Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1340
Research Article
Adsorptive removal of methylene blue
using magnetic graphitic carbon nitride (Fe3O4/g-C3N4)
composite: insights into isotherms, kinetics, and thermodynamic properties
Nurul
Izza Taib1, Rozaina Saleh1,2*, Aunie Aqelah Fisol1,
Isma Iwana Ismail1, and Nur Najieha Ismail1
1Faculty of
Applied Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400
Tapah Road, Perak, Malaysia
2Faculty of
Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul
Ehsan, Malaysia
*Corresponding
author: rozaina103@uitm.edu.my
Received: 19 September 2024;
Revised: 9 December 2024; Accepted: 14 December 2024; Published: 8 April 2025
Abstract
In the present study, we have successfully
synthesized iron oxide-coated graphitic carbon nitride (g-C3N4/Fe3O4)
through chemical co-precipitation
and utilized it as an adsorbent for removing methylene blue (MB) from an
aqueous solution. These findings demonstrate the effectiveness of
g-C3N4/Fe3O4 as an adsorbent for
removing cationic dyes from aqueous solutions. The as-prepared composites
underwent a thorough characterization using X-ray powder diffraction (XRD), Field
Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared
(FTIR), Zeta Potential and Vibrating Sample Magnetism (VSM). XRD and
FTIR have confirmed the formation of composites of g-C3N4/Fe3O4.
FESEM verifies the nano-scale nature of the composite. From VSM, the composite
has high saturation magnetization, which implies that the adsorbent can be
separated from the treated solution by employing an external magnet. The removal percentage of MB was
evaluated under various conditions, including pH (2.0 -8.0), contact time (10 -
360 min), initial concentration (10 – 300 mg/L), and temperature (298 K – 328
K), using batch-adsorption techniques. This study found that the optimal pH for adsorption was 5.0,
with the highest adsorption capacity observed at the concentration of 10 mg/L,
achieving an 81.11% removal efficiency. Equilibrium
adsorption reached 45.58% within 30 minutes. The Langmuir isotherm which can
explain the adsorption isotherms, indicate maximum
adsorption capacity of 40.2 mg/g. Kinetic studies indicated that the adsorption
process conformed to a pseudo-second-order model, suggesting a chemical
sorption involvement. Thermodynamic analysis revealed a positive Gibbs free
energy value, indicating a non-spontaneous reaction, and a positive enthalpy
value, suggesting an endothermic process.
Keywords: iron oxide; graphitic carbon nitride;
adsorption; thermodynamics; isotherms
References
1. Kalia,
R., A. Chauhan, R. Verma, M. Sharma, K.M. Batoo, R. Kumar, S. Hussain, S.
Ghotekar, and M.F. Ijaz. (2022). Photocatalytic degradation properties of
Li‐Cr ions substituted CoFe2O4 nanoparticles for
wastewater treatment application. Physica
Status Solidi (a), 219(8):
2100539.
2. Zhai, H., Z. Liu,
L. Xu, T. Liu, Y. Fan, L. Jin, R. Dong, Y. Yi, and Y. Li. (2022). Waste textile
reutilization via a scalable dyeing technology: a strategy to enhance dyestuffs
degradation efficiency. Advanced Fiber
Materials, 4(6): 1595-1608.
3. Siregar, R.A.N., A.
Sanjaya, J. Lucy, and R. Pinontoan. (2020). Methylene blue decolorizing
bacteria isolated from water sewage in Yogyakarta, Indonesia. Biodiversitas Journal of Biological
Diversity, 21(3): 1136-1141.
4. Adjid, G.A.F.A., A.
Kurniawan, and N. Nazriati. (2022). Textile industry waste pollution in the
konto river: a comparison of public perceptions and water quality data. The Journal of Experimental Life Science, 12(3):
105-116.
5. Lavado-Meza, C., Y.
Asencios, G. Cisneros-Santos, and I. Unchupaico-Payano. (2021). Removal of
methylene blue dye using Nostoc commune biomass: kinetic, equilibrium and
thermodynamic study. Revista Mexicana de
Ingeniería Química, 20(2): 941-954.
