Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1312

 

Research article

 

Preparation, bacteriostatic, and in silico analysis of halogenated 4-methoxyphenyl-triazene derivatives

 

Davlye Noissy Diosing1, Ainaa Nadiah Abd Halim*1, Nor Hisam Zamakshshari1, Zainab Ngaini1, Yeo Kai Wei1, Akshatha Handattu Shankaranarayana2, and B. R. Prashantha Kumar2

 

1Faculty of Resource Science and Technology, Universiti Malaysia Sarawak,94300 Kota Samarahan, Sarawak, Malaysia

2Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Sri Shivarathreeshwara Nagar, Mysuru- 570015, India

 

*Corresponding author: ahanadiah@unimas.my

 

Received: 13 September 2024; Revised: 10 December 2024; Accepted: 3 December 2025; Published: 27 March 2025

 

Abstract

A series of diazoamino compounds, also known as triazene derivatives were successfully synthesised through the N-coupling diazotisation of p-anisidine with various halogenated substituted anilines at ortho, meta, and para positions. The series was obtained in low to moderate yields of 13-56%. Structural elucidation was performed via FTIR, 1H, and 13C NMR techniques. With ampicillin served as a positive control, the antibacterial efficacy of the synthesised compounds against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 via the Kirby-Bauer disk diffusion resulted in moderate to good inhibition measuring 6.6 ± 0.25 to 10.0 ± 0.00 mm, respectively. The minimum inhibitory concentration (MIC) values indicating inhibition of ≥ 8.8 mm yielded promising results, with MICs ranging from 82 to 121 ppm for E. coli and from 87 to 101 ppm for S. aureus. These values exceeded the standard ampicillin range of 96 to 127 ppm, suggesting potential for broader clinical applications. Molecular docking analysis of the compounds against CrtM and MurE protein receptors further supported these findings with binding scores of -7.48 to -8.27 kcal/mol and -7.26 to -7.94 kcal/mol, respectively. Notably, these scores surpassed those of ampicillin, which scored only -7.23 kcal/mol and -6.92 kcal/mol, respectively. This enhanced activity is believed to be attributed to the presence of hydrogen bonding and other hydrophobic interactions. Additionally, the bioavailability competencies of all compounds tested via ADMET analysis demonstrated compliance of each compound with  Lipinski’s rule of five with zero violations.

 

Keywords: diazoamino, antibacterial activities, ADMET, N-coupling, in silico



References

1.    Noriega, S., Cardoso-Ortiz, J., López-Luna, A., Cuevas-Flores, M. D. R, and Flores De La Torre, J. A. (2022). The diverse biological activity of recently synthesized nitro compounds. Pharmaceuticals. 15(6): 717.

2.    Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., and Jonnalagadda, S. B. (2021). A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules. 25(8): 1909.

3.    Khwaza, V., Mlala, S., Oyedeji, O. O., and Aderibigbe, B. A. (2021). Pentacyclic triterpenoids with nitrogen-containing heterocyclic moiety, privileged hybrids in anticancer drug discovery. Molecules, 26(9): 2401.

4.    Tahir, T., Shahzad, M. I., Tabassum, R., Rafiq, M., Ashfaq, M., Hassan, M., Kotwica-Mojzych, K., and Mojzych, M. (2021). Diaryl azo derivatives as anti-diabetic and antimicrobial agents: Synthesis, in vitro, kinetic and docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1): 1509-1520.

5.    Li, L., Xu, F., Sun, G., Sun, M., Jia, S., Li, H., Xu, T., Zhang, H., Wang, Y., Guo, Y., and Liu, T. (2021). Identification of N-methylaniline based on azo coupling reaction by combining TLC with SERRS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 252: 119490.

6.    Saeed, A., Nasher, M. A., Abdel-Latif, E., Keshk, E. M., Khalil, A. G. M., and Metwally, H. M. (2019). New derivatives of azopyrazolo dyes: Synthesis and optical characterization for application in sensitized solar cells. Optik, 196: 163036.

7.    Davis, G. J., Townsend, J. A., Morrow, M. G., Hamie, M., Shepard, A. J., Hsieh, C. C., Marty, M. T., and Jewett, J. C. (2021). Protein modification via mild photochemical isomerization of triazenes to release aryl diazonium ions. Bioconjugate Chemistry, 32(11): 2432-2438.

