Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1411

 

Research Article

 

Central composite design for the optimisation of silk yarn dyeing with natural extract from Melastoma malabathricum L. fruit

 

Nazifah Mohd Adham1, Nurul Nadhirah Mohd Shukri1, Wan Khartini Wan Abdul Khodir1,2, Ahmad Farid Abdul Jalal3, Shafida Abd Hamid1,2*

 

1Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

2SYNTOF, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

3Lembaga Muzium Negeri Pahang, Jalan Sultan Ahmad, 26600 Pekan, Pahang, Malaysia

 

*Corresponding author: shafida@iium.edu.my

 

Received: 13 November 2024; Revised: 13 February 2025; Accepted: 15 March 2025; Published: 21 April 2025

 

Abstract

Natural dyes have gained interest in sustainable textile applications. However, the potential of Melastoma malabathricum as a silk dye source remains unexplored. Pigments extracted from M. malabathricum L. fruit using acidified methanol were used for silk yarn dyeing through the meta-mordanting process with stannous chloride (2%) as the mordant. A four-factor, face-centred composite design from response surface methodology was applied to optimise the dyeing process. The effect of extract weight, temperature, pH, and dyeing duration on colour intensity was analysed. The optimum conditions (R² = 0.9517) were found using 1 g of dye extract, 30 °C, pH 3, and 120 min, yielding a colour intensity of 28.99. The ultraviolet-visible spectra indicated the highest peak absorbance of the dye bath at pH 3, aligned with the highest colour intensity. Higher temperatures and amount of dye extract increased the colour intensity, while lower temperatures and longer durations had the opposite effect. This study contributes to sustainable silk dyeing by utilising M. malabathricum fruit as a natural dye source and provides a foundation for its systematic optimisation. The findings also highlight its potential for large-scale applications, offering an eco-friendly alternative to synthetic dyes in the textile industry.

 

Keywords: M. malabathricum, natural dye, RSM, colour intensity, silk yarn



References

1.      Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., and Quevedo-Hidalgo, B. E. (2021). A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules, 26(13): 3813.

2.      Anderson, S. E., and Meade, B. J. (2014). Potential health effects associated with dermal exposure to occupational chemicals. Environmental Health Insights, 8: EHI.S15258.

3.      Brudzyńska, P., Sionkowska, A. and Grisel, M. (2023). Silk textiles dyeing by plant-derived colorant in the presence of chitosan and shellac. Fibers and Polymers, 24: 2761-2771.

4.      Gecchele, E., Negri, S., Cauzzi, A., Cuccurullo, A., Commisso, M., Patrucco, A., Anceschi, A., Zaffani, G., and Avesani, L. (2021). Optimization of a sustainable protocol for the extraction of anthocyanins as textile dyes from plant materials. Molecules, 26(22): 6775.

5.      Elsahida, K., Fauzi, A. M., Sailah, I., and Siregar, I. Z. (2019). Sustainability of the use of natural dyes in the textile industry. IOP Conference Series. Earth and Environmental Science, 399: 012065.

6.      Pizzicato, B., Pacifico, S., Cayuela, D., Mijas, G., and Riba-Moliner, M. (2023). Advancements in sustainable natural dyes for textile applications: A Review. Molecules, 28(16): 5954.

7.      Darmawan, A., Widowati, R. A., Muhtar, H., and Kartono, A. S. (2024). Enhancing cotton fabric dyeing: Optimizing Mordanting with natural dyes and citric acid. International Journal of Biological Macromolecules, 276: 134017.

8.      Chairat, M., Thongsamai, P., Meephun, T., Pantanit, S., Samosorn, S., Sajomsang, W., Gonil, P., and Bremner, J. B. (2024). Silk dyeing with anthocyanin dye extract from Melastoma malabathricum L. fruits using metal oxides and reducing agents to ameliorate photo-fading. ES Materials & Manufacturing, 25: 1213.

9.      Ahmad, M., Azahari, S., and Rahim, F. (2021). Kearifan masyarakat melayu terhadap pokok senduduk dan dapatan kajian saintifik terhadap spesies ini. Sempo, M. W., Yabi, S., A. S., Syed Hassan, S. N., Syamila Sulaiman, N. A. (Eds.), E-Prosiding Konvensyen Kearifan Nusantara Ke-3 Arif 2021, 207-225.

10.   Anuar, N., Mohd Adnan, A. F., Saat, N., Aziz, N., and Mat Taha, R. (2013). Optimization of extraction parameters by using response surface methodology, purification, and identification of anthocyanin pigments in Melastoma malabathricum fruit. The Scientific World Journal, 2013: 810547.

11.   Janna, O. A., Khairul, A., Maziah, M., and Mohd, Y. (2006). Flower pigment analysis of Melastoma malabathricum. African Journal of Biotechnology, 5(2): 170-174.

