Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1312
Research
article
Preparation,
bacteriostatic, and in silico analysis of halogenated
4-methoxyphenyl-triazene derivatives
Davlye
Noissy Diosing1, Ainaa
Nadiah Abd Halim*1, Nor Hisam Zamakshshari1,
Zainab Ngaini1, Yeo Kai Wei1, Akshatha Handattu Shankaranarayana2, and B. R. Prashantha
Kumar2
1Faculty of Resource Science and Technology,
Universiti Malaysia Sarawak,94300 Kota Samarahan,
Sarawak, Malaysia
2Department of Pharmaceutical Chemistry, JSS College
of Pharmacy, Sri Shivarathreeshwara Nagar, Mysuru-
570015, India
*Corresponding author: ahanadiah@unimas.my
Received: 13 September 2024;
Revised: 10 December 2024; Accepted: 3 December 2025; Published: 27 March 2025
Abstract
A series of diazoamino compounds, also known as triazene
derivatives were successfully synthesised through the N-coupling diazotisation
of p-anisidine with various halogenated substituted anilines at ortho,
meta, and para positions. The series was obtained in low to
moderate yields of 13-56%. Structural elucidation was performed via
FTIR, 1H, and 13C NMR techniques. With ampicillin served
as a positive control, the antibacterial efficacy of the synthesised compounds against
Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923
via the Kirby-Bauer disk diffusion resulted in moderate to good inhibition measuring
6.6 ± 0.25 to 10.0 ± 0.00 mm, respectively. The minimum inhibitory
concentration (MIC) values indicating inhibition of ≥ 8.8 mm yielded
promising results, with MICs ranging from 82 to 121 ppm for E. coli and from
87 to 101 ppm for S. aureus. These values exceeded the standard
ampicillin range of 96 to 127 ppm, suggesting potential for broader clinical
applications. Molecular docking analysis of the compounds against CrtM and MurE protein receptors
further supported these findings with binding scores of -7.48 to -8.27 kcal/mol
and -7.26 to -7.94 kcal/mol, respectively. Notably, these scores surpassed those
of ampicillin, which scored only -7.23 kcal/mol and -6.92 kcal/mol,
respectively. This enhanced activity is believed to be attributed to the
presence of hydrogen bonding and other hydrophobic interactions. Additionally,
the bioavailability competencies of all compounds tested via ADMET analysis
demonstrated compliance of each compound with Lipinski’s rule of five with zero violations.
Keywords: diazoamino, antibacterial activities, ADMET,
N-coupling, in silico
References
1. Noriega, S., Cardoso-Ortiz, J., López-Luna,
A., Cuevas-Flores, M. D. R, and Flores De La Torre, J. A. (2022). The diverse biological activity of
recently synthesized nitro compounds. Pharmaceuticals. 15(6): 717.
2. Kerru, N., Gummidi, L., Maddila, S., Gangu,
K. K., and Jonnalagadda, S. B. (2021). A review on recent advances in
nitrogen-containing molecules and their biological applications. Molecules.
25(8): 1909.
3. Khwaza,
V., Mlala, S., Oyedeji, O. O., and Aderibigbe, B. A. (2021). Pentacyclic
triterpenoids with nitrogen-containing heterocyclic moiety, privileged hybrids
in anticancer drug discovery. Molecules, 26(9): 2401.
4. Tahir, T.,
Shahzad, M. I., Tabassum, R., Rafiq, M., Ashfaq, M., Hassan, M.,
Kotwica-Mojzych, K., and Mojzych, M. (2021). Diaryl azo derivatives as
anti-diabetic and antimicrobial agents: Synthesis, in vitro, kinetic and
docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry,
36(1): 1509-1520.
5. Li, L., Xu, F.,
Sun, G., Sun, M., Jia, S., Li, H., Xu, T., Zhang, H., Wang, Y., Guo, Y., and
Liu, T. (2021). Identification of N-methylaniline based on azo coupling
reaction by combining TLC with SERRS. Spectrochimica Acta - Part A:
Molecular and Biomolecular Spectroscopy, 252: 119490.