6. Li, H., X. Cao, C.
Zhang, Q. Yu, Z. Zhao, X. Niu, X. Sun, Y. Liu, L. Ma, and Z. Li. (2017).
Enhanced adsorptive removal of anionic and cationic dyes from single or mixed
dye solutions using MOF PCN-222. RSC Advances, 7(27):
16273-16281.
7. Khan, Z.U.H., N.S.
Gul, F. Mehmood, S. Sabahat, N. Muhammad, A. Rahim, J. Iqbal, S. Khasim, M.A.
Salam, and T.M. Khan. (2023). Green synthesis of lead oxide nanoparticles for
photo-electrocatalytic and antimicrobial applications. Frontiers in Chemistry, 11: 75114.
8. Khadivi, H., M.
Sirousazar, V. Abbasi-Chianeh, and E. Jalilnejad. (2022). Egg white/polyvinyl
alcohol/clay bionanocomposite hydrogel adsorbents for dye removal. Journal of Polymers and the Environment, 30(8):
3186-3202.
9. Ilias, H.M., S.H.
Othman, R.A. Shapi’i, and K.F.M. Yunos. (2024). Starch/chitosan nanoparticles
bionanocomposite membranes for methylene blue dye removal. Nanotechnology, 35:
1361-6528.
10. Alayli, A., H.
Nadaroglu, and E. Turgut. (2021). Nanobiocatalyst beds with Fenton process for
removal of methylene blue. Applied Water
Science, 11(2): 1-8.
11. Pan, S., J. Shen, Z.
Deng, X. Zhang, and B. Pan. (2022). Metastable nano-zirconium phosphate inside
gel-type ion exchanger for enhanced removal of heavy metals. Journal of Hazardous Materials, 423:
127158.
12. Cevallos-Mendoza,
J., C.G. Amorim, J.M. Rodríguez-Díaz, and M.d.C.B. Montenegro. (2022). Removal
of contaminants from water by membrane filtration: a review. Membranes, 12(6): 570.
13. Harharah, R.H., G.M.
Abdalla, A. Elkhaleefa, I. Shigidi, and H.N. Harharah. (2022). a study of
copper (II) ions removal by reverse osmosis under various operating conditions.
Separations, 9(6): 155.
14. Jasim, M.A. and
F.Y.A. AlJaberi. (2023). Treatment of oily wastewater by electrocoagulation
technology: A general review (2018-2022). Journal
of Electrochemical Science and Engineering, 13(2): 361-372.
15. Fan, J., S. Xue, K.
Wan, G. Wang, and Z. Miao. (2023). Studies on degradation of triphenylmethane
dye crystal violet by electro‐flotation device. The Canadian Journal of Chemical Engineering, 101(6): 3309-3321.
16. Taib, N.I., N.A.
Rosli, N.I. Saharrudin, N.M. Rozi, N.A.A. Kasdiehram, and N. Nazri. (2021).
Kinetic, equilibrium, and thermodynamic studies of untreated watermelon peels
for removal of copper (II) from aqueous solution. Desalination and Water Treatment, 227: 289-299.
17. Tahiruddin, N.S.M.,
R.A. Aziz, R. Ali, and N.I. Taib. (2023). Potential of using jackfruit peel (Artocarpus
heterophyllus) as green solution for removal of copper (II) and zinc (II)
from aqueous solution: Adsorption kinetics, isotherm and thermodynamic studies.
Journal of Environmental Chemical
Engineering, 11(3): 109953.
18. Dutta, S., B. Gupta,
S.K. Srivastava, and A.K. Gupta. (2021). Recent advances on the removal of dyes
from wastewater using various adsorbents: A critical review. Materials Advances, 2(14): 4497-4531.
19. Tian, Y., Y. Yin, Z.
Jia, H. Lou, and H. Zhou. (2023). One-pot preparation of magnetic
nitrogen-doped porous carbon from lignin for efficient and selective adsorption
of organic pollutants. Environmental
Science and Pollution Research, 30(6): 14943-14958.
