Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1349

 

Review Article

 

Detection of nicotine and cotinine in keratinized samples: A review

 

Yong Gong Yu1,2, and Muhammad Jefri Mohd Yusof2*

 

1School of Graduate Studies, Postgraduate Centre, Management and Science University, 40100 Shah Alam, Selangor, Malaysia

2Department of Diagnostic and Allied Health Science,Faculty of Health and Life Sciences, Management and Science University, 40100 Shah Alam, Selangor, Malaysia

 

*Corresponding author: muhd_jefri@msu.edu.my

 

Received: 19 September 2024; Revised: 6 January 2025; Accepted: 14 February 2025; Published:  24 April 2025

 

Abstract

Nicotine, the primary addictive compound in tobacco and e-cigarette smoke, triggers a cycle of dependence and repeated use. Overconsumption of nicotine can be fatal when ingested at levels exceeding the median lethal dose (LD50) of 6.5-13 mg/kg. Cotinine, the main metabolite of nicotine after consumption, is widely distributed throughout the body. Nicotine has a half-life of 6 to 8 hours, whereas cotinine has a half-life of 16 to 18 hours. The detection of nicotine and cotinine is widely employed in clinical toxicology, forensic toxicology, workplace testing, and related fields. Due to their rapid absorption rates, nicotine and cotinine are frequently analyzed in biological matrices such as blood, urine, and saliva. Nevertheless, their relatively short half-lives have shifted attention to keratinized matrices, including hair and nails, which offer superior utility for long-term monitoring. Drugs and xenobiotics are incorporated into keratinized tissues via systemic circulation during their growth phase, where they remain sequestered, providing a stable medium for retrospective analysis. This review examines contemporary methodologies for the detection and quantification of nicotine and cotinine in keratinized samples, emphasizing their potential in longitudinal toxicological assessments.

 

Keywords: e-cigarette, biomarkers, forensic chemistry, onychology, toxicology

 


References

1.      Gupta, P. K. (2016). Toxic effects of pesticides (agrochemicals). Fundamentals of Toxicology, 185-202.

2.      Benowitz, N. L., Hukkanen, J., and Jacob, P. III. (2009). Nicotine chemistry, metabolism, kinetics, and biomarkers. In Nicotine Psychopharmacology (pp. 29-60).

3.      Foll, B. L., Piper, M. E., Fowler, C. D., Tonstad, S., Bierut, L., Lu, L., and Hall, W. D. (2022). Tobacco and nicotine use. Nature Reviews Disease Primers, 8(1): 19.

4.      Benowitz, N. L. (2009). Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annual Review of Pharmacology and Toxicology, 49: 57-71.

5.      Prochaska, J. J., and Benowitz, N. L. (2016). The past, present, and future of nicotine addiction therapy. Annual Review of Medicine, 67: 467-486.

6.      Tan, X., Vrana, K., and Ding, Z. M. (2021). Cotinine: Pharmacologically active metabolite of nicotine and neural mechanisms for its actions. Frontiers in Behavioral Neuroscience, 15: 758252.

7.      Gourlay, S. G., and Benowitz, N. L. (1997). Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. Clinical Pharmacology and Therapeutics, 62(4): 453-463.

8.      Hukkanen, J., Jacob, P., and Benowitz, N. L. (2005). Metabolism and disposition kinetics of nicotine. Pharmacological Reviews, 57(1): 79-115.

9.      Schick, S. F., Blount, B. C., Jacob, P., Saliba, N. A., Bernert, J. T., El Hellani, A., Jatlow, P., Pappas, R. S., Wang, L., Foulds, J., Ghosh, A., Hecht, S. S., Gomez, J. C., Martin, J. R., Mesaros, C., Srivastava, S., St. Helen, G., Tarran, R., Lorkiewicz, P. K., Blair, I. A., Kimmel, H. L., Doerschuk, C. M., Benowitz, N. L., and Bhatnagar, A. (2017). Biomarkers of exposure to new and emerging tobacco delivery products. American Journal of Physiology. Lung Cellular and Molecular Physiology, 313(3): L425-L452.

10.   Dhar, P. (2004). Measuring tobacco smoke exposure: Quantifying nicotine/cotinine concentration in biological samples by colorimetry, chromatography, and immunoassay methods. Journal of Pharmaceutical and Biomedical Analysis, 35(1): 155-168.

11.   Goniewicz, M. L. (2023). Biomarkers of electronic nicotine delivery systems (ENDS) use. Addiction Neuroscience, 6: 100077.

12.   Goniewicz, M. L., Knysak, J., Gawron, M., Kosmider, L., Sobczak, A., Kurek, J., and Benowitz, N. (2014). Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tobacco Control, 23(2): 133-139.

