Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1340

 

Research Article

 

Adsorptive removal of methylene blue using magnetic graphitic carbon nitride (Fe3O4/g-C3N4) composite: insights into isotherms, kinetics, and thermodynamic properties

 

Nurul Izza Taib1, Rozaina Saleh1,2*, Aunie Aqelah Fisol1, Isma Iwana Ismail1, and Nur Najieha Ismail1

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400 Tapah Road, Perak, Malaysia

2Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

*Corresponding author: rozaina103@uitm.edu.my

 

Received: 19 September 2024; Revised: 9 December 2024; Accepted: 14 December 2024; Published: 8 April 2025

 

Abstract

In the present study, we have successfully synthesized iron oxide-coated graphitic carbon nitride (g-C3N4/Fe3O4) through chemical co-precipitation and utilized it as an adsorbent for removing methylene blue (MB) from an aqueous solution. These findings demonstrate the effectiveness of g-C3N4/Fe3O4 as an adsorbent for removing cationic dyes from aqueous solutions. The as-prepared composites underwent a thorough characterization using X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR), Zeta Potential and Vibrating Sample Magnetism (VSM). XRD and FTIR have confirmed the formation of composites of g-C3N4/Fe3O4. FESEM verifies the nano-scale nature of the composite. From VSM, the composite has high saturation magnetization, which implies that the adsorbent can be separated from the treated solution by employing an external magnet. The removal percentage of MB was evaluated under various conditions, including pH (2.0 -8.0), contact time (10 - 360 min), initial concentration (10 – 300 mg/L), and temperature (298 K – 328 K), using batch-adsorption techniques. This study found that the optimal pH for adsorption was 5.0, with the highest adsorption capacity observed at the concentration of 10 mg/L, achieving an 81.11% removal efficiency.  Equilibrium adsorption reached 45.58% within 30 minutes. The Langmuir isotherm which can explain the adsorption isotherms, indicate maximum adsorption capacity of 40.2 mg/g. Kinetic studies indicated that the adsorption process conformed to a pseudo-second-order model, suggesting a chemical sorption involvement. Thermodynamic analysis revealed a positive Gibbs free energy value, indicating a non-spontaneous reaction, and a positive enthalpy value, suggesting an endothermic process.

 

Keywords: iron oxide; graphitic carbon nitride; adsorption; thermodynamics; isotherms

 


References

1.   Kalia, R., A. Chauhan, R. Verma, M. Sharma, K.M. Batoo, R. Kumar, S. Hussain, S. Ghotekar, and M.F. Ijaz. (2022). Photocatalytic degradation properties of Li‐Cr ions substituted CoFe2O4 nanoparticles for wastewater treatment application. Physica Status Solidi (a), 219(8): 2100539.

2.   Zhai, H., Z. Liu, L. Xu, T. Liu, Y. Fan, L. Jin, R. Dong, Y. Yi, and Y. Li. (2022). Waste textile reutilization via a scalable dyeing technology: a strategy to enhance dyestuffs degradation efficiency. Advanced Fiber Materials, 4(6): 1595-1608.

3.   Siregar, R.A.N., A. Sanjaya, J. Lucy, and R. Pinontoan. (2020). Methylene blue decolorizing bacteria isolated from water sewage in Yogyakarta, Indonesia. Biodiversitas Journal of Biological Diversity, 21(3): 1136-1141.

4.   Adjid, G.A.F.A., A. Kurniawan, and N. Nazriati. (2022). Textile industry waste pollution in the konto river: a comparison of public perceptions and water quality data. The Journal of Experimental Life Science, 12(3): 105-116.

5.   Lavado-Meza, C., Y. Asencios, G. Cisneros-Santos, and I. Unchupaico-Payano. (2021). Removal of methylene blue dye using Nostoc commune biomass: kinetic, equilibrium and thermodynamic study. Revista Mexicana de Ingeniería Química, 20(2): 941-954.

6.   Li, H., X. Cao, C. Zhang, Q. Yu, Z. Zhao, X. Niu, X. Sun, Y. Liu, L. Ma, and Z. Li. (2017). Enhanced adsorptive removal of anionic and cationic dyes from single or mixed dye solutions using MOF PCN-222. RSC Advances, 7(27): 16273-16281.

7.   Khan, Z.U.H., N.S. Gul, F. Mehmood, S. Sabahat, N. Muhammad, A. Rahim, J. Iqbal, S. Khasim, M.A. Salam, and T.M. Khan. (2023). Green synthesis of lead oxide nanoparticles for photo-electrocatalytic and antimicrobial applications. Frontiers in Chemistry, 11: 75114.

