Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1349
Review Article
Detection of nicotine and cotinine in
keratinized samples: A review
Yong Gong Yu1,2, and Muhammad
Jefri Mohd Yusof2*
1School of
Graduate Studies, Postgraduate Centre, Management and Science University, 40100
Shah Alam, Selangor, Malaysia
2Department
of Diagnostic and Allied Health Science,Faculty of Health and Life Sciences,
Management and Science University, 40100 Shah Alam, Selangor, Malaysia
*Corresponding
author: muhd_jefri@msu.edu.my
Received: 19 September 2024;
Revised: 6 January 2025; Accepted: 14 February 2025; Published: 24 April 2025
Abstract
Nicotine, the primary addictive compound in tobacco and
e-cigarette smoke, triggers a cycle of dependence and repeated use. Overconsumption
of nicotine can be fatal when ingested at levels exceeding the median lethal
dose (LD50) of 6.5-13 mg/kg. Cotinine, the main metabolite of
nicotine after consumption, is widely distributed throughout the body. Nicotine
has a half-life of 6 to 8 hours, whereas cotinine has
a half-life of 16 to 18 hours. The detection of nicotine and cotinine is widely
employed in clinical toxicology, forensic toxicology, workplace testing, and
related fields. Due to their rapid absorption rates, nicotine and cotinine are
frequently analyzed in biological matrices such as blood, urine, and saliva.
Nevertheless, their relatively short half-lives have shifted attention to
keratinized matrices, including hair and nails, which offer superior utility
for long-term monitoring. Drugs and xenobiotics are incorporated into
keratinized tissues via systemic circulation during their growth phase, where
they remain sequestered, providing a stable medium for retrospective analysis.
This review examines contemporary methodologies for the detection and
quantification of nicotine and cotinine in keratinized samples, emphasizing their
potential in longitudinal toxicological assessments.
Keywords: e-cigarette, biomarkers, forensic
chemistry, onychology, toxicology
References
1. Gupta,
P. K. (2016). Toxic effects of pesticides (agrochemicals). Fundamentals of
Toxicology, 185-202.
2. Benowitz,
N. L., Hukkanen, J., and Jacob, P. III. (2009). Nicotine chemistry, metabolism,
kinetics, and biomarkers. In Nicotine Psychopharmacology (pp. 29-60).
3. Foll,
B. L., Piper, M. E., Fowler, C. D., Tonstad, S., Bierut, L., Lu, L., and Hall,
W. D. (2022). Tobacco and nicotine use. Nature Reviews Disease Primers, 8(1):
19.
4. Benowitz,
N. L. (2009). Pharmacology of nicotine: Addiction, smoking-induced disease, and
therapeutics. Annual Review of Pharmacology and Toxicology, 49: 57-71.
5. Prochaska,
J. J., and Benowitz, N. L. (2016). The past, present, and future of nicotine
addiction therapy. Annual Review of Medicine, 67: 467-486.
6. Tan,
X., Vrana, K., and Ding, Z. M. (2021). Cotinine: Pharmacologically active
metabolite of nicotine and neural mechanisms for its actions. Frontiers in Behavioral Neuroscience, 15: 758252.
7. Gourlay,
S. G., and Benowitz, N. L. (1997). Arteriovenous differences in plasma
concentration of nicotine and catecholamines and related cardiovascular effects
after smoking, nicotine nasal spray, and intravenous nicotine. Clinical
Pharmacology and Therapeutics, 62(4): 453-463.
8. Hukkanen,
J., Jacob, P., and Benowitz, N. L. (2005). Metabolism and disposition kinetics
of nicotine. Pharmacological Reviews, 57(1): 79-115.
9. Schick,
S. F., Blount, B. C., Jacob, P., Saliba, N. A., Bernert, J. T., El Hellani, A., Jatlow, P., Pappas,
R. S., Wang, L., Foulds, J., Ghosh, A., Hecht, S. S., Gomez, J. C., Martin, J.
R., Mesaros, C., Srivastava, S., St. Helen, G., Tarran, R., Lorkiewicz,
P. K., Blair, I. A., Kimmel, H. L., Doerschuk, C. M., Benowitz, N. L., and
Bhatnagar, A. (2017). Biomarkers of exposure to new and emerging tobacco
delivery products. American Journal of Physiology. Lung Cellular and
Molecular Physiology, 313(3): L425-L452.
10. Dhar,
P. (2004). Measuring tobacco smoke exposure: Quantifying nicotine/cotinine
concentration in biological samples by colorimetry, chromatography, and
immunoassay methods. Journal of Pharmaceutical and Biomedical Analysis, 35(1):
155-168.
11.
Goniewicz, M. L. (2023). Biomarkers of electronic nicotine
delivery systems (ENDS) use. Addiction Neuroscience, 6: 100077.
12.