13.   Solimini, R., Minutillo, A., Kyriakou, C., Pichini, S., Pacifici, R., and Busardo, F. P. (2017). Nails in forensic toxicology: An update. Current Pharmaceutical Design, 23(36): 5468-5479.

14.   Avila-Tang, E., Al-Delaimy, W. K., Ashley, D. L., Benowitz, N., Bernert, J. T., Kim, S., and Hecht, S. S. (2013). Assessing secondhand smoke using biological markers. Tobacco Control, 22(3): 164-171.

15.   Al-Delaimy, W. K., Stampfer, M. J., Manson, J. E., and Willett, W. C. (2008). Toenail nicotine levels as predictors of coronary heart disease among women. American Journal of Epidemiology, 167(11): 1342-1348.

16.   Kim, S., Apelberg, B. J., Avila-Tang, E., Hepp, L., Yun, D., Samet, J. M., and Breysse, P. N. (2014). Utility and cutoff value of hair nicotine as a biomarker of long-term tobacco smoke exposure, compared to salivary cotinine. International Journal of Environmental Research and Public Health, 11(8): 8368-8382.

17.   Muddasani, S., Lin, G., Hooper, J., and Sloan, S. B. (2021). Nutrition and nail disease. Clinical Dermatology, 39: 819-828.

18.   Bandoli, G., Anunziata, F., Bogdan, R., Zilverstand, A., Chaiyachati, B. H., Gurka, K. K., ... and Bakhireva, L. N. (2024). Assessment of substance exposures in nail clipping samples: A systematic review. Drug and Alcohol Dependence, 254: 111038.

19.   Marques, H., Cruz-Vicente, P., Rosado, T., Barroso, M., Passarinha, L. A., and Gallardo, E. (2021). Recent developments in the determination of biomarkers of tobacco smoke exposure in biological specimens: A review. International Journal of Environmental Research and Public Health, 18(4): 1768.

20.   Al-Delaimy, W. K., Mahoney, G. N., Speizer, F. E., and Willett, W. C. (2002). Toenail nicotine levels as a biomarker of tobacco smoke exposure. Cancer Epidemiology Biomarkers & Prevention, 11(11): 1400-1404.

21.   Cappelle, D., Yegles, M., Neels, H., van Nuijs, A. L. N., De Doncker, M., Maudens, K., Covaci, A., and Crunelle, C. L. (2014). Nail analysis for the detection of drugs of abuse and pharmaceuticals: A review. Forensic Toxicology, 33(1): 12-36.

22.   Tricker, A. R. (2006). Biomarkers derived from nicotine and its metabolites: A review. Contributions to Tobacco & Nicotine Research, 22(3): 147-175.

23.   Raja, M., Garg, A., Yadav, P., Jha, K., and Handa, S. (2016). Diagnostic methods for detection of cotinine level in tobacco users: A review. Journal of Clinical and Diagnostic Research: 10(3): ZE04.

24.   Hill, V. A., Stowe, G. N., Paulsen, R. B., and Schaffer, M. (2018). Nail analysis for drugs: A role in workplace testing? Journal of Analytical Toxicology, 42(6): 425-436.

25.   Madry, M. M., Steuer, A. E., Binz, T. M., Baumgartner, M. R., and Kraemer, T. (2014). Systematic investigation of the incorporation mechanisms of zolpidem in fingernails. Drug Testing and Analysis, 6(6): 533-541.

26.   Schroeder, M. J., and Hoffman, A. C. (2014). Electronic cigarettes and nicotine clinical pharmacology. Tobacco Control, 23: 30-35.

27.   St Helen, G., Havel, C., Dempsey, D. A., Jacob, P. and Benowitz, N. L. (2016). Nicotine delivery, retention and pharmacokinetics from various electronic cigarettes. Addiction, 111(3): 535-544.

28.   St. Helen, G., Nardone, N., Addo, N., Dempsey, D., Havel, C., Jacob III, P., and Benowitz, N. L.


(2020). Differences in nicotine intake and effects from electronic and combustible cigarettes among dual users. Addiction, 115(4): 757-767.

29.   Goniewicz, M. L., Knysak, J., Gawron, M., Kosmider, L., Sobczak, A., Kurek, J., and Benowitz, N. (2014). Levels of selected carcinogens and toxicants in vapour from electronic cigarettes.        Tobacco Control, 23(2): 133-139.

30.   McDermott, S., Reichmann, K., Mason, E., Fearon, I. M., O’Connell, G., and Nahde, T. (2023). An assessment of nicotine pharmacokinetics and subjective effects of the pulze heated tobacco system compared with cigarettes. Scientific Reports, 13(1): 9037.

