Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1311

 

Research Article

 

Synthesis and characterization of magnetized Fe3O4-ZrO2 catalysts for methyl ester production from waste cooking oil

 

Muhammad Fareez Naufal Fadilah1,2, Balqis Adlina Omar1,2, Farah Wahida Harun2, Salina Mat Radzi2, and Nurul Jannah Abd Rahman1*

 

1Pusat Tamhidi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

2Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

 

*Corresponding author: jannahrahman@usim.edu.my

 

Received: 28 August 2024; Revised: 4 December 2024; Accepted: 6 January 2025; Published: 24 April 2025

 

Abstract

Biodiesel is an efficient, clean, and renewable alternative to petroleum-based fuels. Biodiesel production typically requires heterogeneous catalysts. However, the usage of traditional heterogeneous catalysts faces challenges like difficult recovery and catalyst loss. To address these challenges, this study aims to synthesize and characterize magnetized Fe3O4-ZrO2 catalysts for direct transesterification of waste cooking oil into biodiesel. Fe3O4 was first synthesized via co-precipitation of FeSO4·7H2O and FeCl3·6H2O, resulting in black precipitate. ZrO2 was then impregnated with 10-30 wt.% Fe3O4 using the incipient wetness impregnation method. The catalysts were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and Brunauer-Emmett-Teller analysis (BET) to assess thermal stability, functional groups, morphology, surface area, and porosity. The catalysts were tested for methyl ester production using 12:1 methanol to waste cooking oil ratio and 5 wt.% catalyst loading at 60°C for 5 hours. The 20Fe-Zr catalyst showed superior performance (13.13%) compared to 10Fe-Zr and 30Fe-Zr catalysts. The enhanced catalytic activity of the 20Fe-Zr catalyst is attributed to its mesopore connectivity, high pore volume, and large surface area. Additionally, its magnetic properties enable easy catalyst separation and demonstrate potential for reuse, making the process more cost-effective and environmentally friendly.

 

Keywords: methyl ester, magnetize heterogeneous catalyst, waste cooking oil, transesterification

 


References

1.        Shay, E.G. (1993). Diesel fuel from vegetable oils: Status and opportunities. Biomass Bioenergy, 4(4): 227-242.

2.        Ma, F., and Hanna, M.A. (1999). Biodiesel production: A review. Bioresource Technology, 70(1): 1-15.

3.        Belousov, A.S., Esipovich, A.L., Kanakov, E.A., and Otopkova, K.V. (2021). Recent advances in sustainable production and catalytic transformations of fatty acid methyl esters. Sust. Energy Fuels, 5(18): 4512-4545.

4.        Miyuranga, K.A.V., Arachchige, U.S.P.R., Marso, T.M.M., and Samarakoon, G. (2023). Biodiesel production through the transesterification of waste cooking oil over typical heterogeneous base or acid catalysts. Catalysts, 13(3): 546.

5.      Nigatu G.S., and Mario M.J. (2017). Biodiesel production technologies: review. AIMS Energy, 5(3): 425-457.

6.      Su, G., Hwai C.O., Ibrahim, S., Fattah, R.,  Mofijur, M. and Cheng T. C. (2021). Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges. Environmental Pollution, 279: 116934.

7.      Hazrat, M.A., Rasul, M.G., Mohammad, N.A., Silitonga, A.S., Fattah, R., and Indra, M. (2022). Kinetic modelling of esterification and transesterification processes for biodiesel production utilising waste-based resource. Catalysts, 12(11): 1472.

8.      Ma’arof, N.A.N.B., Hindryawati, N., Khazaai, S.N.M., Bhuyar, P., Rahim, M.H.A., and Maniam, G.P. (2021). Biodiesel (methyl esters). Maejo International Journal of Energy and Environmental Communication, 3(1): 30-43.