8.    Tan, J. F., Bormann, C. T., Perrin, F. G., Chadwick, F. M., Severin, K., and Cramer, N. (2019). Divergent synthesis of densely substituted arenes and pyridines via cyclotrimerization reactions of alkynyl triazenes. Journal of the American Chemical Society, 141(26): 10372-10383.

9.    Wippert, N. A., Jung, N., and Bräse, S. (2019). Synthesis of arylamides via ritter-type cleavage of solid-supported aryltriazenes. ACS Combinatorial Science, 21(8): 568-572.

10.  Griess, P., and Hofmann. (1859). V. On new nitrogenous derivatives of the phenyl- and benzoyl-series. Proceedings of the Royal Society of London, 9: 594-597.

11.  Abd Halim, A. N., Mohammad Hussin, A. S., Ngaini, Z., Zamakshshari, N. H., and Haron, I. Z. (2023). Synthesis, antibacterial potential and in silico molecular docking analysis of triazene compounds via diazo coupling reactions of an amine. Tetrahedron Letters, 132: 154803.

12.  Jaiswal, S., and Verma, K. N. (2021). Benzothiazole moiety with sulphonamide as anti-inflammatory and analgesic activity: A review. South Asian Research Journal of Pharmaceutical Sciences, 3(6): 90-102.

13.  Rydén, V., El-Naggar, A. I., Koliadi, A., Ladjevardi, C. O., Digkas, E., Valachis, A., and Ullenhag, G. J. (2024). The role of dacarbazine and temozolomide therapy after treatment with immune checkpoint inhibitors in malignant melanoma patients: A case series and meta-analysis. Pigment Cell and Melanoma Research, 37(3): 352-362.

14.  Eghianruwa, K. I., and Oridupa, O. A. (2018). Chemotherapeutic control of trypanosomosis - A review of past measures, current status and future trends. Veterinarski Arhiv, 88(2): 245-270.

15.  Solomons, G., Fryhle, C., and Snyder, S. (2014). Organic Chemistry (11th edition). John Wiley & Sons, Hoboken: pp. 509.

16.  Pathak, S., Kumar, A., and Tandon, P. (2010). Molecular structure and vibrational spectroscopic investigation of 4-chloro-4′dimethylamino-benzylidene aniline using density functional theory. Journal of Molecular Structure, 981: 1-9.

17.  Govindarasu, K., and Kavitha, E. (2014). Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4′-Nitrobiphenyl by density functional theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 122: 130-141.

18.  Jain, S., Dayma, V., Sharma, P., Bhargava, A., Baroliya, P. K., and Goswami, A. K. (2019). Synthesis of some new hydroxytriazenes and their antimicrobial and anti-inflammatory activities. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 19(1): 50-60.

19.  Ngaini, Z., and Mortadza, N. A. (2019). Synthesis of halogenated azo-aspirin analogues from natural product derivatives as the potential antibacterial agents. Natural Product Research, 33(24): 3507-3514.

20.  Naseem, H. A., Aziz, T., Shah, H. ur R., Ahmad, K., Parveen, S., and Ashfaq, M. (2021). Rational synthesis and characterization of medicinal phenyl diazenyl-3-hydroxy-1h-inden-1-one azo derivatives and their metal complexes. Journal of Molecular Structure, 1227: 129574.

21.  Faleye, O. S., Boya, B. R., Lee, J. H., Choi, I., and Lee, J. (2024). Halogenated antimicrobial agents to combat drug-resistant pathogens. Pharmacological Reviews, 76(1): 90-141.

22.  Abd Halim, A. N., Mohammad Hussin, A. S., Ngaini, Z., Sing, N. N., Jong, S. A., and Saberi, M. M. M. (2023). Synthesis, in vitro and in silico studies of alkylated paracetamol derivatives as potential antibacterial agent. Borneo Journal of Resource Science and Technology, 13(2): 161- 174.

23.  Ngaini, Z., Rasin, F., Wan Zullkiplee, W. S. H., and Abd Halim, A. N. (2020). Synthesis and molecular design of mono aspirinate thiourea-azo hybrid molecules as potential antibacterial agents. Phosphorus, Sulfur and Silicon and the Related Elements, 196(3): 275-282.

24.  Rajagopal, K., Varakumar, P., Aparna, B., Byran, G., and Jupudi, S. (2021). Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 39(15): 5551-5562.