31.   Hajek, P., Przulj, D., Phillips, A., Anderson, R., and McRobbie, H. (2017). Nicotine delivery to users from cigarettes and from different types of e-cigarettes. Psychopharmacology, 234: 773-779.

32.   Farsalinos, K. E., Gillman, G., Poulas, K., and Voudris, V. (2015). Tobacco-specific nitrosamines in electronic cigarettes: Comparison between liquid and aerosol levels. International Journal of Environmental Research and Public Health, 12(8): 9046-9053.

33.   Akrodou, Y. M. (2015). CYP2A6 polymorphisms may strengthen individualized treatment for nicotine dependence. Scientifica, 2015(1): 491514.

34.   Benowitz, N. L., Herrera, B., and Jacob, P. (2004). Mentholated cigarette smoking inhibits nicotine metabolism. Journal of Pharmacology and Experimental Therapeutics, 310(3): 1208-1215.

35.   Kumboyono, K., Chomsy, I. N., Hidayat, W. S., Hakim, A. K., Shalshabilla, N. N., Sujuti, H., and Wihastuti, T. A. (2023). Factors affecting the serum cotinine level of male smokers in Malang, Indonesia. International Journal of Medical Toxicology and Forensic Medicine, 13(3): 40130-40130.

36.   Molander, L., Hansson, A., and Lunell, E. (2001). Pharmacokinetics of nicotine in healthy elderly people. Clinical Pharmacology & Therapeutics, 69(1): 57-65.

37.   Pérez-Martín, H., Lidón-Moyano, C., González-Marrón, A., Fu, M., Pérez-Ortuño, R., Ballbè, M., and Martínez-Sánchez, J. M. (2023). Variation in nicotine metabolization according to biological factors and type of nicotine consumer. Healthcare, 11(2): 179.

38.   Dempsey, D., Jacob, P., & Benowitz, N. L. (2002). Accelerated metabolism of nicotine and cotinine in pregnant smokers. Journal of Pharmacology and Experimental Therapeutics, 301(2): 594-598.

39.   Selby, P., Hackman, R., Kapur, B., Klein, J., and Koren, G. (2001). Heavily smoking women who cannot quit in pregnancy: Evidence of pharmacokinetic predisposition. Therapeutic Drug Monitoring, 23(3): 189-191.

40.   Molander, L., Hansson, A., Lunell, E., Alainentalo, L., Hoffmann, M., and Larsson, R. (2000). Pharmacokinetics of nicotine in kidney failure. Clinical Pharmacology & Therapeutics, 68(3): 250-260.

41.   Benowitz, N. L., Lessov‐Schlaggar, C. N., Swan, G. E., and Jacob III, P. (2006). Female sex and oral contraceptive use accelerate nicotine metabolism. Clinical Pharmacology & Therapeutics, 79(5): 480-488.

42.   Sellers, E. M., Kaplan, H. L., and Tyndale, R. F. (2000). Inhibition of cytochrome P450 2A6 increases nicotine's oral bioavailability and decreases smoking. Clinical Pharmacology & Therapeutics, 68(1): 35-43.

43.   Sellers, E. M., Ramamoorthy, Y., Zeman, M. V., Djordjevic, M. V., and Tyndale, R. F. (2003). The effect of methoxsalen on nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in vivo. Nicotine & Tobacco Research, 5(6): 891-899.

44.   Benowitz, N. L., and Jacob III, P. (1993). Nicotine and cotinine elimination pharmacokinetics in smokers and nonsmokers. Clinical Pharmacology & Therapeutics, 53(3): 316-323.

45.   Benowitz, N. L., and Jacob III, P. (2000). Effects of cigarette smoking and carbon monoxide on nicotine and cotinine metabolism. Clinical Pharmacology & Therapeutics, 67(6): 653-659.

46.   Rubinstein, M. L., Shiffman, S., Rait, M. A., and Benowitz, N. L. (2013). Race, gender, and nicotine metabolism in adolescent smokers. Nicotine & Tobacco Research, 15(7): 1311-1315.

47.   Schwartz, E. K., Palmisano, A. N., Gueorguieva, R., DeVito, E. E., and Sofuoglu, M. (2023). Examining racial differences in smoking outcomes among smokers enrolled in an intravenous nicotine infusion study. Addictive Behaviors, 140: 107615.

48.   Baird, C. (2020). Electronic nicotine delivery systems aka vapes and public policy. Journal of Addictions Nursing, 31(4): 310-311.

