Malays. J. Anal. Sci.
Volume 29 Number 2 (2025): 1411
Research Article
Central composite
design for the optimisation of silk yarn dyeing with natural extract from Melastoma malabathricum
L. fruit
Nazifah Mohd
Adham1, Nurul Nadhirah Mohd Shukri1,
Wan Khartini Wan Abdul Khodir1,2, Ahmad
Farid Abdul Jalal3, Shafida Abd Hamid1,2*
1Department
of Chemistry, Kulliyyah of Science, International Islamic University Malaysia,
Bandar Indera Mahkota, 25200 Kuantan, Pahang,
Malaysia
2SYNTOF,
Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
3Lembaga Muzium Negeri Pahang, Jalan Sultan Ahmad, 26600 Pekan,
Pahang, Malaysia
*Corresponding author: shafida@iium.edu.my
Received: 13 November 2024;
Revised: 13 February 2025; Accepted: 15 March 2025; Published: 21 April 2025
Abstract
Natural dyes have
gained interest in sustainable textile applications. However, the potential
of Melastoma malabathricum as
a silk dye source remains unexplored. Pigments extracted from M. malabathricum L. fruit using acidified methanol
were used for silk yarn dyeing through the meta-mordanting process with stannous
chloride (2%) as the mordant. A four-factor, face-centred composite design from
response surface methodology was applied to optimise the dyeing process. The
effect of extract weight, temperature, pH, and dyeing duration on colour
intensity was analysed. The optimum conditions (R² = 0.9517) were found using 1
g of dye extract, 30 °C, pH 3, and 120 min, yielding a colour intensity of
28.99. The ultraviolet-visible spectra indicated the highest peak absorbance of
the dye bath at pH 3, aligned with the highest colour intensity. Higher
temperatures and amount of dye extract increased the colour intensity, while
lower temperatures and longer durations had the opposite effect. This study
contributes to sustainable silk dyeing by utilising M. malabathricum fruit as a natural dye source and
provides a foundation for its systematic optimisation. The findings also
highlight its potential for large-scale applications, offering an eco-friendly
alternative to synthetic dyes in the textile industry.
Keywords: M. malabathricum, natural dye, RSM, colour intensity, silk
yarn
References
1. Ardila-Leal, L. D., Poutou-Piñales, R. A.,
Pedroza-Rodríguez, A. M., and Quevedo-Hidalgo, B. E. (2021). A brief
history of colour, the environmental impact of synthetic dyes and removal by
using laccases. Molecules, 26(13): 3813.
2. Anderson,
S. E., and Meade, B. J. (2014). Potential health effects associated with dermal
exposure to occupational chemicals. Environmental
Health Insights, 8: EHI.S15258.
3. Brudzyńska, P., Sionkowska, A. and Grisel, M. (2023). Silk textiles dyeing
by plant-derived colorant in the presence of chitosan and shellac. Fibers
and Polymers, 24: 2761-2771.
4. Gecchele, E., Negri, S., Cauzzi, A., Cuccurullo, A.,
Commisso, M., Patrucco, A., Anceschi, A., Zaffani, G., and Avesani, L. (2021). Optimization
of a sustainable protocol for the extraction of anthocyanins as textile dyes
from plant materials. Molecules, 26(22): 6775.
5. Elsahida, K.,
Fauzi, A. M., Sailah, I., and Siregar, I. Z. (2019).
Sustainability of the use of natural dyes in the textile industry. IOP Conference Series. Earth and
Environmental Science, 399: 012065.
6. Pizzicato, B., Pacifico, S., Cayuela, D., Mijas, G., and
Riba-Moliner, M. (2023). Advancements in sustainable natural dyes
for textile applications: A Review. Molecules, 28(16): 5954.
7. Darmawan,
A., Widowati, R. A., Muhtar, H., and Kartono, A. S.
(2024). Enhancing cotton fabric dyeing: Optimizing Mordanting with natural dyes
and citric acid. International Journal of Biological Macromolecules, 276:
134017.
8. Chairat,
M., Thongsamai, P., Meephun,
T., Pantanit, S., Samosorn,
S., Sajomsang, W., Gonil,
P., and Bremner, J. B. (2024). Silk dyeing with anthocyanin dye extract
from Melastoma malabathricum L.
fruits using metal oxides and reducing agents to ameliorate photo-fading. ES
Materials & Manufacturing, 25: 1213.
9. Ahmad,
M., Azahari, S., and Rahim, F. (2021). Kearifan masyarakat melayu terhadap pokok senduduk dan dapatan kajian saintifik terhadap spesies ini. Sempo, M. W., Yabi, S., A. S., Syed Hassan, S. N., Syamila
Sulaiman, N. A. (Eds.), E-Prosiding Konvensyen Kearifan Nusantara Ke-3 Arif 2021, 207-225.
10. Anuar,
N., Mohd Adnan, A. F., Saat, N., Aziz, N., and Mat Taha, R. (2013).
Optimization of extraction parameters by using response surface methodology,
purification, and identification of anthocyanin pigments in Melastoma malabathricum fruit. The Scientific World Journal, 2013:
810547.
11. Janna,
O. A., Khairul, A., Maziah, M., and Mohd, Y. (2006). Flower pigment analysis of
Melastoma malabathricum.