25.  Wen, T., Wang, J., Lu, R., Tan, S., Li, P., Yao, X., Liu, H., Yi, Z., Li, L., Liu, S., Gao, P., Qian, H., Xie, G., and Ma, F. (2023). Development, validation, and evaluation of a deep learning model to screen cyclin-dependent kinase 12 inhibitors in cancers. European Journal of Medicinal Chemistry, 250(2): 115199.

26.  Ahmad, I., Kuznetsov, A. E., Pirzada, A. S., Alsharif, K. F., Daglia, M., and Khan, H. (2023). Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physico chemical, pharmacokinetic, and DFT-based approaches. Frontiers in Chemistry, 11: 1145974.

27.  Abdel-Aty, A. S., Desheesh, M. A., Abdallah, E. S. A. M., Osama, D. A., and Amer, H. A. (2023). Antimicrobial effects of some diazoamino benzene derivatives. Egyptian Journal of Chemistry, 66(13): 137-144.

28.  Maghsoodlou, M. T., Safarzaei, M., Mousavi, M. R., Hazeri, N., Aboonajmi, J., and Shirzaei, M. (2014). A green and novel three-component one-pot synthesis of tetrahydrobenzopyran, pyrano [2, 3-d] pyrimidine, and 3, 4-dihydropyrano [c] chromene derivatives using sodium acetate. Iran Journal of Organic Chemistry, 6(1): 1197-1202.

29.  Melardi, M. R., Shamsi Mogoii, F. B., Sajirani, A. B., Gharamaleki, J. A., Notash, B., and Rofouei, M. K. (2015). Synthesis, characterization and crystal structure of four new asymmetric triazene ligands: An example of linear HgII complex with Hg. π secondary bonding interactions. Journal of Chemical Sciences, 127(12): 2171-2181.

30.  Aydin, H., Akocak, S., Lolak, N., Uslu, U., Sait, A., Korkmaz, S., Parmaksiz, A., Ceylan, O., and Aksakal, A. (2023). In vitro multitarget activity of sulfadiazine substituted triazenes as antimicrobial, cytotoxic, and larvicidal agents. Journal of Biochemical and Molecular Toxicology, 37(10): e23467.

31.  Luliński, S., and Serwatowski, J. (2003). Bromine as the ortho-directing group in the aromatic metalation/silylation of substituted bromo benzenes. Journal of Organic Chemistry, 68(24): 9384-9388.

32.  Baker, L. M., Aimon, A., Murray, J. B., Surgenor, A. E., Matassova, N., Roughley, S. D., Collins, P. M., Krojer, T., von Delft, F., and Hubbard, R. E. (2020). Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures. Communications Chemistry, 3(1): 122.

33.  Canal-Martín, A., Navo, C. D., Sáez, E., Molero, D., Jiménez-Osés, G., and Pérez-Fernández, R. (2021). Nucleophilic catalysis of: p-substituted aniline derivatives in acylhydrazone formation and exchange. Organic and Biomolecular Chemistry, 19(33): 7202-7210.

34.  Kantar, C., Baltaş, N., Karaoǧlu, Ş. A., and Şaşmaz, S. (2018). Some azo dyes containing eugenol and guaiacol, synthesis, antioxidant capacity, urease inhibitory properties and anti-helicobacter pylori activity. Revue Roumaine de Chimie, 63(3): 189-197.

35.  Landman, I. R., Suleymanov, A. A., Fadaei-Tirani, F., Scopelliti, R., Chadwick, F. M., and Severin, K. (2020). Brønsted and Lewis acid adducts of triazenes. Dalton Transactions, 49(7): 2317-2322.

36.  Feng, S. biao, Li, F. sheng, Zhao, X. yuan, Qian, Y. dong, Fei, T., Yin, P., and Pang, S. P. (2021). Comparative study on 1,2,3-triazole based azo- and triazene-bridged high-nitrogen energetic materials. Energetic Materials Frontiers, 2(2): 125-130.

37.  Nabatipour, S., Mohammadi, S., and Mohammadi, A. (2020). Synthesis and comparison of two chromone based Schiff bases containing methoxy and acetamido substitutes as highly sustainable corrosion inhibitors for steel in hydrochloric acid. Journal of Molecular Structure, 1217: 128367

38.  Ngaini, Z., Hissam, M. A., Mortadza, N. A., Abd Halim, A. N., and Daud, A. I. (2023). In vitro antimicrobial activities, molecular docking and density functional theory (DFT) evaluation of natural product-based vanillin derivatives featuring halogenated azo dyes. Natural Product Research, 1-11.