8.   Khadivi, H., M. Sirousazar, V. Abbasi-Chianeh, and E. Jalilnejad. (2022). Egg white/polyvinyl alcohol/clay bionanocomposite hydrogel adsorbents for dye removal. Journal of Polymers and the Environment, 30(8): 3186-3202.

9.   Ilias, H.M., S.H. Othman, R.A. Shapi’i, and K.F.M. Yunos. (2024). Starch/chitosan nanoparticles bionanocomposite membranes for methylene blue dye removal. Nanotechnology, 35: 1361-6528.

10. Alayli, A., H. Nadaroglu, and E. Turgut. (2021). Nanobiocatalyst beds with Fenton process for removal of methylene blue. Applied Water Science, 11(2): 1-8.

11. Pan, S., J. Shen, Z. Deng, X. Zhang, and B. Pan. (2022). Metastable nano-zirconium phosphate inside gel-type ion exchanger for enhanced removal of heavy metals. Journal of Hazardous Materials, 423: 127158.

12. Cevallos-Mendoza, J., C.G. Amorim, J.M. Rodríguez-Díaz, and M.d.C.B. Montenegro. (2022). Removal of contaminants from water by membrane filtration: a review. Membranes, 12(6): 570.

13. Harharah, R.H., G.M. Abdalla, A. Elkhaleefa, I. Shigidi, and H.N. Harharah. (2022). a study of copper (II) ions removal by reverse osmosis under various operating conditions. Separations, 9(6): 155.

14. Jasim, M.A. and F.Y.A. AlJaberi. (2023). Treatment of oily wastewater by electrocoagulation technology: A general review (2018-2022). Journal of Electrochemical Science and Engineering, 13(2): 361-372.

15. Fan, J., S. Xue, K. Wan, G. Wang, and Z. Miao. (2023). Studies on degradation of triphenylmethane dye crystal violet by electro‐flotation device. The Canadian Journal of Chemical Engineering, 101(6): 3309-3321.

16. Taib, N.I., N.A. Rosli, N.I. Saharrudin, N.M. Rozi, N.A.A. Kasdiehram, and N. Nazri. (2021). Kinetic, equilibrium, and thermodynamic studies of untreated watermelon peels for removal of copper (II) from aqueous solution. Desalination and Water Treatment, 227: 289-299.

17. Tahiruddin, N.S.M., R.A. Aziz, R. Ali, and N.I. Taib. (2023). Potential of using jackfruit peel (Artocarpus heterophyllus) as green solution for removal of copper (II) and zinc (II) from aqueous solution: Adsorption kinetics, isotherm and thermodynamic studies. Journal of Environmental Chemical Engineering, 11(3): 109953.

18. Dutta, S., B. Gupta, S.K. Srivastava, and A.K. Gupta. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14): 4497-4531.

19. Tian, Y., Y. Yin, Z. Jia, H. Lou, and H. Zhou. (2023). One-pot preparation of magnetic nitrogen-doped porous carbon from lignin for efficient and selective adsorption of organic pollutants. Environmental Science and Pollution Research, 30(6): 14943-14958.

20. Wang, J. and S. Wang. (2022). A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coordination Chemistry Reviews, 453: 214338.

21. Azali, N.A.M., N.A. Rahman, R. Saleh, M. Mazlan, and N.I. Taib. (2023). Synthesis and characterization of the magnetically separable composite of iron oxide and graphitic carbon nitride for degradation of methylene blue. Malaysian Journal of Chemistry, 25(3): 64-73.

22. Oh, Y., J.O. Hwang, E.-S. Lee, M. Yoon, V.-D. Le, Y.-H. Kim, D.H. Kim, and S.O. Kim. (2016). Divalent Fe atom coordination in two-dimensional microporous graphitic carbon nitride. ACS Applied Materials & Interfaces, 8(38): 25438-25443.

23. Ahmed, A., A. Hayat, M.H. Nawaz, A.A. Chaudhry, P. John, and M. Nasir. (2021). Fluorescence quenching mediated detection of hydrogen peroxide using tungsten incorporated graphitic carbon nitride nanoflakes. RSC Advances, 11(13): 7479-7491.

24. Idris, A.O., E.O. Oseghe, T.A. Msagati, A.T. Kuvarega, U. Feleni, and B. Mamba. (2020). Graphitic carbon nitride: a highly electroactive nanomaterial for environmental and clinical sensing. Sensors, 20(20): 5743.

