Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1378

 

Research Article

 

Performance analysis on encapsulation of dietary fiber in chitosan-reinforced Ca-alginate starch beads using co-axial air extrusion system

 

Boon-Beng Lee1,2*, Noor Shazliana Aizee Abidin1,2, Khairul Farihan Kasim1,2, Sharon Teo1, Sung-Ting Sam1, 3,4, and Sylvester Mantihal5

 

1Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau. Perlis, Malaysia

2Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau. Perlis, Malaysia

3Center of Excellence Geopolymer and Green Technology, Universiti Malaysia Perlis, 02600 Arau. Perlis, Malaysia

4Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar. Perlis, Malaysia

5Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia

 

*Corresponding author: bblee@unimap.edu.my

 

Received: 29 August 2024; Revised: 19 November 2024; Accepted: 3 December 2024; Published: 27 March 2025

 

Abstract

Inulin is a dietary fibre added to various foods to promote health benefits. However, the harsh processing conditions may cause the inulin loss from the foods. Encapsulating inulin in Ca-alginate beads can minimise the loss. Hence, this study aims to investigate inulin encapsulation in chitosan-reinforced Ca-alginate-starch beads using a co-axial air extrusion system. The effect of process variables of the system on the bead quality was investigated. The production capability of the system was evaluated. The beads were subjected to a leaching test. The results showed that the bead diameter and sphericity increased as the alginate concentration increased. As the starch concentration was increased, it restricted the increase of the bead size but improved the bead sphericity. The chitosan concentration influenced the bead diameter and sphericity. When the compressed air was increased, the bead diameter was significantly decreased, and the bead sphericity was improved. The production rate of the system was in the range of 5 - 20 mL/min with a yield of 90%. The leachability tests showed that > 63.2% inulin was retained in the beads. The encapsulation system can produce inulin-encapsulated beads with the desired production rate and cost.

 

Keywords: dietary fibre, inulin encapsulation, chitosan, Ca-alginate starch bead, co-axial air extrusion system

 


References

1.        Gomes, W. F., Tiwari, B. K., Rodriguez, ., de Brito, E. S., Fernandes, F. A. N., and Rodrigues, S. (2017). Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chemistry, 218: 261-268.

2.        Strieder, M. M., Arruda, H. S., Pastore, G. M., and Silva, E. K. (2023). Inulin-type dietary fiber stability after combined thermal, mechanical, and chemical stresses related to ultrasound processing of prebiotic apple beverage. Food Hydrocolloids, 139: 108489.

3.        Yazici, G. N., Yilmaz, I., Taspinar, T., and Ozer, M. S. (2023). Application of inulin in pasta: The influence on technological and nutritional properties and on human health a review. Biology and Life Sciences Forum, 26(1): 14967

4.        Chan, E.-S., Wong, S.-L., Lee, P.-P., Lee, J.-S., Ti, T. B., Zhang, Z., Poncelet, D., Ravindra, P., Phan, S.-H., and Yim, Z.-H. (2011). Effects of starch filler on the physical properties of lyophilized calcium alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83(1): 225-232.

5.        Khosravi Zanjani, M. A., Ghiassi Tarzi, B., Sharifan, A., and Mohammadi, N. (2014). Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iranian Journal of Pharmaceutical Research, 13(3): 843-852.

6.        Khosravi Zanjani, M. A., Ghiassi Tarzi, B., Sharifan, A., and Mohammadi, N. (2014). Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition %G. Iranian Journal Pharmaceutical Research, 13(3): e125502.

7.        Atia, A., Gomma, A. I., Fliss, I., Beyssac, E., Garrait, G., and Subirade, M. (2017). Molecular and biopharmaceutical investigation of alginate inulin synbiotic coencapsulation of probiotic to target the colon. Journal of Microencapsulation, 34(2): 171-184.