39.  Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2013). Introduction to Spectroscopy (5th edition). Cengage Learning, Stamford: pp. 619.

40.  Cheng, H. G., and Yin, G. (2019). Nucleophilic α-fluorination of Amides. Chem, 5(5), 1022-1024.

41.  Kmieciak, A., Krzeminski, P. M., Hodii, A., Gorczyca, D., and Jastrzebska, A. (2024). New water-soluble (iminomethyl)benzenesulfonates derived from biogenic amines for potential biological applications. Materials, 17: 520.

42.  Nilchan, N., Phetsang, W., Nowwarat, T., Chaturongakul, S., and Jiarpinitnun, C. (2018). Halogenated trimethoprim derivatives as multidrug-resistant Staphylococcus aureus therapeutics. Bioorganic and Medicinal Chemistry, 26(19): 5343-5348.

43.  Di Martino, M., Sessa, L., Di Matteo, M., Panunzi, B., Piotto, S., and Concilio, S. (2022). Azobenzene as antimicrobial molecules. Molecules, 27(17): 5643.

44.  Ghorab, M. M., Alsaid, M. S., El-Gaby, M. S. A., Elaasser, M. M., and Nissan, Y. M. (2017). Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfonamide moieties: Synthesis, biological evaluation and molecular docking. Chemistry Central Journal, 11(1): 32.

45.  Bilginer, S., Gonder, B., Gul, H. I., Kaya, R., Gulcin, I., Anil, B., and Supuran, C. T. (2020). Novel sulphonamides incorporating triazene moieties show powerful carbonic anhydrase I and II inhibitory properties. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1): 325- 329.

46.  Chee, D. N. A., Rodis, M. L., Saat, N., Ngaini, Z., and Halim, A. N. A. (2017). Synthesis and antibacterial study of organotin(iv) complexes containing hydrazinopyridine ligand. Malaysian Journal of Analytical Sciences, 21(5): 1143- 1150.

47.  De Los Angeles Alvarez, M., Zarelli, V. E. P., Pappano, N. B., and Debattista, N. B. (2004). Bacteriostatic action of synthetic polyhydroxylated chalcones against Escherichia coli. Biocell, 28(1): 31-34.

48.  Rani, A., and Jain, S. (2008). Studies on Enterococcus faecium growth-inhibitory action of 1, 5-BIS (2-hydroxyphenyl)pent-1, 4-diene-3-one and related compounds: A search for environmentally benign anti-bacterial agent. Rasayan Journal of Chemistry, 1(4): 795-801.

49.  Chiodi, D., and Ishihara, Y. (2023). “Magic Chloro”: Profound effects of the chlorine atom in drug discovery. Journal of Medicinal Chemistry, 66(8): 5305-5331.

50.  Shinada, N. K., De Brevern, A. G., and Schmidtke, P. (2019). Halogens in protein-ligand binding mechanism: A structural perspective. Journal of Medicinal Chemistry, 62(21): 9341- 9356.

51.  Govindaraj, V., Ungati, H., Jakka, S. R., Bose, S., and Mugesh, G. (2019). Directing traffic: Halogen bond-mediated membrane transport. Chemistry - A European Journal, 25(48): 11180-11192.

52.  Miladiyah, I., Jumina, J., Haryana, S. M., & Mustofa, M. (2018). Biological activity, quantitative structure–activity relationship analysis, and molecular docking of xanthone derivatives as anticancer drugs. Drug Design, Development and Therapy, 12: 149-158.

53.  Kumar, A., Singh, P., Singh, E., Jain, M., Muthukumaran, J., and Singh, A. K. (2024). In silico strategies for identifying therapeutic candidates against Acinetobacter baumannii: Spotlight on the UDP-N-acetylmuramoyl-L-alanine-D-glutamate:meso-diaminopimelate ligase (MurE). Journal of Biomolecular Structure and Dynamics, 2024: 1-15.

54.  Yang, Y., Wang, H., Zhou, H., Hu, Z., Shang, W., Rao, Y., Peng, H., Zheng, Y., Hu, Q., Zhang, R., Luo, H., and Rao, X. (2020). Protective effect of the golden staphyloxanthin biosynthesis pathway on Staphylococcus aureus under cold atmospheric plasma treatment. Applied and Environmental Microbiology, 86(3): e01998-19.