20. Wang, J. and S.
Wang. (2022). A critical review on graphitic carbon nitride (g-C3N4)-based
materials: Preparation, modification and environmental application. Coordination Chemistry Reviews, 453:
214338.
21. Azali, N.A.M., N.A.
Rahman, R. Saleh, M. Mazlan, and N.I. Taib. (2023). Synthesis and characterization
of the magnetically separable composite of iron oxide and graphitic carbon
nitride for degradation of methylene blue. Malaysian
Journal of Chemistry, 25(3): 64-73.
22. Oh, Y., J.O. Hwang,
E.-S. Lee, M. Yoon, V.-D. Le, Y.-H. Kim, D.H. Kim, and S.O. Kim. (2016).
Divalent Fe atom coordination in two-dimensional microporous graphitic carbon
nitride. ACS Applied Materials &
Interfaces, 8(38): 25438-25443.
23. Ahmed, A., A. Hayat,
M.H. Nawaz, A.A. Chaudhry, P. John, and M. Nasir. (2021). Fluorescence
quenching mediated detection of hydrogen peroxide using tungsten incorporated
graphitic carbon nitride nanoflakes. RSC Advances, 11(13):
7479-7491.
24. Idris, A.O., E.O.
Oseghe, T.A. Msagati, A.T. Kuvarega, U. Feleni, and B. Mamba. (2020). Graphitic
carbon nitride: a highly electroactive nanomaterial for environmental and
clinical sensing. Sensors, 20(20):
5743.
25. Basyach, P. and L.
Saikia. (2022). Magnetic Nanoparticles Supported on g‐C3N4:
An efficient heterogeneous catalyst for selective transfer hydrogenation of
furfural to furfuryl alcohol. ChemistrySelect, 7(19): e202200355.
26. Sewnet, A., M.
Abebe, P. Asaithambi, and E. Alemayehu. (2022). Visible-light-driven g-C3N4/TiO2
based heterojunction nanocomposites for photocatalytic degradation of organic
dyes in wastewater: a review. Air, Soil
and Water Research, 15: 1-23.
27. Li, X., B. Wang, W.
Yin, J. Di, J. Xia, W. Zhu, and H. Li. (2020). Cu2+ modified g-C3N4
photocatalysts for visible light photocatalytic properties. Acta Physica Chimica Sinica, 36(1902001):
10.3866.
28. Ragupathi, V., P.
Panigrahi, and Subramaniam, N.G. (2022). Supercapacitive performance of
exfoliated graphitic carbon nitride nanoflakes. IOP Conference Series:
Materials Science and Engineering, 1263:12022.
29. Vuong, H.T., D.V.
Nguyen, L.P. Phuong, P.P. Minh, B.N. Ho, and H.A. Nguyen. (2023).
Nitrogen‐rich graphitic carbon nitride (g‐C3N5):
Emerging low‐bandgap materials for photocatalysis. Carbon Neutralization, 2(4): 425-457.
30. Dong, G. and L.
Zhang. (2012). Porous structure dependent photoreactivity of graphitic carbon
nitride under visible light. Journal of
Materials Chemistry, 22(3): 1160-1166.
31. Sangaiya, P. and R.
Jayaprakash. (2018). A review on iron oxide nanoparticles and their biomedical
applications. Journal of
Superconductivity and Novel Magnetism,
31(11): 3397-3413.
32. Yu, W., H. Li, L.
Zhang, J. Liu, F. Kong, and W. Wang. (2020). Preparation of magnetic porous
aromatic framework for rapid and efficient removal of organic pollutants from
water. Analytical Sciences, 36(10):
1157-1161.
33. Chaudhari, D. and G.
Panda. (2023). A brief overview on iron oxide nanoparticle synthesis,
characterization, and applications. Materials
Today: Proceedings, 10: 87.
