Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1382

 

Research Article

 

Structural and electrical properties of chitosan grafted polyvinyl acetate (Ch-g-PVAc) with lithium triflate-based polymer electrolytes

 

Ain Sorhana Nabila Ismadi1, Nor Kartini Jaafar1*, Mohd Zaki Mohd Yusoff2, and Rosnah Zakaria1

 

1School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

2Institute for Biodiversity and Sustainable Development (IBSD), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: norka603@uitm.edu.my

 

Received: 14 October 2024; Revised: 25 January 2025; Accepted: 14 February 2025; Published: 13 April 2025

 

Abstract

Solid polymer electrolytes (SPEs) based on natural polymers are gaining attention due to their environmentally friendly, biodegradable, biocompatible, and safer materials compared to liquid electrolytes. Numerous studies have been conducted to develop polymer electrolytes with enhanced conductivity and long-term safety. In this study, chitosan-based natural solid polymer electrolytes with polyvinyl acetate (PVAc) using graph copolymerisation were studied. The polymer system of grafted Ch-g-PVAc with different concentrations of lithium triflate (LiTf) salt was successfully prepared using solution casting method. The X-Ray diffraction (XRD) revealed the reduction in the crystalline nature upon the inclusion of LiTf. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the PVAc was successfully grafted onto the chitosan backbone, and the interaction of LiTf with Ch-g-PVAc are confirmed by the existence of several functional groups. The bulk resistance decreases with increasing salt content which is shown in electrical impedance spectroscopy (EIS) result. The highest ionic conductivity, 6.68 × 10-5 S cm−1 was obtained for Ch-g-PVAc doped with 50 wt.% LiTf salt with a breakdown voltage of 3.5 V as measured by Linear Sweep Voltammetry (LSV). This study proposes an environmentally friendly and practical electrolyte with excellent electrochemical performance suitable for the development of electrochemical devices.

 

Keywords: Chitosan, Ch-g-PVAc, poly(vinyl) acetate, lithium triflate, amorphous

 


References

1.      Ali, A. M. M., Subban, R. H. Y., Bahron, H., Winie, T., Latif, F., and Yahya, M. Z. A. (2008). Grafted natural rubber-based polymer electrolytes: ATR-FTIR and conductivity studies. Ionics, 14(6): 491-500.

2.      Aziz, S. B., Abdullah, O. G., Hussein, S. A., and Ahmed, H. M. (2017). Effect of PVA blending on structural and ion transport properties of CS:AgNt-based polymer electrolyte membrane. Polymers, 9(11): 622.

3.      Hamsan, M. H., Aziz, S. B., Nofal, M. M., Brza, M. A., Abdulwahid, R. T., Hadi, J. M., Karim, W. O., and Kadir, M. F. Z. (2020). Characteristics of EDLC device fabricated from plasticized chitosan:MgCl2 based polymer electrolyte. Journal of Materials Research and Technology, 9(5): 10635-10646.

4.      Abdullah, O. G., Ahmed, H. T., Tahir, D. A., Jamal, G. M., and Mohamad, A. H. (2021). Influence of PEG plasticizer content on the proton-conducting PEO:MC-NH4I blend polymer electrolytes based films. Results in Physics, 23: 104073

5.      Majumdar, S., Mondal, A., Mahajan, A., Bhattacharya, S. K., and Ray, R. (2023). Dye-sensitized solar cell employing chitosan-based biopolymer electrolyte. IOP Conference Series: Materials Science and Engineering, 1291(1): 012014.

6.      Abdulwahid, R. T., Aziz, S. B., and Kadir, M. F. Z. (2023). Environmentally friendly plasticized electrolyte based on chitosan (CS): Potato starch (PS) polymers for EDLC application: Steps toward the greener energy storage devices derived from biopolymers. Journal of Energy Storage, 67(5): 107636.

7.      Safavi-Mirmahalleh, S. A., Dadkhah-Janqor, A., and Salami-Kalajahi, M. (2024). Chitosan-based gel   polymer electrolytes for high performance Li-ion battery. International Journal of Biological Macromolecules, 282: 137304.

8.      Ponmani, S., Kalaiselvimary, J., and Ramesh Prabhu, M. (2018). Structural, electrical, and electrochemical properties of poly(vinylidene fluoride-co-hexaflouropropylene)/poly(vinyl acetate)-based polymer blend electrolytes for rechargeable magnesium ion batteries. Journal of Solid State Electrochemistry, 22(8): 2605-2615.