8.        Chean, S. X., Hoh, P. Y., How, Y. H., Nyam, K. L., and Pui, L. P. (2021). Microencapsulation of Lactiplantibacillus plantarum with inulin and evaluation of survival in simulated gastrointestinal conditions and roselle juice. Brazilian Journal of Food Technology, 24: e2020224.

9.        Araujo, V., Gamboa, A., Caro, N., Abugoch, L., Gotteland, M., Valenzuela, F., Merchant, H. A., Basit, A. W., and Tapia, C. (2013). Release of prednisolone and inulin from a new calcium-alginate chitosan-coated matrix system for colonic delivery. Journal of Pharmaceutical Sciences, 102(8): 2748-2759.

10.     Balanč, B., Kalu ević, A., Drvenica, I., Coelho, M. T., Djordjević, V., Alves, V. D., Sousa, I., Mold o-Martins, M., Rakić, V., Nedović, V., and Bugarski, B. (2016). Calcium alginate inulin microbeads as carriers for aqueous carqueja extract. Journal of Food Science, 81(1): E65-E75.

11.     Chan, E.-S., Lim, T.-K., Ravindra, P., Mansa, R. F., and Islam, A. (2012). The effect of low air-to-liquid mass flow rate ratios on the size, size distribution and shape of calcium alginate particles produced using the atomization method. Journal of Food Engineering, 108(2): 297-303.

12.     Cui, J.-H., Goh, J.-S., Park, S.-Y., Kim, P.-H., and Lee, B.-J. (2001). Preparation and physical characterization of alginate microparticles using air atomization method. Drug Development and Industrial Pharmacy, 27(4): 309-319.

13.     Davarcı, F., Turan, D., Ozcelik, B., and Poncelet, D. (2017). The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique. Food Hydrocolloids, 62: 119-127.

14.     Gautier, A., Carpentier, B., Dufresne, M., Vu Dinh, Q., Paullier, P., and Legallais, C. (2011). Impact of alginate type and bead diameter on mass transfers and the metabolic activities of encapsulated C3A cells in bioartificial liver applications. European Cells & Materials, 21: 94-106.

15.     Chan, E.-S., Lee, B.-B., Ravindra, P., & Poncelet, D. (2009). Prediction models for shape and size of ca-alginate macrobeads produced through extrusion dripping method. Journal of Colloid and Interface Science, 338(1): 63-72.

16.     Del Gaudio, P., Colombo, P., Colombo, G., Russo, P., and Sonvico, F. (2005). Mechanisms of formation and disintegration of alginate beads obtained by prilling. International Journal of Pharmaceutics, 302(1): 1-9.

17.     Park, S.-B., Kang, H.-W., Haam, S., Park, H.-Y., and Kim, W.-S. (2004). Ca-alginate microspheres encapsulated in chitosan beads. Journal of Microencapsulation, 21(5): 485-497.

18.     Pr sse, U., Bilancetti, L., Bučko, M., Bugarski, B., Bukowski, J., Gemeiner, P., Lewińska, D., Manojlovic, V., Massart, B., Nastruzzi, C., Nedovic, V., Poncelet, D., Siebenhaar, S., Tobler, L., Tosi, A., Vikartovsk , A., and Vorlop, K.-D. (2008). Comparison of different technologies for alginate beads production. Chemical Papers, 62(4): 364-374.

19.     Lim, G.-P., Lee, B.-B., Ahmad, M. S., Singh, H., and Ravindra, P. (2016). Influence of process variables and formulation composition on sphericity and diameter of Ca-alginate-chitosan liquid core capsule prepared by extrusion dripping method. Particulate Science and Technology, 34(6): 681-690.

20.     Smrdel, P., Bogataj, M., and Mrhar, A. (2008). The influence of selected parameters on the size and shape of alginate beads prepared by ionotropic gelation. Scientia Pharmaceutica, 76(1): 77-90.

21.     Herrero, E. P., Del Valle, E. M. M., and Gal n, M. A. (2007). Instability study of a swirling annular liquid sheet of polymer produced by air-blast atomization. Chemical Engineering Journal, 133(1): 69-77.