34. Zambri, N.D.S., N.I.
Taib, F. Abdul Latif, and Z. Mohamed. (2019). Utilization of neem leaf extract
on biosynthesis of iron oxide nanoparticles. Molecules, 24(20): 3803.
35. Huo, H., X. Hu, H.
Wang, J. Li, G. Xie, X. Tan, Q. Jin, D. Zhou, C. Li, and G. Qiu. (2019).
Synergy of photocatalysis and adsorption for simultaneous removal of hexavalent
chromium and methylene blue by g-C3N4/BiFeO3/carbon
nanotubes ternary composites. International
Journal of Environmental Research and Public Health, 16(17): 3219.
36. Georgiou, Y., E.
Mouzourakis, A. Bourlinos, R. Zboril, M. Karakassides, A. Douvalis, T. Bakas,
and Y. Deligiannakis. (2016). Surface decoration of amine-rich carbon nitride
with iron nanoparticles for arsenite (III) uptake: The evolution of the
Fe-phases under ambient conditions. Journal
of Hazardous Materials, 312: 243-253.
37. Guo, S., K. Wu, Y.
Gao, L. Liu, X. Zhu, X. Li, and F. Zhang. (2018). Efficient removal of Zn (II),
Pb (II), and Cd (II) in waste water based on magnetic graphitic carbon nitride
materials with enhanced adsorption capacity. Journal of Chemical & Engineering Data, 63(10): 3902-3912.
38. Alshammari, A.H., K.
Alshammari, M. Alshammari, and T.A.M. Taha. (2023). Structural and optical
characterization of g-C3N4 nanosheet integrated PVC/PVP
polymer nanocomposites. Polymers, 15(4):
871.
39. Wang, M., M. Zhang,
J. Zhu, J. Wang, L. Hu, T. Sun, M. Wang, and Y. Tang. (2020). g‐C3N4/Co
nanohybrids for ultra‐sensitive simultaneous detection of uric acid and
dopamine. ChemElectroChem, 7(6): 1373-1377.
40. Waheed, I.F., M.A.
Hamad, K.A. Jasim, and A.J. Gesquiere. (2023). Degradation of methylene blue
using a novel magnetic CuNiFe2O4/g-C3N4
nanocomposite as heterojunction photocatalyst. Diamond and Related Materials,
133: 109716.
41. Karkeabadi, M., F.
Nemati, A. Elhampour, and H.T. Nahzomi. (2019). Cu2O modified gC3N4
as an effective catalyst for the synthesis of propargylamines: experimental,
quantum mechanical mechanistic and kinetic study. Reaction Kinetics, Mechanisms and Catalysis, 126: 265-282.
42. Guo, S., N. Duan, Z.
Dan, G. Chen, F. Shi, and W. Gao. (2018). g-C3N4 modified
magnetic Fe3O4 adsorbent: preparation, characterization, and performance of
Zn(II), Pb(II) and Cd(II) removal from aqueous solution. Journal of Molecular Liquids,
258: 225-234.
43. Pang, H., Y. Jiang,
W. Xiao, Y. Ding, C. Lu, Z. Liu, P. Zhang, H. Luo, and W. Qin. (2020). Facile
synthesis of few-layer g-C3N4 nanosheets anchored with
cubic-phase CdS nanocrystals for high photocatalytic hydrogen generation
activity. Journal of Alloys and Compounds, 839:
155684.
44. Ding, H., Q. Zhang,
X. Yang, Q. Feng, D. Wang, and Z. Liu. (2023). A composite of biomass porous
carbon supported g‐C3N4 by 2, 4,
6‐triaminopyrimidine modification for enhancing oxytetracycline removal. Journal of Applied Polymer Science, 140(28):
e54027.
45. Saravanan, V., P.
Lakshmanan, and C. Ramalingan. (2023). Iron integrated carbon nitride: A
recoverable heterogeneous catalyst for the construction of bis
(hetero/homoarylidene) cycloalkanones. Applied
Organometallic Chemistry, 37(10): e7215.
