Malays. J.
Anal. Sci. Volume 29 Number 2 (2025): 807
Research Article
Determination of mercury in cosmetic
creams via chitosan-stabilized silver nanoparticle-assisted spectrophotometry
Hendri Wasito1,2*,
Astriana Dian Wahdani2, and Dadan Hermawan3
1Department
of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University,
Purwokerto, Indonesia.
2Analytical
Chemistry for Pharmaceutical and Health Research Group, Department of Pharmacy,
Jenderal Soedirman University, Purwokerto, Indonesia.
3Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman
University, Purwokerto, Indonesia.
*Corresponding
author: hendri.wasito@unsoed.ac.id
Received: 1 April 2023;
Revised: 28 March 2025; Accepted: 15 April 2025; Published: 24 April 2025
Abstract
Mercury, a toxic heavy
metal, continues to be illicitly added to skin-lightening cosmetics despite
global bans, posing severe health risks. This study aimed to develop an
accurate and rapid method for mercury detection in cosmetic creams using
chitosan-stabilized silver nanoparticles (CS-AgNPs). The method leverages Hg²⁺-induced discoloration of CS-AgNPs,
validated for linearity, accuracy, precision, the limit of detection (LOD), and
the limit of quantification (LOQ). Synthesized CS-AgNPs exhibited a
characteristic surface plasmon resonance (SPR) peak at 420 nm, with an average
particle size of 207 nm. The assay demonstrated excellent linearity (R² > 0.97) across 20-100 μg mL‑1
Hg2+, with recoveries of 95-101%, and precision (RSD <5%). Detection
and quantification limits were 3.6 μg mL‑1 (LOD) and 12.01
μg mL‑1 (LOQ), respectively. Based on the experimental
findings, CS-AgNPs demonstrate high selectivity and promise for routine mercury
analysis in cream samples, exhibiting suitable analytical performance for their
intended purpose.
Keywords: Chitosan-stabilized silver
nanoparticles, colorimetric detection, cosmetic safety, mercury determination
References
1.
Pollock, S., Taylor, S.,
Oyerinde, O., Nurmohamed, S., Dlova, N., Sarkar, R., Galadari, H.,
Manela-Azulay, M., Chung, H.S., Handog, E. and Kourosh, S.A. (2021) The dark
side of skin lightening: an international collaboration and review of a public
health issue affecting dermatology. International Journal of Women’s
Dermatology, 7: 158.
2.
Hamann,
C.R., Boonchai, W., Wen, L., Sakanashi, E.N., Chu, C.-Y., Hamann, K., Hamann,
C.P., Sinniah, K. and Hamann, D. (2014). Spectrometric analysis of mercury
content in 549 skin-lightening products: is mercury toxicity
a hidden global health hazard? Journal of the American Academy of
Dermatology, 70: 281-287.
3.
Rohman,
A. and Wijayanti, E. (2015). Development and validation of atomic absorption
spectrometry for the determination of zink and mercury analyzer for
determination of mercury in cream cosmetics. Journal of Food and
Pharmaceutical Sciences, 3: 23-26.
4.
Gao,
Y., Shi, Z., Zong, Q., Wu, P., Su, J. and Liu, R. (2014). Direct determination
of mercury in cosmetic samples by isotope dilution inductively coupled plasma
mass spectrometry after dissolution with formic acid. Analytica Chimica Acta,
812: 6-11.
5.
Zheng,
C., Tang, J., Pan, X., Shen, H., Hu, Z., Zhang, J., Wang, L., Wu, P. and Tan,
Y. (2025). Development and validation of a high-performance liquid
chromatography-inductively coupled plasma mass spectrometry method for the
simultaneous determination of arsenic and mercury species in human urine. Chemosensors,
Multidisciplinary Digital Publishing Institute, 13: 78.
6.
Wang,
W., Bao, N., Yuan, W., Si, N., Bai, H., Li, H. and Zhang, Q. (2019). Simultaneous
determination of lead, arsenic, and mercury in cosmetics using a plastic based
disposable electrochemical sensor. Microchemical Journal, 148: 240-247.
7.
Abels,
K., Salvo-Halloran, E.M., White, D., Ali, M., Agarwal, N.R., Leung, V., Ali,
M., Sidawi, M., Capretta, A., Brennan, J.D., Nease, J. and Filipe, C.D.M.
(2021). Quantitative point-of-care colorimetric assay modeling using a handheld
colorimeter. ACS Omega, 6: 22439-22446.
8.
Joudeh,
N. and Linke, D. (2022). Nanoparticle classification, physicochemical
properties, characterization, and applications: A comprehensive review for
biologists. Journal of Nanobiotechnology, 20: 262.
9.
Omole,
R.K., Torimiro, N., Alayande, S.O. and Ajenifuja, E. (2018). Silver nanoparticles
synthesized from bacillus subtilis for detection of deterioration in the
post-harvest spoilage of fruit. Sustainable Chemistry and Pharmacy, 10:
33-40.
10.
Ibrahim,
N.H., Taha, G.M., Hagaggi, N.A. and Moghazy, M.A. (2024). Green synthesis of
silver nanoparticles and its environmental sensor ability to some heavy metals.
BMC Chemistry, 18: 7.
11.
Salem,
H., Samir, E., Salem, H. and Samir, E. (2018). Determination of cefotaxime,
cefoperazone, ceftazidime and cefadroxil using surface plasmon resonance band
of silver nanoparticles. Brazilian Journal of Pharmaceutical Sciences, 54:
e17565.