6. Saeed, A.,
Nasher, M. A., Abdel-Latif, E., Keshk, E. M., Khalil, A. G. M., and Metwally,
H. M. (2019). New derivatives of azopyrazolo dyes: Synthesis and optical
characterization for application in sensitized solar cells. Optik, 196:
163036.
7. Davis, G. J.,
Townsend, J. A., Morrow, M. G., Hamie, M., Shepard, A. J., Hsieh, C. C., Marty,
M. T., and Jewett, J. C. (2021). Protein modification via mild photochemical
isomerization of triazenes to release aryl diazonium ions. Bioconjugate
Chemistry, 32(11): 2432-2438.
8. Tan, J. F.,
Bormann, C. T., Perrin, F. G., Chadwick, F. M., Severin, K., and Cramer, N.
(2019). Divergent synthesis of densely substituted arenes and pyridines via
cyclotrimerization reactions of alkynyl triazenes. Journal of the American
Chemical Society, 141(26): 10372-10383.
9. Wippert, N. A.,
Jung, N., and Bräse, S. (2019). Synthesis of arylamides via ritter-type
cleavage of solid-supported aryltriazenes. ACS Combinatorial Science,
21(8): 568-572.
10. Griess, P., and
Hofmann. (1859). V. On new nitrogenous derivatives of the phenyl- and
benzoyl-series. Proceedings of the Royal Society of London, 9: 594-597.
11. Abd Halim, A.
N., Mohammad Hussin, A. S., Ngaini, Z., Zamakshshari, N. H., and Haron, I. Z.
(2023). Synthesis, antibacterial potential and in silico molecular docking
analysis of triazene compounds via diazo coupling reactions of an amine. Tetrahedron
Letters, 132: 154803.
12. Jaiswal, S., and
Verma, K. N. (2021). Benzothiazole moiety with sulphonamide as
anti-inflammatory and analgesic activity: A review. South Asian Research
Journal of Pharmaceutical Sciences, 3(6): 90-102.
13. Rydén, V.,
El-Naggar, A. I., Koliadi, A., Ladjevardi, C. O., Digkas, E., Valachis, A., and
Ullenhag, G. J. (2024). The role of dacarbazine and temozolomide therapy after
treatment with immune checkpoint inhibitors in malignant melanoma patients: A
case series and meta-analysis. Pigment Cell and Melanoma Research,
37(3): 352-362.
14. Eghianruwa, K.
I., and Oridupa, O. A. (2018). Chemotherapeutic control of trypanosomosis - A
review of past measures, current status and future trends. Veterinarski
Arhiv, 88(2): 245-270.
15. Solomons, G.,
Fryhle, C., and Snyder, S. (2014). Organic Chemistry (11th edition).
John Wiley & Sons, Hoboken: pp. 509.
16. Pathak, S.,
Kumar, A., and Tandon, P. (2010). Molecular structure and vibrational
spectroscopic investigation of 4-chloro-4′dimethylamino-benzylidene
aniline using density functional theory. Journal of Molecular Structure,
981: 1-9.
17. Govindarasu, K.,
and Kavitha, E. (2014). Vibrational spectra, molecular structure, NBO, UV, NMR,
first order hyperpolarizability, analysis of 4-Methoxy-4′-Nitrobiphenyl
by density functional theory. Spectrochimica Acta - Part A: Molecular and
Biomolecular Spectroscopy, 122: 130-141.
18. Jain, S., Dayma,
V., Sharma, P., Bhargava, A., Baroliya, P. K., and Goswami, A. K. (2019).
Synthesis of some new hydroxytriazenes and their antimicrobial and
anti-inflammatory activities. Anti-Inflammatory & Anti-Allergy Agents in
Medicinal Chemistry, 19(1): 50-60.