46. Taib, N.I., F.A.
Latif, Z. Mohamed, and N.D.S. Zambri. (2018). Green synthesis of iron oxide
nanoparticles (Fe3O4-NPs) using Azadirachta indica aqueous
leaf extract. International Journal of
Engineering & Technology, 7: 9-13.
47. Preeyanghaa, M., M.
Dhileepan, J. Madhavan, and B. Neppolian. (2022). Revealing the charge transfer
mechanism in magnetically recyclable ternary g-C3N4/BiOBr/Fe3O4
nanocomposite for efficient photocatalytic degradation of tetracycline
antibiotics. Chemosphere, 303:
135070.
48. Zambov, L.M., C.
Popov, N. Abedinov, M.F. Plass, W. Kulisch, T. Gotszalk, P. Grabiec, I.W.
Rangelow, and R. Kassing. (2000). Gas‐sensitive properties of
nitrogen‐rich carbon nitride films. Advanced
Materials, 12(9): 656-660.
49. Cao, S., J. Low, J.
Yu, and M. Jaroniec. (2015). Polymeric photocatalysts based on graphitic carbon
nitride. Advanced Materials, 27(13):
2150-2176.
50. Dehbi, A., Y.
Dehmani, D.S. Franco, H. Omari, J. Georgin, Y. Brahmi, K. Elazhari, M.
Messaoudi, I. Aadnan, and T. Lamhasni. (2024). A statistical physics approach
to understanding the adsorption of methylene blue onto cobalt oxide
nanoparticles. Molecules, 29(2):
412.
51. Zhou, K., L. Yan, R.
Zhang, and X. Zhu. (2023). Easily separated and sustainable cellulose-based
adsorbent using a facile two-step modification for highly efficient methylene
blue removal. Biomass Conversion and
Biorefinery, 2023: 1-14.
52. Alghamdi, W.M. and
I. El Mannoubi. (2021). Investigation of seeds and peels of Citrullus
colocynthis as efficient natural adsorbent for methylene blue dye. Processes, 9(8): 1279.
53. Meena, P.L., J.K.
Saini, A.K. Surela, B. Mordhiya, L.K. Chhachhia, and K.S. Meena. (2023).
Fabrication of polyaniline‐supported mno2 nanocomposite for removal of
water pollutant: kinetic and isotherm studies. ChemistrySelect, 8(25): e202300724.
54. Bahrami, M., M.J.
Amiri, S. Rajabi, and M. Mahmoudi. (2024). The removal of methylene blue from
aqueous solutions by polyethylene microplastics: Modeling batch adsorption
using random forest regression. Alexandria
Engineering Journal, 95: 101-113.
55. Cai, X., J. Li, Y.
Liu, X. Hu, X. Tan, S. Liu, H. Wang, Y. Gu, and L. Luo. (2020). Design and
preparation of chitosan-crosslinked bismuth ferrite/biochar coupled magnetic
material for methylene blue removal. International
Journal of Environmental Research and Public Health, 17(1): 6.
56. Zouggari, H., F.-Z.
Mahir, A. Imgharn, A. Hsini, N. Aarab, M. Laabd, and A. Albourine. (2023).
Arginine-polyaniline@ g-C3N4 for outstanding retention of
Orange G dye from water. Carbon Letters, 33(6): 1897-1908.
57. Zghal, S., I.
Jedidi, M. Cretin, S. Cerneaux, and M. Abdelmouleh. (2023). Adsorptive removal of Rhodamine B dye using carbon
graphite/cnt composites as adsorbents: Kinetics, isotherms and thermodynamic
study. Materials, 16(3): 1015.
58. Farhadi, H. and N.
Keramati. (2023). Investigation of kinetics, isotherms, thermodynamics and
photocatalytic regeneration of exfoliated graphitic carbon nitride/zeolite as
dye adsorbent. Scientific Reports, 13(1):
14098.
59. Kuan, J., H. Zhang,
H. Gu, Y. Zhang, H. Wu, and N. Mao. (2022). Adsorption-enhanced photocatalytic
property of Ag-doped biochar/g-C3N4/TiO2 composite
by incorporating cotton-based biochar. Nanotechnology, 33(34):
345402.