12.
Sun, X., Cheng, H., Li, M., Chen, J., Li, D., Liu, B., Jiang, Y., Duan, X. and Hu, J. (2022). Collision
electrochemical synthesis of metal nanoparticles using electrons as green
reducing agent. ACS Applied Materials & Interfaces, 14: 57189-57196.
13.
Aldebasi,
S., Tar, H., S. Alnafisah, A., Beji, L., Kouki, N., Morlet-Savary, F.,
Alminderej, F.M., Aroua, L.M. and Lalevée, J. (2023). Photochemical synthesis
of noble metal nanoparticles: influence of metal salt concentration on size and
distribution. International Journal of Molecular Sciences, 24: 14018.
14.
Chen,
S., Xu, Y., He, X., Su, Y., Yang, J., Chen, W. and Tan, H. (2019).
Microemulsion synthesis of nanosized calcium sulfate hemihydrate and its
morphology control by different surfactants. ACS Omega, 4: 9552-9556.
15.
Vu, D.K.N. and Nguyen, D.K.V. (2021). Gamma
irradiation-assisted synthesis of silver nanoparticle-embedded graphene
oxide-TiO2 nanotube nanocomposite for organic dye photodegradation. Journal
of Nanomaterials, 2021: 6679637.
16.
Radoń,
A. and Łukowiec, D. (2018). Silver Nanoparticles synthesized by
UV-irradiation method using chloramine t as modifier: structure, formation
mechanism and catalytic activity. CrystEngComm, 20: 7130-7136.
17.
Ismillayli,
N., Suprapto, S., Santoso, E., Nugraha, R.E., Holilah, H., Bahruji, H., Jalil,
A.A., Hermanto, D. and Prasetyoko, D. (2024) Microwave-assisted synthesis of
silver nanoparticles as a colorimetric sensor for hydrogen peroxide. RSC
Advances, 14: 6815-6822.
18.
Odeniyi,
M.A., Okumah, V.C., Adebayo-Tayo, B.C. and Odeniyi, O.A. (2020). Green
synthesis and cream formulations of silver nanoparticles of Nauclea
latifolia (African Peach) fruit Extracts and Evaluation of Antimicrobial
and Antioxidant Activities. Sustainable Chemistry and Pharmacy, 15:
100197.
19.
Srikar,
S.K., Giri, D.D., Pal, D.B., Mishra, P.K. and Upadhyay, S.N. (2016). Green
synthesis of silver nanoparticles: A review. Green and Sustainable Chemistry,
6: 34.
20.
Zargar,
V., Asghari, M. and Dashti, A. (2015). A review on chitin and chitosan
polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng
Reviews, 2: 204-226.
21.
Zain,
N.M., Stapley, A.G.F. and Shama, G. (2014). Green synthesis of silver and
copper nanoparticles using ascorbic acid and chitosan for antimicrobial
applications. Carbohydrate Polymers, 112: 195-202.
22.
Borman,
P. and Elder, D. (2017) Q2(R1) Validation of analytical procedures. ICH Quality
Guidelines, John Wiley & Sons, Ltd, 127-166.
23.
Janah,
I.M., Roto, R. and Siswanta, D. (2022). Effect of ascorbic acid concentration
on the stability of tartrate-capped silver nanoparticles. Indonesian Journal
of Chemistry, 22: 857-866.
24.
Yusniar,
Y., Hindryawati, N. and Ruga, R. (2021) Sintesis nanopartikel perak menggunakan
reduktor asam askorbat. Prosiding Seminar Nasional Kimia, 2021: 187-192.
25.
Sankar,
R., Rahman, P.K.S.M., Varunkumar, K., Anusha, C., Kalaiarasi, A.,
Shivashangari, K.S. and Ravikumar, V. (2017). Facile synthesis of Curcuma
longa tuber powder engineered metal nanoparticles for bioimaging
applications. Journal of Molecular Structure, 1129: 8-16.
26.
Sobczak-Kupiec,
A., Malina, D., Wzorek, Z. and Zimowska, M. (2011). Influence of silver nitrate
concentration on the properties of silver nanoparticles. Micro Nano Letters,
6: 656-660.
27.
Venkatesham,
M., Ayodhya, D., Madhusudhan, A., Veera Babu, N. and Veerabhadram, G. (2014) A novel
green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity
and antimicrobial studies. Applied Nanoscience, 4: 113-119.
28.
Solomon,
S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C. and
Mulfinger, L. (2007) Synthesis and study of silver nanoparticles. Journal of
Chemical Education, 84: 322-325.
29.
Kumar,
V., Singh, D.K., Mohan, S., Bano, D., Gundampati, R.K. and Hasan, S.H. (2017).
Synthesis of silver nanoparticle for the selective and sensitive colorimetric
detection of mercury (II) Ion. Journal of Photochemistry and Photobiology B:
Biology, 168: 67-77.
30.
Ho,
Y.B., Abdullah, N.H., Hamsan, H. and Tan, E.S.S. (2017) Mercury contamination
in facial skin lightening creams and its health risks to user. Regulatory
Toxicology and Pharmacology, 88: 72-76.
31.
Peregrino,
C.P., Moreno, M.V., Miranda, S.V., Rubio, A.D. and Leal, L.O. (2011). Mercury
levels in locally manufactured Mexican skin-lightening creams. International
Journal of Environmental Research and Public Health, 8: 2516-2523.