55.  Khan, M. A. S., Miah, M. I., Islam, Z., Afrin, S., Ahmed, M. F., and Rahman, S. R. (2023). Molecular docking and dynamics simulation study of medicinal fungi derived secondary metabolites as potential inhibitor for COVID-19 treatment. Informatics in Medicine Unlocked, 41(5): 101305.

56.  El-sayed, N. N. E., Al-otaibi, T. M., Alonazi, M., Masand, V. H., Barakat, A., Almarhoon, Z. M., and Bacha, A. Ben. (2021). Synthesis and characterization of some new Quinoxalin-2(1h)one and 2-methyl-3h-quinazolin-4-one derivatives targeting the onset and progression of CRC with SAR, molecular docking, and ADMET analyses. Molecules, 26: 3121.

57.  Almalki, A. J., Ibrahim, T. S., Elhady, S. S., Darwish, K. M., and Hegazy, W. A. H. (2022). Repurposing α-adrenoreceptor blockers as promising anti-virulence agents in gram-negative bacteria. Antibiotics, 11(2): 178.

58.  Anwar, S., Khan, S., Shamsi, A., Anjum, F., Shafie, A., Islam, A., Ahmad, F., and Hassan, M. I. (2021). Structure-based investigation of MARK4 inhibitory potential of Naringenin for therapeutic management of cancer and neurodegenerative diseases. Journal of Cellular Biochemistry, 122(10): 1445-1459.

59.  Karami, T. K., Hailu, S., Feng, S., Graham, R., & Gukasyan, H. J. (2022). Eyes on Lipinski’s rule of five: A new “Rule of Thumb” for physicochemical design space of ophthalmic drugs. Journal of Ocular Pharmacology and Therapeutics, 38(1): 43-55.

60.  Mortadza, N. A., and Ngaini, Z. (2023). Microwave-assisted and conventional synthesis of halogenated coumarin-azo derivatives and structural-activity relationship study for antimicrobial potential. Malaysian Journal of Analytical Sciences, 27(2): 342-352.

61.  James, J. P., Ail, P. D., Crasta, L., Kamath, R. S., Shura, M. H., and T.J, S. (2023). In silico ADMET and molecular interaction profiles of phytochemicals from medicinal plants in Dakshina Kannada. Journal of Health and Allied Sciences NU, 14(2): 190-201.

62.  En-Nahli, F., Hajji, H., Ouabane, M., Ajana, M. A., Sekatte, C., Lakhlifi, T., and Bouachrine, M. (2023). ADMET profiling and molecular docking of pyrazole and pyrazolines derivatives as antimicrobial agents. Arabian Journal of Chemistry, 16(11): 105262.

63.  Abd Halim, A. N., Zikri, N. A. S., Ngaini, Z., Zamakshshari, N. H., Wei, Y. K., and Diosing, D. N. (2023c). Synthesis in silico and ADMET profile of triazinethione derivatives for their potential as anti-inflammatory agents. Russian Journal of General Chemistry, 93(11): 2889- 2899.

64.  Pires, Blundell, T. L., and Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmaco kinetic properties using graph-based signatures. Journal of Medicinal Chemistry, 58: 4066-4072.

65.  Kirishnamaline, G., Magdaline, J. D., Chithambarathanu, T., Aruldhas, D., and Anuf, A. R. (2021). Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives. Journal of Molecular Structure, 1225: 129118.

66. Cosimelli, B., Lamartina, L., Lanza, C. Z., Spinelli, D., Spisani, R., and Vegna, F. (2003). Reaction of 3bromo2nitrobenzo[b] thiophene with some orthosubstituted anilines: an analysis of the products of reaction and of their NMR and MS properties. Tetrahedron, 59(36): 7189-7201.

67. Subi, E. B., Dhas, D. A., Balachandran, S., and Joe, I. H. (2022). Crystal growth, structural, vibrational, effects of hydrogen Bonding(C-H-O and C-HN), chemical reactivity, antimicrobial activity, inhibitory effects and molecular dynamic simulation of 4-Methoxy-N-(Nitrobenzylidene)-Aniline. Polycyclic Aromatic Compounds, 43(3): 2690-2744.