Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1382
Research Article
Structural and electrical properties
of chitosan grafted polyvinyl acetate (Ch-g-PVAc) with lithium triflate-based
polymer electrolytes
Ain Sorhana Nabila Ismadi1,
Nor Kartini Jaafar1*, Mohd Zaki Mohd Yusoff2, and Rosnah
Zakaria1
1School of
Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi
MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
2Institute
for Biodiversity and Sustainable Development (IBSD), Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
*Corresponding
author: norka603@uitm.edu.my
Received: 14 October 2024;
Revised: 25 January 2025; Accepted: 14 February 2025; Published: 13 April 2025
Abstract
Solid polymer electrolytes (SPEs) based on
natural polymers are gaining attention due to their environmentally friendly,
biodegradable, biocompatible, and safer materials compared to liquid
electrolytes. Numerous studies have been conducted to develop polymer
electrolytes with enhanced conductivity and long-term safety. In this study,
chitosan-based natural solid polymer electrolytes with polyvinyl acetate (PVAc) using graph copolymerisation
were studied. The polymer system of grafted Ch-g-PVAc
with different concentrations of lithium triflate (LiTf)
salt was successfully prepared using solution casting method. The X-Ray
diffraction (XRD) revealed the reduction in the crystalline nature upon the
inclusion of LiTf. Fourier transform infrared
spectroscopy (FTIR) analysis revealed that the PVAc
was successfully grafted onto the chitosan backbone, and the interaction of LiTf with Ch-g-PVAc are confirmed
by the existence of several functional groups. The bulk resistance decreases
with increasing salt content which is shown in electrical impedance
spectroscopy (EIS) result. The highest ionic conductivity, 6.68 × 10-5
S cm−1 was obtained for Ch-g-PVAc
doped with 50 wt.% LiTf salt with a breakdown voltage
of 3.5 V as measured by Linear Sweep Voltammetry (LSV). This study proposes an
environmentally friendly and practical electrolyte with excellent
electrochemical performance suitable for the development of electrochemical
devices.
Keywords: Chitosan, Ch-g-PVAc,
poly(vinyl) acetate, lithium triflate, amorphous
References
1.
Ali, A. M. M., Subban, R. H. Y., Bahron, H., Winie, T.,
Latif, F., and Yahya, M. Z. A. (2008). Grafted natural rubber-based polymer
electrolytes: ATR-FTIR and conductivity studies. Ionics, 14(6): 491-500.
2.
Aziz, S. B., Abdullah, O.
G., Hussein, S. A., and Ahmed, H. M. (2017). Effect of PVA blending on
structural and ion transport properties of CS:AgNt-based polymer electrolyte
membrane. Polymers, 9(11): 622.
3.
Hamsan, M. H., Aziz, S.
B., Nofal, M. M., Brza, M. A., Abdulwahid, R. T., Hadi, J. M., Karim, W. O., and
Kadir, M. F. Z. (2020). Characteristics of EDLC device fabricated from
plasticized chitosan:MgCl2 based polymer electrolyte. Journal of
Materials Research and Technology, 9(5): 10635-10646.
4.
Abdullah, O. G., Ahmed,
H. T., Tahir, D. A., Jamal, G. M., and Mohamad, A. H. (2021). Influence of PEG
plasticizer content on the proton-conducting PEO:MC-NH4I blend polymer
electrolytes based films. Results in Physics, 23: 104073
5.
Majumdar, S., Mondal, A.,
Mahajan, A., Bhattacharya, S. K., and Ray, R. (2023). Dye-sensitized solar cell
employing chitosan-based biopolymer electrolyte. IOP Conference Series:
Materials Science and Engineering, 1291(1): 012014.
6.
Abdulwahid, R. T., Aziz,
S. B., and Kadir, M. F. Z. (2023). Environmentally friendly plasticized
electrolyte based on chitosan (CS): Potato starch (PS) polymers for EDLC
application: Steps toward the greener energy storage devices derived from
biopolymers. Journal of Energy Storage, 67(5): 107636.
7.
Safavi-Mirmahalleh, S.
A., Dadkhah-Janqor, A., and Salami-Kalajahi, M. (2024). Chitosan-based gel polymer electrolytes for high performance
Li-ion battery. International Journal of Biological Macromolecules, 282:
137304.
8.
Ponmani, S.,
Kalaiselvimary, J., and Ramesh Prabhu, M. (2018). Structural, electrical, and
electrochemical properties of poly(vinylidene
fluoride-co-hexaflouropropylene)/poly(vinyl acetate)-based polymer blend
electrolytes for rechargeable magnesium ion batteries. Journal of Solid
State Electrochemistry, 22(8): 2605-2615.
9.