9.      Nayab, R., Imran, M., Ramzan, M., Tariq, M., Taj, M.B., Akhtar, M. N., and Iqbal, H.M. (2022). Sustainable biodiesel production via catalytic and non-catalytic transesterification of feedstock materials–A review. Fuel, 328: 125254.

10.   Santoso, A., None Sumari, Salim, A., and Siti Marfu’ah. (2018). Synthesis of methyl ester from chicken oil and methanol using heterogeneous catalyst of CaO-MgO as well as characterization its potential as a biodiesel fuel. Journal Physics Conference Series, 1093: 012035.

11.   Thanh, L. T., Okitsu, K., Boi, L. V., and Maeda, Y. (2012). Catalytic technologies for biodiesel fuel production and utilization of glycerol: a review. Catalysts, 2(1): 191-222.

12.   Santos, E. P., De Souza, E. F., Ramos, T. C., Da Silva, M. S., and Fiorucci, A. R. (2018). Evaluation of potentiometric methods for acid number determination in commercial biodiesel samples and proposal of alternative method. Orbital: Electronic Journal Chemistry, 10(1):  47-53.

13.   Ivanova, M., Hanganu, A., Dumitriu, R., Tociu, M., Ivanov, G., Stavarache, C., Popescu, L., Ghendov-Mosanu, A., Sturza, R., Deleanu, C., and Chira, N.-A. (2022). Saponification value of fats and oils as determined from 1H-NMR data: The case of dairy fats. Foods, 11(10): 1466.

14.   Jain, B.P., Goswami, S.K., Pandey, S., Jain, B.P., Goswami, S.K., and Pandey, S. (2021). Chapter 3 Lipid. In Protocol Biochemistry Clininical Biochemistry, 23-30.

15.   Anastopoulos, G., Zannikou, Y., Stournas, S., and Kalligeros, S. (2009). Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters. Energies, 2(2): 362-376.

16.   Yadav, V.K., Ali, D., Khan, S. H., Gnanamoorthy, G., Choudhary, N., Yadav, K.K., Thai, V.N., Hussain, S. A., and Manhrdas, S. (2020). Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials, 10(8): 1551.

17.   Nandhakumar, E., Priya, P., Rajeswari, R., Aravindhan, V., Sasikumar, A., and Senthilkumar, N. (2019). Studies on structural, optical and thermal properties of Fe3O4 (NR)/ZrO2 CSNCs synthesized via green approach for photodegradation of dyes. Research on Chemical Inter-mediates, 45: 2657-2671.

18.   Ahmad, M. A., & Samsuri, S. (2021). Biodiesel purification via ultrasonic-assisted solvent-aided crystallization. Crystals, 11(2): 212.

19.   Owolabi R.U., Osiyemi N.A., Amosa M.K., and Ojewumi M.E. (2011). Biodiesel from household/restaurant waste cooking oil (WCO). Journal Chemical Engineering Processing Technology, 2(4): 1000112.

20.   Yusuff, A. S., Adeniyi, O. D., Olutoye, M. A., and Akpan, U. G. (2019). Waste frying oil as a feedstock for biodiesel. Petroleum Chemicals: Recent Insight, 2: 5-29.

21.   Hsiao, M. -C., Liao, P. -H., Lan, N. V., and Hou, S. -S. (2021). Enhancement of biodiesel production from high-acid-value waste cooking oil via a microwave reactor using a homogeneous alkaline catalyst. Energies, 14(2): 437.

22.   Sadaf, S., Iqbal, J., Ullah, I., Bhatti, H. N., Nouren, S., Nisar, J., and Iqbal, M. (2018). Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustainable Cities and Society, 41: 220-226.

23.   Suganya, T., Gandhi, N. N., and Renganathan, S. (2013). Production of algal biodiesel from marine macroalgae Enteromorpha compressa by two step process: optimization and kinetic study. Bioresource Technology, 128: 392-400.