25. Basyach, P. and L. Saikia. (2022). Magnetic Nanoparticles Supported on g‐C3N4: An efficient heterogeneous catalyst for selective transfer hydrogenation of furfural to furfuryl alcohol. ChemistrySelect, 7(19): e202200355.

26. Sewnet, A., M. Abebe, P. Asaithambi, and E. Alemayehu. (2022). Visible-light-driven g-C3N4/TiO2 based heterojunction nanocomposites for photocatalytic degradation of organic dyes in wastewater: a review. Air, Soil and Water Research, 15: 1-23.

27. Li, X., B. Wang, W. Yin, J. Di, J. Xia, W. Zhu, and H. Li. (2020). Cu2+ modified g-C3N4 photocatalysts for visible light photocatalytic properties. Acta Physica Chimica Sinica, 36(1902001): 10.3866.

28. Ragupathi, V., P. Panigrahi, and Subramaniam, N.G. (2022). Supercapacitive performance of exfoliated graphitic carbon nitride nanoflakes. IOP Conference Series: Materials Science and Engineering, 1263:12022.

29. Vuong, H.T., D.V. Nguyen, L.P. Phuong, P.P. Minh, B.N. Ho, and H.A. Nguyen. (2023). Nitrogen‐rich graphitic carbon nitride (g‐C3N5): Emerging low‐bandgap materials for photocatalysis. Carbon Neutralization, 2(4): 425-457.

30. Dong, G. and L. Zhang. (2012). Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. Journal of Materials Chemistry, 22(3): 1160-1166.

31. Sangaiya, P. and R. Jayaprakash. (2018). A review on iron oxide nanoparticles and their biomedical applications. Journal of Superconductivity and Novel Magnetism, 31(11): 3397-3413.

32. Yu, W., H. Li, L. Zhang, J. Liu, F. Kong, and W. Wang. (2020). Preparation of magnetic porous aromatic framework for rapid and efficient removal of organic pollutants from water. Analytical Sciences, 36(10): 1157-1161.

33. Chaudhari, D. and G. Panda. (2023). A brief overview on iron oxide nanoparticle synthesis, characterization, and applications. Materials Today: Proceedings, 10: 87.

34. Zambri, N.D.S., N.I. Taib, F. Abdul Latif, and Z. Mohamed. (2019). Utilization of neem leaf extract on biosynthesis of iron oxide nanoparticles. Molecules, 24(20): 3803.

35. Huo, H., X. Hu, H. Wang, J. Li, G. Xie, X. Tan, Q. Jin, D. Zhou, C. Li, and G. Qiu. (2019). Synergy of photocatalysis and adsorption for simultaneous removal of hexavalent chromium and methylene blue by g-C3N4/BiFeO3/carbon nanotubes ternary composites. International Journal of Environmental Research and Public Health, 16(17): 3219.

36. Georgiou, Y., E. Mouzourakis, A. Bourlinos, R. Zboril, M. Karakassides, A. Douvalis, T. Bakas, and Y. Deligiannakis. (2016). Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (III) uptake: The evolution of the Fe-phases under ambient conditions. Journal of Hazardous Materials, 312: 243-253.

37. Guo, S., K. Wu, Y. Gao, L. Liu, X. Zhu, X. Li, and F. Zhang. (2018). Efficient removal of Zn (II), Pb (II), and Cd (II) in waste water based on magnetic graphitic carbon nitride materials with enhanced adsorption capacity. Journal of Chemical & Engineering Data, 63(10): 3902-3912.

38. Alshammari, A.H., K. Alshammari, M. Alshammari, and T.A.M. Taha. (2023). Structural and optical characterization of g-C3N4 nanosheet integrated PVC/PVP polymer nanocomposites. Polymers, 15(4): 871.

39. Wang, M., M. Zhang, J. Zhu, J. Wang, L. Hu, T. Sun, M. Wang, and Y. Tang. (2020). g‐C3N4/Co nanohybrids for ultra‐sensitive simultaneous detection of uric acid and dopamine. ChemElectroChem, 7(6): 1373-1377.

40. Waheed, I.F., M.A. Hamad, K.A. Jasim, and A.J. Gesquiere. (2023). Degradation of methylene blue using a novel magnetic CuNiFe2O4/g-C3N4 nanocomposite as heterojunction photocatalyst. Diamond and Related Materials, 133: 109716.

41. Karkeabadi, M., F. Nemati, A. Elhampour, and H.T. Nahzomi. (2019). Cu2O modified gC3N4 as an effective catalyst for the synthesis of propargylamines: experimental, quantum mechanical mechanistic and kinetic study. Reaction Kinetics, Mechanisms and Catalysis, 126: 265-282.