Goniewicz, M. L., Knysak, J.,
Gawron, M., Kosmider, L., Sobczak, A., Kurek, J., and Benowitz, N. (2014).
Levels of selected carcinogens and toxicants in vapour from electronic
cigarettes. Tobacco Control, 23(2): 133-139.
13.
Solimini, R., Minutillo, A., Kyriakou, C., Pichini, S., Pacifici, R., and Busardo,
F. P. (2017). Nails in forensic toxicology: An update. Current
Pharmaceutical Design, 23(36): 5468-5479.
14.
Avila-Tang, E., Al-Delaimy,
W. K., Ashley, D. L., Benowitz, N., Bernert, J. T., Kim, S., and Hecht, S. S.
(2013). Assessing secondhand smoke using biological
markers. Tobacco Control, 22(3): 164-171.
15.
Al-Delaimy, W. K.,
Stampfer, M. J., Manson, J. E., and Willett, W. C. (2008). Toenail nicotine
levels as predictors of coronary heart disease among women. American Journal
of Epidemiology, 167(11): 1342-1348.
16.
Kim, S., Apelberg, B. J.,
Avila-Tang, E., Hepp, L., Yun, D., Samet, J. M., and Breysse,
P. N. (2014). Utility and cutoff value of hair nicotine as a biomarker of
long-term tobacco smoke exposure, compared to salivary cotinine. International
Journal of Environmental Research and Public Health, 11(8): 8368-8382.
17.
Muddasani, S., Lin, G., Hooper, J., and Sloan, S. B. (2021).
Nutrition and nail disease. Clinical Dermatology, 39: 819-828.
18.
Bandoli, G., Anunziata, F.,
Bogdan, R., Zilverstand, A., Chaiyachati,
B. H., Gurka, K. K., ... and Bakhireva, L. N. (2024).
Assessment of substance exposures in nail clipping samples: A systematic
review. Drug and Alcohol Dependence, 254: 111038.
19.
Marques, H., Cruz-Vicente, P., Rosado, T., Barroso,
M., Passarinha, L. A., and Gallardo, E. (2021).
Recent developments in the determination of biomarkers of tobacco smoke
exposure in biological specimens: A review. International Journal of
Environmental Research and Public Health, 18(4): 1768.
20.
Al-Delaimy, W. K.,
Mahoney, G. N., Speizer, F. E., and Willett, W. C. (2002). Toenail nicotine
levels as a biomarker of tobacco smoke exposure. Cancer Epidemiology
Biomarkers & Prevention, 11(11): 1400-1404.
21.
Cappelle, D., Yegles, M., Neels, H., van Nuijs, A. L. N., De Doncker, M., Maudens, K., Covaci, A., and
Crunelle, C. L. (2014). Nail analysis for the detection of drugs of abuse
and pharmaceuticals: A review. Forensic Toxicology, 33(1): 12-36.
22.
Tricker, A. R. (2006). Biomarkers derived from
nicotine and its metabolites: A review. Contributions to Tobacco &
Nicotine Research, 22(3): 147-175.
23.
Raja, M., Garg, A., Yadav, P., Jha, K., and Handa,
S. (2016). Diagnostic methods for detection of cotinine level in tobacco users:
A review. Journal of Clinical and Diagnostic Research: 10(3): ZE04.
24.
Hill, V. A., Stowe, G. N., Paulsen, R. B., and
Schaffer, M. (2018). Nail analysis for drugs: A role in workplace testing? Journal
of Analytical Toxicology, 42(6): 425-436.
25.
Madry, M. M., Steuer, A. E., Binz, T. M.,
Baumgartner, M. R., and Kraemer, T. (2014). Systematic investigation of the
incorporation mechanisms of zolpidem in fingernails. Drug Testing and
Analysis, 6(6): 533-541.
26.
Schroeder, M. J., and Hoffman, A. C. (2014).
Electronic cigarettes and nicotine clinical pharmacology. Tobacco Control, 23:
30-35.
27.
St Helen, G., Havel, C., Dempsey, D. A., Jacob, P.
and Benowitz, N. L. (2016). Nicotine delivery, retention and pharmacokinetics
from various electronic cigarettes. Addiction, 111(3): 535-544.
28.
St. Helen, G., Nardone, N., Addo, N., Dempsey, D.,
Havel, C., Jacob III, P., and Benowitz, N. L.
(2020).
Differences in nicotine intake and effects from electronic and combustible
cigarettes among dual users. Addiction, 115(4): 757-767.
29.
Goniewicz, M. L., Knysak, J.,
Gawron, M., Kosmider, L., Sobczak, A., Kurek, J., and Benowitz, N. (2014).
Levels of selected carcinogens and toxicants in vapour from electronic
cigarettes. Tobacco Control, 23(2):
133-139.
30.
McDermott, S., Reichmann, K., Mason, E., Fearon, I.