9.      Sampath Kumar, L., Christopher Selvin, P., and Selvasekarapandian, S. (2021). Impact of lithium triflate (LiCF3SO3) salt on tamarind seed polysaccharide-based natural solid polymer electrolyte for application in electrochemical device. Polymer Bulletin, 78(4): 1797-1819.

10.   Sanchez-Salvador, J. L., Balea, A., Monte, M. C., Negro, C., and Blanco, A. (2021). Chitosan grafted/cross-linked with biodegradable polymers: A review. International Journal of Biological Macromolecules, 178: 325-343.

11.   Thakur, V. K., and Thakur, M. K. (2014). Recent advances in graft copolymerization and applications of chitosan: A review. ACS Sustainable Chemistry and Engineering, 2(12): 2637-2652.

12.   Don, T. M., King, C. F., Chiu, W. Y., and Peng, C. A. (2006). Preparation and characterization of chitosan-g-poly(vinyl alcohol)/poly(vinyl alcohol) blends used for the evaluation of blood-contacting compatibility. Carbohydrate Polymers, 63(3): 331-339.

13.   Chew, K. W. and Tan, K. W. (2011). The effects of ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate, LiCF3SO3. International Journal of Electrochemical Science, 6(11): 5792-5801.

14.   Kingslin Mary Genova, F., Selvasekarapandian, S., Vijaya, N., Sivadevi, S., Premalatha, M., and Karthikeyan, S. (2017). Lithium ion-conducting polymer electrolytes based on PVA–PAN doped with lithium triflate. Ionics, 23(10): 2727-2734.

15.   Abdul Halim, N. J., Muhd Zailani, N. A., Nazir, K., Syed Ismail, S. N., and Abdul Latif, F. (2024). Effect of lithium triflate (LiTf) salt on the structural and electrochemical properties of the pectin-based solid polymer electrolytes films. Scientific Research Journal, 21(1): 145-162.

16.   Muhamad, S., Abdullah, S., Hashim, N. A. M. S. N., and Jalil, R. (2019). Characterization of solid polymer electrolyte using methylcellulose, KOH AND PEGD. Proceedings of the International Conference on Islamic Civilization and Technology Management, 23: 24.

17.   Aziz, S. B., Nofal, M. M., Abdulwahid, R. T., Kadir, M. F. Z., Hadi, J. M., Hessien, M. M., Kareem, W. O., Dannoun, E. M. A., and Saeed, S. R. (2021). Impedance, FTIR and transport properties of plasticized proton conducting biopolymer electrolyte based on chitosan for electrochemical device application. Results in Physics, 29(8): 104770.

18.   El-hefian, E. A., Nasef, M. M., Yahaya, A. H., and Khan, R. A. (2010). Preparation and characterization  of chitosan/agar blends. Journal of Chilean Chemical Society, 55(1): 130-136.

19.   Nayak, P., Ismayil, Shetty, S. K., Sudhakar, Y. N., and Hegde, S. (2023). Unleashing the potential of eco-friendly chitosan: Methylcellulose polyblend electrolytes via magnesium acetate doping for solid state batteries. Journal of Energy Storage, 72: 108503.

20.   Kumar, A., Sharma, R., Suresh, M., Das, M. K. and Kar, K. K. (2017). Structural and ion transport properties of lithium triflate/ poly(vinylidenefluoride-cohexafluoropropylene)

-based polymer electrolytes. Journal of Elastomers and Plastics, 49(6): 513-526.

21.   Aziz, S. B., Asnawi, A. S. F. M., Mohammed, P. A., Abdulwahid, R. T., Yusof, Y. M., Abdullah, R. M., and Kadir, M. F. Z. (2021). Impedance, circuit simulation, transport properties and energy storage behavior of plasticized lithium ion conducting chitosan based polymer electrolytes. Polymer Testing, 101(7): 107286.

22.   Aziz, S. B., and Abdullah, R. M. (2018). Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS:AgNt]x:PEO(x-1) (10 ≤ x ≤ 50). Electrochimica Acta, 285: 30-46.

23.   Joshi, J. H., Kanchan, D. K., Joshi, M. J., Jethva, H. O., and Parikh, K. D. (2017). Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Materials Research Bulletin, 93: 63-73.

24.   Nayak, P., Sudhakar, Y. N., and Shetty, S. K. (2024). Charging toward sustainability: MgCl2 doped chitosan–dextran polyblend electrolytes for energy storage device applications. RSC Advances, 14(50): 37045-37061.


 

 

1.