19. Ngaini, Z., and Mortadza,
N. A. (2019). Synthesis of halogenated azo-aspirin analogues from natural
product derivatives as the potential antibacterial agents. Natural Product
Research, 33(24): 3507-3514.
20. Naseem, H. A.,
Aziz, T., Shah, H. ur R., Ahmad, K., Parveen, S., and Ashfaq, M. (2021).
Rational synthesis and characterization of medicinal phenyl
diazenyl-3-hydroxy-1h-inden-1-one azo derivatives and their metal complexes. Journal
of Molecular Structure, 1227: 129574.
21. Faleye, O. S.,
Boya, B. R., Lee, J. H., Choi, I., and Lee, J. (2024). Halogenated
antimicrobial agents to combat drug-resistant pathogens. Pharmacological
Reviews, 76(1): 90-141.
22. Abd Halim, A.
N., Mohammad Hussin, A. S., Ngaini, Z., Sing, N. N., Jong, S. A., and Saberi,
M. M. M. (2023). Synthesis, in vitro and in silico studies of alkylated
paracetamol derivatives as potential antibacterial agent. Borneo Journal of
Resource Science and Technology, 13(2): 161- 174.
23. Ngaini, Z.,
Rasin, F., Wan Zullkiplee, W. S. H., and Abd Halim, A. N. (2020). Synthesis and
molecular design of mono aspirinate thiourea-azo hybrid molecules as potential
antibacterial agents. Phosphorus, Sulfur and Silicon and the Related
Elements, 196(3): 275-282.
24. Rajagopal, K.,
Varakumar, P., Aparna, B., Byran, G., and Jupudi, S. (2021). Identification
of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors
for COVID-19 by molecular docking, free energy calculation and molecular
dynamics studies. Journal of Biomolecular Structure and Dynamics,
39(15): 5551-5562.
25. Wen, T., Wang,
J., Lu, R., Tan, S., Li, P., Yao, X., Liu, H., Yi, Z., Li, L., Liu, S., Gao,
P., Qian, H., Xie, G., and Ma, F. (2023). Development, validation, and
evaluation of a deep learning model to screen cyclin-dependent kinase 12
inhibitors in cancers. European Journal of Medicinal Chemistry, 250(2):
115199.
26. Ahmad, I.,
Kuznetsov, A. E., Pirzada, A. S., Alsharif, K. F., Daglia, M., and Khan, H.
(2023). Computational pharmacology and computational chemistry of
4-hydroxyisoleucine: Physico chemical, pharmacokinetic, and DFT-based
approaches. Frontiers in Chemistry, 11: 1145974.
27. Abdel-Aty, A.
S., Desheesh, M. A., Abdallah, E. S. A. M., Osama, D. A., and Amer, H. A.
(2023). Antimicrobial effects of some diazoamino benzene derivatives. Egyptian
Journal of Chemistry, 66(13): 137-144.
28. Maghsoodlou, M.
T., Safarzaei, M., Mousavi, M. R., Hazeri, N., Aboonajmi, J., and Shirzaei, M.
(2014). A green and novel three-component one-pot synthesis of
tetrahydrobenzopyran, pyrano [2, 3-d] pyrimidine, and 3, 4-dihydropyrano [c]
chromene derivatives using sodium acetate. Iran Journal of Organic Chemistry,
6(1): 1197-1202.
29. Melardi, M. R.,
Shamsi Mogoii, F. B., Sajirani, A. B., Gharamaleki, J. A., Notash, B., and
Rofouei, M. K. (2015). Synthesis, characterization and crystal structure of
four new asymmetric triazene ligands: An example of linear HgII complex with
Hg. π secondary bonding interactions. Journal of Chemical Sciences,
127(12): 2171-2181.
30. Aydin, H., Akocak,
S., Lolak, N., Uslu, U., Sait, A., Korkmaz, S., Parmaksiz, A., Ceylan, O., and
Aksakal, A. (2023). In vitro multitarget activity of sulfadiazine substituted
triazenes as antimicrobial, cytotoxic, and larvicidal agents. Journal of
Biochemical and Molecular Toxicology, 37(10): e23467.
