Malays.
J. Anal. Sci. Volume 29 Number 2 (2025):
1311
Research Article
Synthesis and
characterization of magnetized Fe3O4-ZrO2
catalysts for methyl ester production from waste cooking oil
Muhammad Fareez Naufal Fadilah1,2, Balqis Adlina Omar1,2,
Farah Wahida Harun2,
Salina Mat Radzi2, and Nurul Jannah Abd Rahman1*
1Pusat
Tamhidi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan,
Malaysia
2Faculty of Science and Technology, Universiti Sains Islam Malaysia,
Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
*Corresponding author: jannahrahman@usim.edu.my
Received: 28 August 2024;
Revised: 4 December 2024; Accepted: 6 January 2025; Published: 24 April 2025
Abstract
Biodiesel is an efficient, clean, and renewable alternative to
petroleum-based fuels. Biodiesel production typically requires heterogeneous catalysts.
However, the usage of traditional heterogeneous catalysts faces challenges like
difficult recovery and catalyst loss. To address these challenges, this study
aims to synthesize and characterize magnetized Fe3O4-ZrO2
catalysts for direct transesterification of waste cooking oil into biodiesel.
Fe3O4 was first synthesized via co-precipitation of FeSO4·7H2O
and FeCl3·6H2O, resulting in black precipitate. ZrO2
was then impregnated with 10-30 wt.% Fe3O4 using the
incipient wetness impregnation method. The catalysts were characterized by
thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy
(FT-IR), field emission scanning electron microscopy (FESEM), and
Brunauer-Emmett-Teller analysis (BET) to assess thermal stability, functional
groups, morphology, surface area, and porosity. The catalysts were tested for
methyl ester production using 12:1 methanol to waste cooking oil ratio and 5
wt.% catalyst loading at 60°C for 5 hours. The 20Fe-Zr catalyst showed superior
performance (13.13%) compared to 10Fe-Zr and 30Fe-Zr catalysts. The enhanced
catalytic activity of the 20Fe-Zr catalyst is attributed to its mesopore
connectivity, high pore volume, and large surface area. Additionally, its
magnetic properties enable easy catalyst separation and demonstrate potential
for reuse, making the process more cost-effective and environmentally friendly.
Keywords: methyl ester, magnetize heterogeneous catalyst, waste cooking oil,
transesterification
References
1.
Shay, E.G. (1993). Diesel fuel from vegetable oils: Status and
opportunities. Biomass Bioenergy, 4(4): 227-242.
2.
Ma, F., and Hanna,
M.A. (1999). Biodiesel production: A review. Bioresource
Technology, 70(1): 1-15.
3.
Belousov, A.S., Esipovich, A.L., Kanakov, E.A., and Otopkova,
K.V. (2021). Recent advances in sustainable production and catalytic
transformations of fatty acid methyl esters. Sust. Energy Fuels, 5(18): 4512-4545.
4.
Miyuranga, K.A.V.,
Arachchige, U.S.P.R., Marso, T.M.M., and Samarakoon, G. (2023). Biodiesel
production through the transesterification of waste cooking oil over typical
heterogeneous base or acid catalysts. Catalysts, 13(3): 546.
5. Nigatu G.S.,
and Mario M.J. (2017). Biodiesel production technologies: review. AIMS
Energy, 5(3): 425-457.
6.
Su, G., Hwai C.O.,
Ibrahim, S., Fattah, R., Mofijur, M. and Cheng T. C. (2021). Valorisation
of medical waste through pyrolysis for a cleaner environment: Progress and
challenges. Environmental Pollution, 279:
116934.
7.
Hazrat, M.A., Rasul, M.G., Mohammad, N.A., Silitonga, A.S., Fattah, R., and Indra, M. (2022). Kinetic
modelling of esterification and transesterification processes for biodiesel
production utilising waste-based resource. Catalysts, 12(11): 1472.
8. Ma’arof, N.A.N.B., Hindryawati,
N., Khazaai, S.N.M., Bhuyar,
P., Rahim, M.H.A., and Maniam, G.P. (2021). Biodiesel
(methyl esters). Maejo International
Journal of Energy and Environmental Communication, 3(1): 30-43.