24.   Munir, M., Ahmad, M., Saeed, M., Waseem, A., Nizami, A. S., Sultana, S., ... and Ali, M. I. (2021). Biodiesel production from novel non-edible caper (Capparis spinosa L.) seeds oil employing Cu–Ni doped ZrO2 catalyst. Renewable and Sustainable Energy Reviews, 138: 110558.

25.   Chingakham, C., Tiwary, C., and Sajith, V. (2019). Waste animal bone as a novel layered heterogeneous catalyst for the transesterification of biodiesel. Catalysis Letters, 149: 1100-1110.

26.   Rahulan, K. M., Vinitha, G., Stephen, L. D., and Kanakam, C. C. (2013). Synthesis and optical limiting effects in ZrO2 and ZrO2@ SiO2 core–shell nanostructures. Ceramics International, 39(5): 5281-5286.

27.   Banić, N., Šojić Merkulov, D., Despotović, V., Finčur, N., Ivetić, T., Bognár, S., Jovanović, D., and Abramović, B. (2022). Rapid removal of organic pollutants from aqueous systems under solar irradiation using ZrO2/Fe3O4 nanoparticles. Molecules, 27(22): 8060.

28.   Mishra, V.K., and Goswami, R. (2017). A review of production, properties and advantages of biodiesel. Biofuels, 9(2): 273-289.

29.   Kristianto, Y., Taufik, A., and Saleh, R. (2017). Photo-, sono-and sonophotocatalytic degradation of methylene blue using Fe3O4/ZrO2 composites catalysts. AIP Conference Proceedings, 1862: 030017.

30.   Guru, S., Mishra, D., Amritphale, S. S., and Joshi, S. (2016). Influence of glycols in microwave assisted synthesis of ironoxide nanoparticles. Colloid and Polymer Science, 294: 207-213.

31.   Ali, Q., Ali, S., El-Esawi, M. A., Rizwan, M., Azeem, M., Hussain, A. I., ... and Wijaya, L. (2020). Foliar spray of Fe-Asp confers better drought tolerance in sunflower as compared with FeSO4: Yield traits, osmotic adjustment, and antioxidative defense mechanism. Bio- molecules, 10(9): 1217.

32.   Muhammad Inam, Khan, R., Park, D., Lee, Y.-W., and Yeom, I. (2018). Removal of Sb(III) and Sb(V) by ferric chloride coagulation: Implications of Fe solubility. Water, 10(4): 418-418.

33.   Basahel, S.N., Mokhtar, M., Edreese Alsharaeh, Ali, T.T., Mahmoud, H.A., and Katabathini, N. (2016). Physico-chemical and catalytic properties of mesoporous CuO-ZrO2 Catalysts. Catalysts, 6(4): 57-57.

34.   Wang, H., Covarrubias, J., Prock, H., Wu, X., Wang, D., and Bossmann, S.H. (2015). Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. Journal Physics Chemistry C, 119(46): 26020-26028.

35.   Yang, L., Wu, H., Jia, J., Ma, B., and Li, J. (2017). Synthesis of bimodal mesoporous silica with coexisting phases by co-hydrothermal aging route with P123 containing gel and F127 containing gel. Microporous Mesoporous Materials, 253: 151-159.

36.   Rahman, N.J.A., Ramli, A., Jumbri, K., and Uemura, Y. (2019). Tailoring the surface area and the acid–base properties of ZrO2 for biodiesel production from Nannochloropsis sp. Scientific Report, 9(1): 16223.

37.   Zhang, Z., Han, D., Wei, S., and Zhang, Y. (2010). Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides. Journal Catalyst, 276(1): 16-23.

38.   Guldhe, A., Singh, P., Ansari, F. A., Singh, B., and Bux, F. (2017). Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel, 187: 180-188.

39.   Booramurthy, V. K., Kasimani, R., Pandian, S., and Ragunathan, B. (2020). Nano-sulfated zirconia catalyzed biodiesel production from tannery waste sheep fat. Environmental Sciences Pollution Research, 27(17): 20598-20605.