42. Guo, S., N. Duan, Z. Dan, G. Chen, F. Shi, and W. Gao. (2018). g-C3N4 modified magnetic Fe3O4 adsorbent: preparation, characterization, and performance of Zn(II), Pb(II) and Cd(II) removal from aqueous solution. Journal of Molecular Liquids, 258: 225-234.

43. Pang, H., Y. Jiang, W. Xiao, Y. Ding, C. Lu, Z. Liu, P. Zhang, H. Luo, and W. Qin. (2020). Facile synthesis of few-layer g-C3N4 nanosheets anchored with cubic-phase CdS nanocrystals for high photocatalytic hydrogen generation activity. Journal of Alloys and Compounds, 839: 155684.

44. Ding, H., Q. Zhang, X. Yang, Q. Feng, D. Wang, and Z. Liu. (2023). A composite of biomass porous carbon supported g‐C3N4 by 2, 4, 6‐triaminopyrimidine modification for enhancing oxytetracycline removal. Journal of Applied Polymer Science, 140(28): e54027.

45. Saravanan, V., P. Lakshmanan, and C. Ramalingan. (2023). Iron integrated carbon nitride: A recoverable heterogeneous catalyst for the construction of bis (hetero/homoarylidene) cycloalkanones. Applied Organometallic Chemistry, 37(10): e7215.

46. Taib, N.I., F.A. Latif, Z. Mohamed, and N.D.S. Zambri. (2018). Green synthesis of iron oxide nanoparticles (Fe3O4-NPs) using Azadirachta indica aqueous leaf extract. International Journal of Engineering & Technology, 7: 9-13.

47. Preeyanghaa, M., M. Dhileepan, J. Madhavan, and B. Neppolian. (2022). Revealing the charge transfer mechanism in magnetically recyclable ternary g-C3N4/BiOBr/Fe3O4 nanocomposite for efficient photocatalytic degradation of tetracycline antibiotics. Chemosphere, 303: 135070.

48. Zambov, L.M., C. Popov, N. Abedinov, M.F. Plass, W. Kulisch, T. Gotszalk, P. Grabiec, I.W. Rangelow, and R. Kassing. (2000). Gas‐sensitive properties of nitrogen‐rich carbon nitride films. Advanced Materials, 12(9): 656-660.

49. Cao, S., J. Low, J. Yu, and M. Jaroniec. (2015). Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials, 27(13): 2150-2176.

50. Dehbi, A., Y. Dehmani, D.S. Franco, H. Omari, J. Georgin, Y. Brahmi, K. Elazhari, M. Messaoudi, I. Aadnan, and T. Lamhasni. (2024). A statistical physics approach to understanding the adsorption of methylene blue onto cobalt oxide nanoparticles. Molecules, 29(2): 412.

51. Zhou, K., L. Yan, R. Zhang, and X. Zhu. (2023). Easily separated and sustainable cellulose-based adsorbent using a facile two-step modification for highly efficient methylene blue removal. Biomass Conversion and Biorefinery, 2023: 1-14.

52. Alghamdi, W.M. and I. El Mannoubi. (2021). Investigation of seeds and peels of Citrullus colocynthis as efficient natural adsorbent for methylene blue dye. Processes, 9(8): 1279.

53. Meena, P.L., J.K. Saini, A.K. Surela, B. Mordhiya, L.K. Chhachhia, and K.S. Meena. (2023). Fabrication of polyaniline‐supported mno2 nanocomposite for removal of water pollutant: kinetic and isotherm studies. ChemistrySelect, 8(25): e202300724.

54. Bahrami, M., M.J. Amiri, S. Rajabi, and M. Mahmoudi. (2024). The removal of methylene blue from aqueous solutions by polyethylene microplastics: Modeling batch adsorption using random forest regression. Alexandria Engineering Journal, 95: 101-113.

55. Cai, X., J. Li, Y. Liu, X. Hu, X. Tan, S. Liu, H. Wang, Y. Gu, and L. Luo. (2020). Design and preparation of chitosan-crosslinked bismuth ferrite/biochar coupled magnetic material for methylene blue removal. International Journal of Environmental Research and Public Health, 17(1): 6.

56. Zouggari, H., F.-Z. Mahir, A. Imgharn, A. Hsini, N. Aarab, M. Laabd, and A. Albourine. (2023). Arginine-polyaniline@ g-C3N4 for outstanding retention of Orange G dye from water. Carbon Letters, 33(6): 1897-1908.