31. Luliński, S., and Serwatowski, J. (2003). Bromine as the
ortho-directing group in the aromatic metalation/silylation of substituted
bromo benzenes. Journal of Organic Chemistry, 68(24): 9384-9388.
32. Baker, L. M.,
Aimon, A., Murray, J. B., Surgenor, A. E., Matassova, N., Roughley, S. D.,
Collins, P. M., Krojer, T., von Delft, F., and Hubbard, R. E. (2020). Rapid
optimisation of fragments and hits to lead compounds from screening of crude
reaction mixtures. Communications Chemistry, 3(1): 122.
33. Canal-Martín, A., Navo, C. D., Sáez, E.,
Molero, D., Jiménez-Osés, G., and Pérez-Fernández, R. (2021). Nucleophilic
catalysis of: p-substituted aniline derivatives in acylhydrazone formation and
exchange. Organic and Biomolecular Chemistry, 19(33): 7202-7210.
34. Kantar, C., Baltaş, N., Karaoǧlu, Ş. A., and
Şaşmaz, S. (2018). Some azo dyes containing eugenol and guaiacol,
synthesis, antioxidant capacity, urease inhibitory properties and
anti-helicobacter pylori activity. Revue Roumaine de Chimie, 63(3): 189-197.
35. Landman, I. R.,
Suleymanov, A. A., Fadaei-Tirani, F., Scopelliti, R., Chadwick, F. M., and
Severin, K. (2020). Brønsted and Lewis acid adducts of
triazenes. Dalton Transactions, 49(7): 2317-2322.
36. Feng, S. biao, Li, F. sheng, Zhao, X. yuan, Qian, Y. dong,
Fei, T., Yin, P., and Pang, S. P. (2021). Comparative study on 1,2,3-triazole
based azo- and triazene-bridged high-nitrogen energetic materials. Energetic
Materials Frontiers, 2(2): 125-130.
37. Nabatipour, S., Mohammadi, S., and Mohammadi, A. (2020).
Synthesis and comparison of two chromone based Schiff bases containing methoxy
and acetamido substitutes as highly sustainable corrosion inhibitors for steel
in hydrochloric acid. Journal of Molecular Structure, 1217: 128367
38. Ngaini, Z., Hissam, M. A., Mortadza, N. A., Abd Halim, A. N.,
and Daud, A. I. (2023). In vitro antimicrobial activities, molecular
docking and density functional theory (DFT) evaluation of natural product-based
vanillin derivatives featuring halogenated azo dyes. Natural Product
Research, 1-11.
39. Pavia, D. L., Lampman, G. M., Kriz, G. S., &
Vyvyan, J. R. (2013). Introduction to Spectroscopy (5th
edition). Cengage Learning, Stamford: pp. 619.
40. Cheng, H. G., and Yin, G. (2019). Nucleophilic
α-fluorination of Amides. Chem, 5(5), 1022-1024.
41. Kmieciak, A., Krzeminski, P. M., Hodii, A., Gorczyca, D., and
Jastrzebska, A. (2024). New water-soluble (iminomethyl)benzenesulfonates
derived from biogenic amines for potential biological applications. Materials,
17: 520.
42. Nilchan, N., Phetsang, W., Nowwarat, T., Chaturongakul, S., and
Jiarpinitnun, C. (2018). Halogenated trimethoprim derivatives as
multidrug-resistant Staphylococcus aureus therapeutics. Bioorganic and
Medicinal Chemistry, 26(19): 5343-5348.
43. Di Martino, M., Sessa, L., Di Matteo, M., Panunzi, B.,
Piotto, S., and Concilio, S. (2022). Azobenzene as antimicrobial molecules.
Molecules, 27(17): 5643.