60. Alharbi, R.A., F.M.
Alminderej, N.F. Al-Harby, N.Y. Elmehbad, and N.A. Mohamed. (2023). Preparation
and characterization of a new bis-uracil chitosan-based hydrogel as efficient
adsorbent for removal of anionic Congo red dye. Polymers, 15(6): 1529.
61. Antić, K., A.
Onjia, D. Vasiljević-Radović, Z. Veličković, and S.L.
Tomić. (2021). Removal of nickel ions from aqueous solutions by
2-hydroxyethyl acrylate/itaconic acid hydrogels optimized with response surface
methodology. Gels, 7(4): 225.
62. Alwi, R.S., R.
Gopinathan, A. Bhowal, and C. Garlapati. (2020). Adsorption characteristics of
activated carbon for the reclamation of Eosin Y and indigo carmine colored
effluents and new isotherm model. Molecules, 25(24): 6014.
63. Sulaiman, N.S., M.H.
Mohamad Amini, M. Danish, O. Sulaiman, and R. Hashim. (2021). Kinetics,
thermodynamics, and isotherms of methylene blue adsorption study onto cassava
stem activated carbon. Water, 13(20):
2936.
64. Taguba, M.A.M., D.C.
Ong, B.M.B. Ensano, C.-C. Kan, N. Grisdanurak, J.-J. Yee, and M.D.G. de Luna.
(2021). Nonlinear isotherm and kinetic modeling of Cu (II) and Pb (II) uptake
from water by MnFe2O4/chitosan nanoadsorbents. Water, 13(12): 1662.
65. Trazzi, P.A., M.
Vashishtha, J. Najser, A. Schmalenberger, V.K. Kannuchamy, J.J. Leahy, and W.
Kwapinski. (2024). Adsorption of ammonium, nitrate, and phosphate on hydrochars
and biochars. Applied Sciences, 14(6):
2280.
66. Liu, C., N. Liu, X.
Li, X. He, X. Liu, B. Hu, and S. He. (2022). Adsorption of Cd (II) on mesoporous
Al2O3 prepared from high-aluminum fly ash. Materials Research Express, 9(6): 065502.
67. Antonieti, C.C. and
Y.P. Ginoris. (2022). Removal of cylindrospermopsin by adsorption on granular
activated carbon, selection of carbons and estimated fixed-bed breakthrough. Water, 14(10): 1630.
68. Wonorahardjo, S., F.
Fajaroh, R. Joharmawan, N. Nazriati, and E. Budiasih. (2023). Cadmium and lead
ions adsorption on magnetite, silica, alumina, and cellulosic materials. Scientific Reports, 13(1): 4213.
69. Bhattacharya, S., N.
Bar, B. Rajbansi, and S.K. Das. (2024). Adsorptive elimination of methylene
blue dye from aqueous solution by chitosan‐n SiO2 nanocomposite:
Adsorption and desorption study, scale‐up design, statistical, and
genetic algorithm modeling. Environmental
Progress & Sustainable Energy, 43(2): e14282.
70. Azimi, E.B., A.
Badiei, and J.B. Ghasemi. (2019). Efficient removal of malachite green from
wastewater by using boron-doped mesoporous carbon nitride. Applied Surface Science, 469:
236-245.
71. Tian, L., J. Li, F.
Liang, J. Wang, S. Li, H. Zhang, and S. Zhang. (2018). Molten salt synthesis of
tetragonal carbon nitride hollow tubes and their application for removal of
pollutants from wastewater. Applied
Catalysis B: Environmental, 225:
307-313.
72. Ren, B., Y. Xu, L. Zhang, and Z. Liu. (2018).
Carbon-doped graphitic carbon nitride as environment-benign adsorbent for
methylene blue adsorption: Kinetics, isotherm and thermodynamics study. Journal of the Taiwan Institute of Chemical
Engineers, 88: 114-120.