distribution. International Journal of Molecular Sciences, 24: 14018.

14.     Chen, S., Xu, Y., He, X., Su, Y., Yang, J., Chen, W. and Tan, H. (2019). Microemulsion synthesis of nanosized calcium sulfate hemihydrate and its morphology control by different surfactants. ACS Omega, 4: 9552-9556.

15.     Vu, D.K.N. and Nguyen, D.K.V. (2021). Gamma irradiation-assisted synthesis of silver nanoparticle-embedded graphene oxide-TiO2 nanotube nanocomposite for organic dye photodegradation. Journal of Nanomaterials, 2021: 6679637.

16.     Radoń, A. and Łukowiec, D. (2018). Silver Nanoparticles synthesized by UV-irradiation method using chloramine t as modifier: structure, formation mechanism and catalytic activity. CrystEngComm, 20: 7130-7136.

17.     Ismillayli, N., Suprapto, S., Santoso, E., Nugraha, R.E., Holilah, H., Bahruji, H., Jalil, A.A., Hermanto, D. and Prasetyoko, D. (2024) Microwave-assisted synthesis of silver nanoparticles as a colorimetric sensor for hydrogen peroxide. RSC Advances, 14: 6815-6822.

18.     Odeniyi, M.A., Okumah, V.C., Adebayo-Tayo, B.C. and Odeniyi, O.A. (2020). Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African Peach) fruit Extracts and Evaluation of Antimicrobial and Antioxidant Activities. Sustainable Chemistry and Pharmacy, 15: 100197.

19.     Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K. and Upadhyay, S.N. (2016). Green synthesis of silver nanoparticles: A review. Green and Sustainable Chemistry, 6: 34.

20.     Zargar, V., Asghari, M. and Dashti, A. (2015). A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2: 204-226.

21.     Zain, N.M., Stapley, A.G.F. and Shama, G. (2014). Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydrate Polymers, 112: 195-202.

22.     Borman, P. and Elder, D. (2017) Q2(R1) Validation of analytical procedures. ICH Quality Guidelines, John Wiley & Sons, Ltd, 127-166.

23.     Janah, I.M., Roto, R. and Siswanta, D. (2022). Effect of ascorbic acid concentration on the stability of tartrate-capped silver nanoparticles. Indonesian Journal of Chemistry, 22: 857-866.

24.     Yusniar, Y., Hindryawati, N. and Ruga, R. (2021) Sintesis nanopartikel perak menggunakan reduktor asam askorbat. Prosiding Seminar Nasional Kimia, 2021: 187-192.

25.     Sankar, R., Rahman, P.K.S.M., Varunkumar, K., Anusha, C., Kalaiarasi, A., Shivashangari, K.S. and Ravikumar, V. (2017). Facile synthesis of Curcuma longa tuber powder engineered metal nanoparticles for bioimaging applications. Journal of Molecular Structure, 1129: 8-16.

26.     Sobczak-Kupiec, A., Malina, D., Wzorek, Z. and Zimowska, M. (2011). Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro Nano Letters, 6: 656-660.

27.     Venkatesham, M., Ayodhya, D., Madhusudhan, A., Veera Babu, N. and Veerabhadram, G. (2014) A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies. Applied Nanoscience, 4: 113-119.

28.     Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C. and Mulfinger, L. (2007) Synthesis and study of silver nanoparticles. Journal of Chemical Education, 84: 322-325.

29.     Kumar, V., Singh, D.K., Mohan, S., Bano, D., Gundampati, R.K. and Hasan, S.H. (2017). Synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) Ion. Journal of Photochemistry and Photobiology B: Biology, 168: 67-77.

30.     Ho, Y.B., Abdullah, N.H., Hamsan, H. and Tan, E.S.S. (2017) Mercury contamination in facial skin lightening creams and its health risks to user. Regulatory Toxicology and Pharmacology, 88: 72-76.

31.     Peregrino, C.P., Moreno, M.V., Miranda, S.V., Rubio, A.D. and Leal, L.O. (2011). Mercury levels in locally manufactured Mexican skin-lightening creams. International Journal of Environmental Research and Public Health, 8: 2516-2523.