44. Ghorab, M. M., Alsaid, M. S., El-Gaby, M. S. A., Elaasser, M.
M., and Nissan, Y. M. (2017). Antimicrobial and anticancer activity of
some novel fluorinated thiourea derivatives carrying sulfonamide moieties:
Synthesis, biological evaluation and molecular docking. Chemistry Central
Journal, 11(1): 32.
45. Bilginer, S., Gonder, B., Gul, H. I., Kaya, R., Gulcin, I.,
Anil, B., and Supuran, C. T. (2020). Novel sulphonamides incorporating triazene
moieties show powerful carbonic anhydrase I and II inhibitory properties. Journal
of Enzyme Inhibition and Medicinal Chemistry, 35(1): 325- 329.
46. Chee, D. N. A., Rodis, M. L., Saat, N., Ngaini, Z., and Halim,
A. N. A. (2017). Synthesis and antibacterial study of organotin(iv) complexes
containing hydrazinopyridine ligand. Malaysian Journal of Analytical
Sciences, 21(5): 1143- 1150.
47. De Los Angeles Alvarez, M., Zarelli, V. E. P., Pappano, N.
B., and Debattista, N. B. (2004). Bacteriostatic action of synthetic
polyhydroxylated chalcones against Escherichia coli. Biocell,
28(1): 31-34.
48. Rani, A., and Jain, S. (2008). Studies on Enterococcus
faecium growth-inhibitory action of 1, 5-BIS (2-hydroxyphenyl)pent-1,
4-diene-3-one and related compounds: A search for environmentally benign
anti-bacterial agent. Rasayan Journal of Chemistry, 1(4): 795-801.
49. Chiodi, D., and Ishihara, Y. (2023). “Magic Chloro”: Profound
effects of the chlorine atom in drug discovery. Journal of Medicinal
Chemistry, 66(8): 5305-5331.
50. Shinada, N. K., De Brevern, A. G., and Schmidtke, P. (2019).
Halogens in protein-ligand binding mechanism: A structural perspective. Journal
of Medicinal Chemistry, 62(21): 9341- 9356.
51. Govindaraj, V., Ungati, H., Jakka, S. R., Bose, S., and
Mugesh, G. (2019). Directing traffic: Halogen bond-mediated membrane transport.
Chemistry - A European Journal, 25(48): 11180-11192.
52. Miladiyah, I., Jumina, J., Haryana, S.
M., & Mustofa, M. (2018). Biological activity, quantitative
structure–activity relationship analysis, and molecular docking of xanthone
derivatives as anticancer drugs. Drug Design, Development and Therapy,
12: 149-158.
53. Kumar, A., Singh, P., Singh, E., Jain, M., Muthukumaran, J., and
Singh, A. K. (2024). In silico strategies for identifying therapeutic
candidates against Acinetobacter baumannii: Spotlight on the
UDP-N-acetylmuramoyl-L-alanine-D-glutamate:meso-diaminopimelate ligase (MurE). Journal
of Biomolecular Structure and Dynamics, 2024: 1-15.
54. Yang, Y., Wang, H., Zhou, H., Hu, Z., Shang, W., Rao, Y.,
Peng, H., Zheng, Y., Hu, Q., Zhang, R., Luo, H., and Rao, X. (2020). Protective
effect of the golden staphyloxanthin biosynthesis pathway on Staphylococcus
aureus under cold atmospheric plasma treatment. Applied and
Environmental Microbiology, 86(3): e01998-19.
55. Khan, M. A. S., Miah, M. I., Islam, Z., Afrin, S., Ahmed, M.
F., and Rahman, S. R. (2023). Molecular docking and dynamics simulation study
of medicinal fungi derived secondary metabolites as potential inhibitor for
COVID-19 treatment. Informatics in Medicine Unlocked, 41(5): 101305.