M., O’Connell, G., and Nahde, T. (2023). An
assessment of nicotine pharmacokinetics and subjective effects of the pulze heated tobacco system compared with cigarettes. Scientific
Reports, 13(1): 9037.
31.
Hajek, P., Przulj, D.,
Phillips, A., Anderson, R., and McRobbie, H. (2017). Nicotine delivery to users
from cigarettes and from different types of e-cigarettes. Psychopharmacology,
234: 773-779.
32.
Farsalinos, K. E., Gillman, G., Poulas, K., and Voudris, V. (2015). Tobacco-specific nitrosamines in electronic
cigarettes: Comparison between liquid and aerosol levels. International
Journal of Environmental Research and Public Health, 12(8): 9046-9053.
33.
Akrodou, Y. M. (2015). CYP2A6 polymorphisms may strengthen
individualized treatment for nicotine dependence. Scientifica,
2015(1): 491514.
34.
Benowitz, N. L., Herrera, B., and Jacob, P. (2004).
Mentholated cigarette smoking inhibits nicotine metabolism. Journal of
Pharmacology and Experimental Therapeutics, 310(3): 1208-1215.
35.
Kumboyono, K., Chomsy, I. N.,
Hidayat, W. S., Hakim, A. K., Shalshabilla, N. N., Sujuti, H., and Wihastuti, T. A.
(2023). Factors affecting the serum cotinine level of male smokers in Malang,
Indonesia. International Journal of Medical Toxicology and Forensic
Medicine, 13(3): 40130-40130.
36.
Molander, L., Hansson, A., and Lunell, E. (2001). Pharmacokinetics
of nicotine in healthy elderly people. Clinical Pharmacology &
Therapeutics, 69(1): 57-65.
37.
Pérez-Martín, H., Lidón-Moyano,
C., González-Marrón, A., Fu, M., Pérez-Ortuño, R., Ballbè, M., and Martínez-Sánchez, J. M. (2023). Variation
in nicotine metabolization according to biological factors and type of nicotine
consumer. Healthcare, 11(2): 179.
38.
Dempsey, D., Jacob, P., & Benowitz, N. L.
(2002). Accelerated metabolism of nicotine and cotinine in pregnant smokers. Journal
of Pharmacology and Experimental Therapeutics, 301(2): 594-598.
39.
Selby, P., Hackman, R., Kapur, B., Klein, J., and
Koren, G. (2001). Heavily smoking women who cannot quit in pregnancy: Evidence
of pharmacokinetic predisposition. Therapeutic Drug Monitoring, 23(3):
189-191.
40.
Molander,
L., Hansson, A., Lunell, E., Alainentalo, L.,
Hoffmann, M., and Larsson, R. (2000). Pharmacokinetics of nicotine in kidney
failure. Clinical Pharmacology & Therapeutics, 68(3): 250-260.
41.
Benowitz, N. L., Lessov‐Schlaggar,
C. N., Swan, G. E., and Jacob III, P. (2006). Female sex and oral contraceptive
use accelerate nicotine metabolism. Clinical Pharmacology &
Therapeutics, 79(5): 480-488.
42.
Sellers, E. M., Kaplan, H. L., and Tyndale, R. F.
(2000). Inhibition of cytochrome P450 2A6 increases nicotine's oral
bioavailability and decreases smoking. Clinical Pharmacology &
Therapeutics, 68(1): 35-43.
43.
Sellers, E. M., Ramamoorthy, Y., Zeman, M. V.,
Djordjevic, M. V., and Tyndale, R. F. (2003). The effect of methoxsalen
on nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone
(NNK) metabolism in vivo. Nicotine & Tobacco Research, 5(6): 891-899.
44.
Benowitz, N. L., and Jacob III, P. (1993). Nicotine
and cotinine elimination pharmacokinetics in smokers and nonsmokers. Clinical
Pharmacology & Therapeutics, 53(3): 316-323.
45.
Benowitz, N. L., and Jacob III, P. (2000). Effects
of cigarette smoking and carbon monoxide on nicotine and cotinine metabolism. Clinical
Pharmacology & Therapeutics, 67(6): 653-659.
46.
Rubinstein, M. L., Shiffman, S., Rait, M. A., and
Benowitz, N. L. (2013). Race, gender, and nicotine metabolism in adolescent
smokers. Nicotine & Tobacco Research, 15(7): 1311-1315.
47.
Schwartz, E. K., Palmisano, A. N., Gueorguieva, R.,
DeVito, E. E., and Sofuoglu, M. (2023). Examining
racial differences in smoking outcomes among smokers enrolled in an intravenous
nicotine infusion study. Addictive Behaviors, 140:
107615.
48.
Baird, C. (2020). Electronic nicotine delivery
systems aka vapes and public policy. Journal of Addictions Nursing, 31(4):
310-311.