12.   Wan Ahmad, W. Y., Mohd Nor, M. A., Saim, N., Ab Kadir, M. I., and Ahmad, M. R. (2012). Nano natural dyes from Melastoma Malabathricum L. Advanced Materials Research, 545: 59-63.

13.   Zulaicha, A.S., Munawaroh, K., Saputra, I.S., and Setiajaya, A. (2023). Utilization of senduduk fruit extract (Melastoma malabathricum) for natural color in lip cream. Walisongo Journal of Chemistry, 6(2): 215-223.

14.   Sankaralingam, B., Balan, L., Chandrasekaran, S., and Muthu Selvam, A. (2023). Anthocyanin: A natural dye extracted from Hibiscus sabdariffa (L.) for textile and dye industries, Applied Biochemistry and Biotechnology, 195(4): 2648-2663.

15.   Chairat, M., Bremner, J. B., and Chantrapromma, K. (2007). Dyeing of cotton and silk yarn with the extracted dye from the fruit hulls of mangosteen, Garcinia mangostana        linn.,      Fibers and Polymers, 8(6): 613-619.

16.   Bechtold, T., Mahmud-Ali, A., and Mussak, R. (2007). Anthocyanin dyes extracted from grape pomace for the purpose of textile dyeing. Journal of the Science of Food and Agriculture, 87(14): 2589–2595.

17.   Khoo, H. E., Azlan, A., Tang, S. T., Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1): 1361779.

18.   Affat, S. (2021). Classifications, advantages, disadvantages, toxicity effects of natural and synthetic dyes: A review. University of Thi-Qar Journal of Science (UTsci), 8(1): 130-135.

19.   Chelladurai, S. J. S., Murugan, Ray, A. P., Upadhyaya, M., and Narasimharaj, V., G. (2021). Optimization of process parameters using response surface methodology: A review. Materials Today: Proceedings, 37: 1301-1304.

20.   Punyachareonnon, P., Deerattrakul, V., Luepong, K. (2021). The influence of pH, temperature and time on dyeing of silk fabric by black bean anthocyanin-rich extract as colorant. Progress in Color, Colorants and Coatings, 14(3): 179-186.

21.   Naczk, M., and Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1-2): 95-111.

22.   Oancea, S. (2021). A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants, 10(9):1337.

23.   Saptarini, N. M., Fathi, and Sofian, F. F. (2013). The effect of acetic acid in anthocyanins extraction from mangosteen (Garcinia mangostana L.) pericarp. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(2): 213-220.

24.   Vankar, P. S., and Shukla, D. (2011). Natural dyeing with anthocyanins from Hibiscus rosa sinensis flowers. Journal of Applied Polymer Science, 122(5): 3361-3368.

25.   Nunes, A. N., Borges, A., Matias, A. A., Bronze, M. R., and Oliveira, J. (2022). Alternative extraction and downstream purification processes for anthocyanins. Molecules, 27(2): 368.

26.   Wan Ahmad, W. Y., Tuan Zainal Abidin, T. M. S., Ahmad, M. R., Ab Kadir, M. I., and Mohd Yusof, N. J. (2014). Dyeing of polyester using natural colorant from Melastoma malabathricum L. In: Ahmad, M., Yahya, M. (eds) Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014). Springer, Singapore.

27.   usain, A., Chanana, H., Khan S. A., Dhanalekshmi, U. M., Ali, M., Alghamdi, A. A., and Ahmad A. (2022). Chemistry and pharmacological actions of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms. Frontiers in Nutrition, 9: 746881.

28.   Uddin, M. G. (2013). Effects of different mordants on silk fabric dyed with onion outer skin extracts. Journal of Textiles, 2014(1): 405626.

29.   Skaar, I., Adaku, C., Jordheim, M., Byamukama, R., Kiremire, B., and Andersen, M. (2014). Purple anthocyanin colouration on lower (abaxial) leaf surface of Hemigraphis colorata (Acanthaceae). Phytochemistry, 105: 141-146.

30.   He, R., Li, Z. M., and Wang, B. C. (2010). The stability and antioxidant activity of anthocyanins from blueberry. Food Technology and Biotechnology, 48(1): 42-49.

31.   Zanatta, C. F., Cuevas, E., Bobbio, F. O., Winterhalter, P., and Mercadante, A. Z., (2005). Determination of anthocyanins from camu-camu (Myrciaria dubia) by HPLC-PDA, HPLC-MS, and NMR. Journal of Agricultural and Food Chemistry. 53(24): 9531-9535.

32.   Adeel, S., Ali, S., Bhatti, I. A., Zsila, F. (2009). Dyeing of cotton fabric using pomegranate (Punica granatum) aqueous extract. Asian Journal of Chemistry, 21(5): 3493-3499.