9. Nayab, R., Imran, M., Ramzan, M.,
Tariq, M., Taj, M.B., Akhtar, M. N., and Iqbal, H.M. (2022). Sustainable
biodiesel production via catalytic and non-catalytic transesterification of
feedstock materials–A review. Fuel, 328: 125254.
10. Santoso, A.,
None Sumari, Salim, A., and Siti Marfu’ah. (2018).
Synthesis of methyl ester from chicken oil and methanol using heterogeneous
catalyst of CaO-MgO as well as characterization its potential as a biodiesel
fuel. Journal Physics Conference
Series, 1093:
012035.
11. Thanh, L. T., Okitsu, K., Boi, L.
V., and Maeda, Y. (2012). Catalytic technologies for biodiesel fuel production
and utilization of glycerol: a review. Catalysts, 2(1):
191-222.
12. Santos, E. P., De Souza, E. F., Ramos, T. C., Da Silva,
M. S., and Fiorucci, A. R. (2018). Evaluation
of potentiometric methods for acid number determination in commercial biodiesel
samples and proposal of alternative method.
Orbital: Electronic Journal Chemistry, 10(1): 47-53.
13. Ivanova, M.,
Hanganu, A., Dumitriu, R., Tociu, M., Ivanov, G., Stavarache, C., Popescu, L., Ghendov-Mosanu,
A., Sturza, R., Deleanu, C., and Chira, N.-A. (2022).
Saponification value of fats and oils as determined from 1H-NMR
data: The case of dairy fats. Foods, 11(10): 1466.
14.
Jain, B.P., Goswami, S.K., Pandey, S., Jain, B.P.,
Goswami, S.K., and Pandey, S. (2021). Chapter 3 Lipid. In Protocol Biochemistry Clininical Biochemistry, 23-30.
15.
Anastopoulos, G., Zannikou,
Y., Stournas, S., and Kalligeros,
S. (2009). Transesterification of vegetable oils with ethanol and
characterization of the key fuel properties of ethyl esters. Energies,
2(2): 362-376.
16.
Yadav, V.K., Ali, D., Khan, S. H., Gnanamoorthy,
G., Choudhary, N., Yadav, K.K., Thai, V.N., Hussain, S. A., and Manhrdas, S. (2020). Synthesis and characterization of
amorphous iron oxide nanoparticles by the sonochemical
method and their application for the remediation of heavy metals from
wastewater. Nanomaterials, 10(8): 1551.
17.
Nandhakumar,
E., Priya, P., Rajeswari, R., Aravindhan, V., Sasikumar, A., and Senthilkumar,
N. (2019). Studies on structural, optical and thermal properties of Fe3O4
(NR)/ZrO2 CSNCs synthesized via green approach for photodegradation
of dyes. Research on Chemical Inter-mediates, 45: 2657-2671.
18.
Ahmad,
M. A., & Samsuri, S. (2021). Biodiesel purification via ultrasonic-assisted
solvent-aided crystallization. Crystals, 11(2): 212.
19. Owolabi R.U., Osiyemi
N.A., Amosa M.K., and Ojewumi M.E. (2011). Biodiesel
from household/restaurant waste cooking oil (WCO). Journal Chemical Engineering
Processing Technology, 2(4): 1000112.
20. Yusuff, A. S., Adeniyi, O. D., Olutoye, M. A., and Akpan, U. G. (2019). Waste frying oil
as a feedstock for biodiesel. Petroleum Chemicals: Recent Insight,
2: 5-29.
21. Hsiao, M. -C., Liao, P.
-H., Lan, N. V., and Hou, S. -S. (2021). Enhancement of biodiesel production
from high-acid-value waste cooking oil via a microwave reactor using a
homogeneous alkaline catalyst. Energies, 14(2): 437.
22. Sadaf, S., Iqbal, J., Ullah, I.,
Bhatti, H. N., Nouren, S., Nisar, J., and Iqbal, M.
(2018). Biodiesel production from waste cooking oil: an efficient technique to
convert waste into biodiesel. Sustainable Cities and Society, 41:
220-226.
23. Suganya, T., Gandhi, N. N., and
Renganathan, S. (2013). Production of algal biodiesel from marine macroalgae Enteromorpha
compressa by two step process: optimization and
kinetic study. Bioresource Technology, 128: 392-400.