49.
Kim, J., Cho, H. D., Suh, J. H., Lee, J. Y., Lee,
E., Jin, C. H., and Han, S. B. (2020). Analysis of nicotine metabolites in hair
and nails using QuEChERS method followed by liquid
chromatography–tandem mass spectrometry. Molecules, 25(8): 1763.
50.
Cashman, L., and Nutt, J. (2019). A comparison of
levels of nicotine and cotinine in hair of tobacco smokers and users of
e-cigarettes using GC-MS. Toxicologie Analytique et Clinique, 31(2): S83.
51.
Inukai, T., Kaji, S., and
Kataoka, H. (2018). Anal-ysis of nicotine and
cotinine in hair by on-line in-tube
solid-phase microextraction coupled with liquid chromatography-tandem mass spectro- metry as biomarkers of exposure to tobacco smoke. Journal of Pharmaceutical and Biomedical Analysis, 156: 272-277.
52.
Pattemore, P. K., Silvers, K. M., Frampton, C. M., Wickens,
K., Ingham, T., Fishwick, D., Crane, J., Town, G. I., Epton, M. J., and New
Zealand Asthma and Allergy Cohort Study Group. (2018). Hair nicotine at 15
months old, tobacco exposure, and wheeze or asthma from 15 months to 6 years
old. Pediatric Pulmonology, 53(4): 443-451.
53.
Tzatzarakis, M. N., Vardavas, C. I.,
Terzi, I., Kavalakis, M., Kokkinakis, M., Liesivuori, J., and Tsatsakis, A.
M. (2012). Hair nicotine/cotinine concentrations as a method of monitoring
exposure to tobacco smoke among infants and adults. Human & Experimental
Toxicology, 31(3): 258-265.
54.
Groner, J. A., Huang, H., Nicholson, L., Kuck, J.,
Boettner, B., and Bauer, J. A. (2012). Secondhand
smoke exposure and hair nicotine in children: Age-dependent differences. Nicotine
& Tobacco Research, 14(9): 1105-1109.
55.
Lukrica, Z., Brčić Karačonji,
I., Brajenović, N., and Skender, L. (2011).
Optimization of a solid‐phase microextraction method for the analysis of
nicotine in hair. Journal of Separation Science, 34(19): 2726-2731.
56.
Kim, S. R., Wipfli, H., Avila-Tang, E., Samet, J.
M., and Breysse, P. N. (2009). Method validation for
measurement of hair nicotine level in nonsmokers. Biomedical Chromatography:
BMC, 23(3): 273-279.
57.
Man, C. N., Ismail, S., Harn, G. L., Lajis, R., and Awang, R. (2009). Determination of hair
nicotine by gas chromatography–mass spectrometry. Journal of Chromatography
B, 877(3): 339-342.
58.
Yang, J., Hu, Y., Cai, J. B., Zhu, X. L., Su, Q.
D., Hu, Y. Q., and Liang, F. X. (2007). Selective hair analysis of nicotine by molecular
imprinted solid-phase extraction: An application for evaluating tobacco smoke
exposure. Food and Chemical Toxicology, 45(6): 896-903.
59.
Chetiyanukornkul, T., Toriba, A., Kizu, R., Kimura, K., and Hayakawa, K. (2004).
Hair analysis of nicotine and cotinine for evaluating tobacco smoke exposure by
liquid chromatography-mass spectrometry. Biomedical Chromatography: BMC, 18(9):
655-661.
60.
Mari, F., Politi, L., and Bertol, E. (2008). Nails
of newborns in monitoring drug exposure during pregnancy. Forensic Science
International, 179(2–3): 176-180.
61.
Al-Delaimy, W. K., and
Willett, W. C. (2008). Measurement of tobacco smoke exposure: Comparison of
toenail nicotine biomarkers and self-reports. Cancer Epidemiology,
Biomarkers & Prevention, 17(5): 1255-1261.
62.
Stepanov, I., Feuer, R., Jensen, J., Hatsukami, D.,
and Hecht, S. S. (2006). Mass spectrometric quantitation of nicotine, cotinine,
and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in
human toenails. Cancer Epidemiology, Biomarkers & Prevention, 15(12):
2378-2383.
63.
Axente, R. E., Stan, M., Chitescu,
C. L., Nitescu, V. G., Vlasceanu, A. M., and Baconi, D. L. (2023). Application of ionic liquids as
mobile phase additives for simultaneous analysis of nicotine and its metabolite
cotinine in human plasma by HPLC–DAD. Molecules, 28(4): 1563.
64.
Massadeh, A. M., Gharaibeh, A. A., & Omari, K. W. (2009). A
single-step extraction method for the determination of nicotine and cotinine in
Jordanian smokers’ blood and urine samples by RP-HPLC and GC-MS. Journal of
Chromatographic Science, 47(2): 170-177.