49.   Kim, J., Cho, H. D., Suh, J. H., Lee, J. Y., Lee, E., Jin, C. H., and Han, S. B. (2020). Analysis of nicotine metabolites in hair and nails using QuEChERS method followed by liquid chromatography–tandem mass spectrometry. Molecules, 25(8): 1763.

50.   Cashman, L., and Nutt, J. (2019). A comparison of levels of nicotine and cotinine in hair of tobacco smokers and users of e-cigarettes using GC-MS. Toxicologie Analytique et Clinique, 31(2): S83.

51.   Inukai, T., Kaji, S., and Kataoka, H. (2018). Anal-ysis of nicotine and cotinine in hair by on-line   in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectro-     metry as biomarkers of exposure to tobacco        smoke. Journal of Pharmaceutical and               Biomedical Analysis, 156: 272-277.

52.   Pattemore, P. K., Silvers, K. M., Frampton, C. M., Wickens, K., Ingham, T., Fishwick, D., Crane, J., Town, G. I., Epton, M. J., and New Zealand Asthma and Allergy Cohort Study Group. (2018). Hair nicotine at 15 months old, tobacco exposure, and wheeze or asthma from 15 months to 6 years old. Pediatric Pulmonology, 53(4): 443-451.

53.   Tzatzarakis, M. N., Vardavas, C. I., Terzi, I., Kavalakis, M., Kokkinakis, M., Liesivuori, J., and Tsatsakis, A. M. (2012). Hair nicotine/cotinine concentrations as a method of monitoring exposure to tobacco smoke among infants and adults. Human & Experimental Toxicology, 31(3): 258-265.

54.   Groner, J. A., Huang, H., Nicholson, L., Kuck, J., Boettner, B., and Bauer, J. A. (2012). Secondhand smoke exposure and hair nicotine in children: Age-dependent differences. Nicotine & Tobacco Research, 14(9): 1105-1109.

55.   Lukrica, Z., Brčić Karačonji, I., Brajenović, N., and Skender, L. (2011). Optimization of a solid‐phase microextraction method for the analysis of nicotine in hair. Journal of Separation Science, 34(19): 2726-2731.

56.   Kim, S. R., Wipfli, H., Avila-Tang, E., Samet, J. M., and Breysse, P. N. (2009). Method validation for measurement of hair nicotine level in nonsmokers. Biomedical Chromatography: BMC, 23(3): 273-279.

57.   Man, C. N., Ismail, S., Harn, G. L., Lajis, R., and Awang, R. (2009). Determination of hair nicotine by gas chromatography–mass spectrometry. Journal of Chromatography B, 877(3): 339-342.

58.   Yang, J., Hu, Y., Cai, J. B., Zhu, X. L., Su, Q. D., Hu, Y. Q., and Liang, F. X. (2007). Selective hair analysis of nicotine by molecular imprinted solid-phase extraction: An application for evaluating tobacco smoke exposure. Food and Chemical Toxicology, 45(6): 896-903.

59.   Chetiyanukornkul, T., Toriba, A., Kizu, R., Kimura, K., and Hayakawa, K. (2004). Hair analysis of nicotine and cotinine for evaluating tobacco smoke exposure by liquid chromatography-mass spectrometry. Biomedical Chromatography: BMC, 18(9): 655-661.

60.   Mari, F., Politi, L., and Bertol, E. (2008). Nails of newborns in monitoring drug exposure during pregnancy. Forensic Science International, 179(2–3): 176-180.

61.   Al-Delaimy, W. K., and Willett, W. C. (2008). Measurement of tobacco smoke exposure: Comparison of toenail nicotine biomarkers and self-reports. Cancer Epidemiology, Biomarkers & Prevention, 17(5): 1255-1261.

62.   Stepanov, I., Feuer, R., Jensen, J., Hatsukami, D., and Hecht, S. S. (2006). Mass spectrometric quantitation of nicotine, cotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human toenails. Cancer Epidemiology, Biomarkers & Prevention, 15(12): 2378-2383.

63.   Axente, R. E., Stan, M., Chitescu, C. L., Nitescu, V. G., Vlasceanu, A. M., and Baconi, D. L. (2023). Application of ionic liquids as mobile phase additives for simultaneous analysis of nicotine and its metabolite cotinine in human plasma by HPLC–DAD. Molecules, 28(4): 1563.

64.   Massadeh, A. M., Gharaibeh, A. A., & Omari, K. W. (2009). A single-step extraction method for the determination of nicotine and cotinine in Jordanian smokers’ blood and urine samples by RP-HPLC and GC-MS. Journal of Chromatographic Science, 47(2): 170-177.