Sampath Kumar, L.,
Christopher Selvin, P., and Selvasekarapandian, S. (2021). Impact of lithium
triflate (LiCF3SO3) salt on tamarind seed
polysaccharide-based natural solid polymer electrolyte for application in
electrochemical device. Polymer Bulletin, 78(4): 1797-1819.
10.
Sanchez-Salvador, J. L.,
Balea, A., Monte, M. C., Negro, C., and Blanco, A. (2021). Chitosan
grafted/cross-linked with biodegradable polymers: A review. International
Journal of Biological Macromolecules, 178: 325-343.
11. Thakur, V. K., and Thakur, M. K. (2014). Recent advances in
graft copolymerization and applications of chitosan: A review. ACS
Sustainable Chemistry and Engineering, 2(12): 2637-2652.
12. Don, T. M., King, C. F., Chiu, W. Y., and Peng, C. A. (2006).
Preparation and characterization of chitosan-g-poly(vinyl alcohol)/poly(vinyl alcohol)
blends used for the evaluation of blood-contacting compatibility. Carbohydrate
Polymers, 63(3): 331-339.
13.
Chew,
K. W. and Tan, K. W. (2011). The effects of
ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate,
LiCF3SO3. International Journal of Electrochemical
Science, 6(11): 5792-5801.
14.
Kingslin Mary Genova, F.,
Selvasekarapandian, S., Vijaya, N., Sivadevi, S., Premalatha, M., and
Karthikeyan, S. (2017). Lithium ion-conducting polymer electrolytes based on
PVA–PAN doped with lithium triflate. Ionics, 23(10): 2727-2734.
15.
Abdul Halim, N. J., Muhd
Zailani, N. A., Nazir, K., Syed Ismail, S. N., and Abdul Latif, F. (2024).
Effect of lithium triflate (LiTf) salt on the structural and electrochemical
properties of the pectin-based solid polymer electrolytes films. Scientific
Research Journal, 21(1): 145-162.
16.
Muhamad, S., Abdullah,
S., Hashim, N. A. M. S. N., and Jalil, R. (2019). Characterization of solid
polymer electrolyte using methylcellulose, KOH AND PEGD. Proceedings of the
International Conference on Islamic Civilization and Technology Management,
23: 24.
17.
Aziz, S. B., Nofal, M.
M., Abdulwahid, R. T., Kadir, M. F. Z., Hadi, J. M., Hessien, M. M., Kareem, W.
O., Dannoun, E. M. A., and Saeed, S. R. (2021). Impedance, FTIR and transport
properties of plasticized proton conducting biopolymer electrolyte based on
chitosan for electrochemical device application. Results in Physics, 29(8):
104770.
18.
El-hefian, E. A., Nasef,
M. M., Yahaya, A. H., and Khan, R. A. (2010). Preparation and
characterization of chitosan/agar
blends. Journal of Chilean Chemical Society, 55(1): 130-136.
19.
Nayak, P., Ismayil,
Shetty, S. K., Sudhakar, Y. N., and Hegde, S. (2023). Unleashing the potential
of eco-friendly chitosan: Methylcellulose polyblend electrolytes via magnesium
acetate doping for solid state batteries. Journal of Energy Storage, 72:
108503.
20.
Kumar, A., Sharma, R.,
Suresh, M., Das, M. K. and Kar, K. K. (2017). Structural and ion transport
properties of lithium triflate/ poly(vinylidenefluoride-cohexafluoropropylene)
-based polymer
electrolytes. Journal of Elastomers and Plastics, 49(6): 513-526.
21.
Aziz, S. B., Asnawi, A.
S. F. M., Mohammed, P. A., Abdulwahid, R. T., Yusof, Y. M., Abdullah, R. M., and
Kadir, M. F. Z. (2021). Impedance, circuit simulation, transport properties and
energy storage behavior of plasticized lithium ion conducting chitosan based
polymer electrolytes. Polymer Testing, 101(7): 107286.
22.
Aziz, S. B., and
Abdullah, R. M. (2018). Crystalline and amorphous phase identification from the
tanδ relaxation peaks and impedance plots in polymer blend electrolytes
based on [CS:AgNt]x:PEO(x-1) (10 ≤ x ≤ 50). Electrochimica Acta,
285: 30-46.
23.
Joshi,
J. H., Kanchan, D. K., Joshi, M. J., Jethva, H. O., and Parikh, K. D. (2017). Dielectric relaxation, complex impedance and modulus
spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Materials
Research Bulletin, 93: 63-73.
24.
Nayak, P., Sudhakar, Y.
N., and Shetty, S. K. (2024). Charging toward sustainability: MgCl2 doped
chitosan–dextran polyblend electrolytes for energy storage device
applications. RSC Advances, 14(50): 37045-37061.
1.