African Journal of Biotechnology, 5(2): 170-174.
12. Wan
Ahmad, W. Y., Mohd Nor, M. A., Saim, N., Ab Kadir, M. I., and Ahmad, M. R.
(2012). Nano natural dyes from Melastoma Malabathricum L. Advanced Materials Research, 545: 59-63.
13. Zulaicha, A.S., Munawaroh, K., Saputra, I.S., and Setiajaya,
A. (2023). Utilization
of senduduk fruit extract (Melastoma malabathricum) for natural color in lip cream. Walisongo Journal of
Chemistry, 6(2): 215-223.
14. Sankaralingam,
B., Balan, L., Chandrasekaran, S., and Muthu Selvam, A. (2023). Anthocyanin: A
natural dye extracted from Hibiscus
sabdariffa (L.) for textile and dye industries, Applied Biochemistry and Biotechnology, 195(4): 2648-2663.
15. Chairat, M., Bremner, J. B., and Chantrapromma,
K. (2007). Dyeing
of cotton and silk yarn with the extracted dye from the fruit hulls of
mangosteen, Garcinia mangostana linn., Fibers
and Polymers, 8(6): 613-619.
16. Bechtold,
T., Mahmud-Ali, A., and Mussak, R. (2007).
Anthocyanin dyes extracted from grape pomace for the purpose of textile dyeing.
Journal of the Science of Food and
Agriculture, 87(14):
2589–2595.
17. Khoo,
H. E., Azlan, A., Tang, S. T., Lim, S. M. (2017). Anthocyanidins and
anthocyanins: colored pigments as food,
pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1): 1361779.
18. Affat, S.
(2021). Classifications, advantages, disadvantages, toxicity effects of natural
and synthetic dyes: A review. University
of Thi-Qar Journal of Science (UTsci), 8(1): 130-135.
19. Chelladurai, S. J. S., Murugan, Ray, A. P., Upadhyaya, M., and Narasimharaj, V., G. (2021). Optimization of
process parameters using response surface methodology: A review. Materials Today: Proceedings, 37: 1301-1304.
20. Punyachareonnon, P., Deerattrakul, V., Luepong,
K. (2021). The
influence of pH, temperature and time on dyeing of silk fabric by black bean
anthocyanin-rich extract as colorant. Progress
in Color, Colorants and Coatings, 14(3): 179-186.
21. Naczk, M., and
Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1-2): 95-111.
22. Oancea,
S. (2021). A review of the current knowledge of thermal stability of
anthocyanins and approaches to their stabilization to heat. Antioxidants,
10(9):1337.
23. Saptarini, N. M., Fathi, and
Sofian, F. F. (2013). The effect of acetic acid in anthocyanins
extraction from mangosteen (Garcinia mangostana L.)
pericarp. Research Journal of
Pharmaceutical, Biological and Chemical Sciences, 4(2): 213-220.
24. Vankar, P.
S., and Shukla, D. (2011). Natural dyeing with anthocyanins from Hibiscus rosa sinensis flowers. Journal of Applied Polymer Science, 122(5): 3361-3368.
25. Nunes, A. N., Borges, A., Matias, A. A., Bronze, M.
R., and Oliveira, J. (2022). Alternative extraction and downstream
purification processes for anthocyanins. Molecules,
27(2): 368.
26. Wan
Ahmad, W. Y., Tuan Zainal Abidin, T. M. S., Ahmad, M. R., Ab Kadir, M. I., and Mohd
Yusof, N. J. (2014). Dyeing of polyester using natural colorant from Melastoma malabathricum
L. In: Ahmad, M., Yahya, M. (eds) Proceedings of the International
Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD
2014). Springer, Singapore.
27. usain, A.,
Chanana, H., Khan S. A., Dhanalekshmi, U. M., Ali,
M., Alghamdi, A. A., and Ahmad A. (2022). Chemistry and pharmacological actions
of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms.
Frontiers in Nutrition, 9: 746881.
28. Uddin,
M. G. (2013). Effects of different mordants on silk fabric dyed with onion
outer skin extracts. Journal of Textiles, 2014(1): 405626.
29. Skaar,
I., Adaku, C., Jordheim, M., Byamukama, R., Kiremire,
B., and Andersen, M. (2014). Purple anthocyanin colouration on lower (abaxial)
leaf surface of Hemigraphis colorata (Acanthaceae). Phytochemistry,
105: 141-146.
30. He, R.,
Li, Z. M., and Wang, B. C. (2010). The stability and antioxidant activity of
anthocyanins from blueberry. Food Technology and Biotechnology, 48(1):
42-49.
31. Zanatta, C. F., Cuevas, E., Bobbio, F. O.,
Winterhalter, P., and Mercadante, A. Z., (2005). Determination of
anthocyanins from camu-camu (Myrciaria
dubia) by HPLC-PDA, HPLC-MS, and NMR. Journal
of Agricultural and Food Chemistry. 53(24): 9531-9535.
32. Adeel,
S., Ali, S., Bhatti, I. A., Zsila, F. (2009). Dyeing
of cotton fabric using pomegranate (Punica granatum) aqueous extract. Asian
Journal of Chemistry, 21(5): 3493-3499.