57. Zghal, S., I. Jedidi, M. Cretin, S. Cerneaux, and M. Abdelmouleh. (2023). Adsorptive removal of Rhodamine B dye using carbon graphite/cnt composites as adsorbents: Kinetics, isotherms and thermodynamic study. Materials, 16(3): 1015.

58. Farhadi, H. and N. Keramati. (2023). Investigation of kinetics, isotherms, thermodynamics and photocatalytic regeneration of exfoliated graphitic carbon nitride/zeolite as dye adsorbent. Scientific Reports, 13(1): 14098.

59. Kuan, J., H. Zhang, H. Gu, Y. Zhang, H. Wu, and N. Mao. (2022). Adsorption-enhanced photocatalytic property of Ag-doped biochar/g-C3N4/TiO2 composite by incorporating cotton-based biochar. Nanotechnology, 33(34): 345402.

60. Alharbi, R.A., F.M. Alminderej, N.F. Al-Harby, N.Y. Elmehbad, and N.A. Mohamed. (2023). Preparation and characterization of a new bis-uracil chitosan-based hydrogel as efficient adsorbent for removal of anionic Congo red dye. Polymers, 15(6): 1529.

61. Antić, K., A. Onjia, D. Vasiljević-Radović, Z. Veličković, and S.L. Tomić. (2021). Removal of nickel ions from aqueous solutions by 2-hydroxyethyl acrylate/itaconic acid hydrogels optimized with response surface methodology. Gels, 7(4): 225.

62. Alwi, R.S., R. Gopinathan, A. Bhowal, and C. Garlapati. (2020). Adsorption characteristics of activated carbon for the reclamation of Eosin Y and indigo carmine colored effluents and new isotherm model. Molecules, 25(24): 6014.

63. Sulaiman, N.S., M.H. Mohamad Amini, M. Danish, O. Sulaiman, and R. Hashim. (2021). Kinetics, thermodynamics, and isotherms of methylene blue adsorption study onto cassava stem activated carbon. Water, 13(20): 2936.

64. Taguba, M.A.M., D.C. Ong, B.M.B. Ensano, C.-C. Kan, N. Grisdanurak, J.-J. Yee, and M.D.G. de Luna. (2021). Nonlinear isotherm and kinetic modeling of Cu (II) and Pb (II) uptake from water by MnFe2O4/chitosan nanoadsorbents. Water, 13(12): 1662.

65. Trazzi, P.A., M. Vashishtha, J. Najser, A. Schmalenberger, V.K. Kannuchamy, J.J. Leahy, and W. Kwapinski. (2024). Adsorption of ammonium, nitrate, and phosphate on hydrochars and biochars. Applied Sciences, 14(6): 2280.

66. Liu, C., N. Liu, X. Li, X. He, X. Liu, B. Hu, and S. He. (2022). Adsorption of Cd (II) on mesoporous Al2O3 prepared from high-aluminum fly ash. Materials Research Express, 9(6): 065502.

67. Antonieti, C.C. and Y.P. Ginoris. (2022). Removal of cylindrospermopsin by adsorption on granular activated carbon, selection of carbons and estimated fixed-bed breakthrough. Water, 14(10): 1630.

68. Wonorahardjo, S., F. Fajaroh, R. Joharmawan, N. Nazriati, and E. Budiasih. (2023). Cadmium and lead ions adsorption on magnetite, silica, alumina, and cellulosic materials. Scientific Reports, 13(1): 4213.

69. Bhattacharya, S., N. Bar, B. Rajbansi, and S.K. Das. (2024). Adsorptive elimination of methylene blue dye from aqueous solution by chitosan‐n SiO2 nanocomposite: Adsorption and desorption study, scale‐up design, statistical, and genetic algorithm modeling. Environmental Progress & Sustainable Energy, 43(2): e14282.

70. Azimi, E.B., A. Badiei, and J.B. Ghasemi. (2019). Efficient removal of malachite green from wastewater by using boron-doped mesoporous carbon nitride. Applied Surface Science, 469: 236-245.

71. Tian, L., J. Li, F. Liang, J. Wang, S. Li, H. Zhang, and S. Zhang. (2018). Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Applied Catalysis B: Environmental, 225: 307-313.

72. Ren, B., Y. Xu, L. Zhang, and Z. Liu. (2018). Carbon-doped graphitic carbon nitride as environment-benign adsorbent for methylene blue adsorption: Kinetics, isotherm and thermodynamics study. Journal of the Taiwan Institute of Chemical Engineers, 88: 114-120.