24. Munir, M., Ahmad, M., Saeed, M.,
Waseem, A., Nizami, A. S., Sultana, S., ... and Ali, M. I. (2021). Biodiesel
production from novel non-edible caper (Capparis spinosa L.) seeds oil
employing Cu–Ni doped ZrO2 catalyst. Renewable and
Sustainable Energy Reviews, 138: 110558.
25. Chingakham, C., Tiwary, C., and Sajith, V.
(2019). Waste animal bone as a novel layered heterogeneous catalyst for the transesterification
of biodiesel. Catalysis Letters, 149: 1100-1110.
26. Rahulan, K. M., Vinitha, G.,
Stephen, L. D., and Kanakam, C.
C. (2013). Synthesis and optical limiting effects in ZrO2 and ZrO2@
SiO2 core–shell nanostructures. Ceramics International, 39(5):
5281-5286.
27. Banić,
N., Šojić Merkulov, D., Despotović,
V., Finčur, N., Ivetić,
T., Bognár, S., Jovanović, D., and Abramović, B. (2022). Rapid
removal of organic pollutants from aqueous systems under solar irradiation
using ZrO2/Fe3O4 nanoparticles. Molecules,
27(22): 8060.
28. Mishra,
V.K., and Goswami, R. (2017). A review of production, properties and advantages
of biodiesel. Biofuels, 9(2): 273-289.
29. Kristianto, Y., Taufik, A., and Saleh, R.
(2017). Photo-, sono-and sonophotocatalytic
degradation of methylene blue using Fe3O4/ZrO2
composites catalysts. AIP Conference Proceedings, 1862: 030017.
30. Guru, S.,
Mishra, D., Amritphale, S. S., and Joshi, S. (2016). Influence of glycols in microwave
assisted synthesis of ironoxide nanoparticles. Colloid
and Polymer Science, 294: 207-213.
31. Ali, Q., Ali, S., El-Esawi, M. A., Rizwan, M., Azeem, M., Hussain, A. I., ... and
Wijaya, L. (2020). Foliar spray of Fe-Asp confers better drought tolerance in
sunflower as compared with FeSO4: Yield traits, osmotic adjustment, and
antioxidative defense mechanism. Bio- molecules, 10(9): 1217.
32. Muhammad
Inam, Khan, R., Park, D., Lee, Y.-W., and Yeom, I. (2018). Removal of Sb(III)
and Sb(V) by ferric chloride coagulation: Implications of Fe solubility. Water,
10(4): 418-418.
33. Basahel, S.N.,
Mokhtar, M., Edreese Alsharaeh,
Ali, T.T., Mahmoud, H.A., and Katabathini, N. (2016).
Physico-chemical and catalytic properties of
mesoporous CuO-ZrO2 Catalysts. Catalysts, 6(4): 57-57.
34. Wang, H.,
Covarrubias, J., Prock, H., Wu, X., Wang, D., and Bossmann,
S.H. (2015). Acid-functionalized magnetic nanoparticle as heterogeneous
catalysts for biodiesel synthesis. Journal Physics Chemistry C, 119(46): 26020-26028.
35. Yang, L.,
Wu, H., Jia, J., Ma, B., and Li, J. (2017). Synthesis of bimodal mesoporous
silica with coexisting phases by co-hydrothermal aging route with P123
containing gel and F127 containing gel.
Microporous Mesoporous
Materials, 253: 151-159.
36. Rahman,
N.J.A., Ramli, A., Jumbri, K., and Uemura, Y. (2019).
Tailoring the surface area and the acid–base properties of ZrO2 for
biodiesel production from Nannochloropsis sp. Scientific Report, 9(1):
16223.
37. Zhang, Z.,
Han, D., Wei, S., and Zhang, Y. (2010). Determination of active site densities
and mechanisms for soot combustion with O2 on Fe-doped CeO2
mixed oxides. Journal Catalyst, 276(1): 16-23.
38. Guldhe, A., Singh,
P., Ansari, F. A., Singh, B., and Bux, F. (2017). Biodiesel synthesis from
microalgal lipids using tungstated zirconia as a
heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme
catalysts. Fuel, 187: 180-188.
39. Booramurthy, V. K., Kasimani, R., Pandian, S., and
Ragunathan, B. (2020). Nano-sulfated zirconia catalyzed biodiesel production from tannery waste sheep
fat. Environmental Sciences
Pollution Research, 27(17): 20598-20605.