56. El-sayed, N. N. E., Al-otaibi, T. M., Alonazi, M., Masand, V.
H., Barakat, A., Almarhoon, Z. M., and Bacha, A. Ben. (2021). Synthesis and
characterization of some new Quinoxalin-2(1h)one and
2-methyl-3h-quinazolin-4-one derivatives targeting the onset and progression of
CRC with SAR, molecular docking, and ADMET analyses. Molecules, 26: 3121.
57. Almalki, A. J., Ibrahim, T. S., Elhady, S. S., Darwish, K.
M., and Hegazy, W. A. H. (2022). Repurposing α-adrenoreceptor blockers as
promising anti-virulence agents in gram-negative bacteria. Antibiotics,
11(2): 178.
58. Anwar, S., Khan, S., Shamsi, A., Anjum, F., Shafie, A.,
Islam, A., Ahmad, F., and Hassan, M. I. (2021). Structure-based investigation
of MARK4 inhibitory potential of Naringenin for therapeutic management of
cancer and neurodegenerative diseases. Journal of Cellular Biochemistry,
122(10): 1445-1459.
59. Karami, T. K., Hailu, S., Feng, S., Graham, R., &
Gukasyan, H. J. (2022). Eyes on Lipinski’s rule of five: A new “Rule of Thumb”
for physicochemical design space of ophthalmic drugs. Journal of Ocular
Pharmacology and Therapeutics, 38(1): 43-55.
60. Mortadza, N. A., and Ngaini, Z. (2023). Microwave-assisted
and conventional synthesis of halogenated coumarin-azo derivatives and
structural-activity relationship study for antimicrobial potential. Malaysian
Journal of Analytical Sciences, 27(2): 342-352.
61. James, J. P., Ail, P. D., Crasta, L., Kamath, R. S., Shura,
M. H., and T.J, S. (2023). In silico ADMET and molecular interaction
profiles of phytochemicals from medicinal plants in Dakshina Kannada. Journal
of Health and Allied Sciences NU, 14(2): 190-201.
62. En-Nahli, F., Hajji, H., Ouabane, M.,
Ajana, M. A., Sekatte, C., Lakhlifi, T., and Bouachrine, M. (2023). ADMET profiling and molecular docking of pyrazole and
pyrazolines derivatives as antimicrobial agents. Arabian Journal of
Chemistry, 16(11): 105262.
63. Abd Halim, A. N., Zikri, N. A. S., Ngaini, Z., Zamakshshari,
N. H., Wei, Y. K., and Diosing, D. N. (2023c). Synthesis in silico and ADMET
profile of triazinethione derivatives for their potential as anti-inflammatory
agents. Russian Journal of General Chemistry, 93(11): 2889- 2899.
64. Pires, Blundell, T. L., and Ascher, D. B. (2015). pkCSM:
Predicting small-molecule pharmaco kinetic properties using graph-based
signatures. Journal of Medicinal Chemistry, 58: 4066-4072.
65. Kirishnamaline, G., Magdaline, J. D., Chithambarathanu, T.,
Aruldhas, D., and Anuf, A. R. (2021). Theoretical investigation of structure,
anticancer activity and molecular docking of thiourea derivatives. Journal
of Molecular Structure, 1225: 129118.
66. Cosimelli, B., Lamartina, L.,
Lanza, C. Z., Spinelli, D., Spisani, R., and Vegna, F. (2003). Reaction of 3‐bromo‐2‐nitrobenzo[b] thiophene with
some ortho‐substituted anilines: an analysis of the
products of reaction and of their NMR and MS properties. Tetrahedron,
59(36): 7189-7201.
67. Subi, E. B., Dhas, D. A., Balachandran, S., and
Joe, I. H. (2022). Crystal growth, structural, vibrational, effects of hydrogen
Bonding(C-H-O and C-HN), chemical reactivity, antimicrobial activity,
inhibitory effects and molecular dynamic simulation of
4-Methoxy-N-(Nitrobenzylidene)-Aniline. Polycyclic Aromatic Compounds,
43(3): 2690-2744.