Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1293

 

Research Article

 

Theoretical investigation of electronic and non-linear optical properties of new D-π-A compounds: A TD-DFT approach

 

Said Kerraj1*, Ahmed Arif2, Younes Rachdi1, Said Zouitina1, Mohammed El idrissi2, and Said Belaaouad1

1Laboratory Physical Chemistry of Materials, Department of chemistry, Faculty of Sciences Ben M’Sik, University Hassan II, Casablanca, Morocco

2Team of Chemical Processes and Applied Materials, Faculty Polydisciplinary Sultan Moulay Slimane University, Beni-Mellal Morocco

 

*Corresponding author: Krjsaid@gmail.com

 

Received: 28 August 2024; Revised: 4 December 2024; Accepted: 6 January 2025; Published: 24 April 2025

Abstract

This study evaluates the electronic structure, charge transfer properties, and non-linear optical (NLO) potential of five new organic dyes with a Donor-π-Acceptor (D-π-A) structure, containing the commonly used anchoring group, cyanoacrylic acid. DFT/B3LYP calculations were carried out using a 6-31G(d,p) basis set. The optimized geometries indicate many frontiers molecular orbitals with energy gaps ranging from 1.766 to 2.717 eV, with MK162 having the lowest bandgap, making it a promising option for organic solar cells. Natural bond orbital (NBO) study reveals extensive electron delocalization, demonstrating strong donor-acceptor interactions within each molecule, notably for MC20 and MK162, with high stabilization energies indicating significant charge transfer properties. The Mulliken charge distribution shows that sulfur has a positive charge, while the carbon atoms that are close to sulfur have negative charges, which facilitates charge transfer. Furthermore, MK162 has the greatest levels of polarizability, hyperpolarizability, and dipole moments among the molecules examined by NLO analysis, making it the most promising of the group. These results support the possibility that these organic dyes might be useful options for organic solar cells.

 

Keywords: Donor–π–Acceptor, TD-DFT, NLO, NBO, intramolecular charge transfer


 

References

1.        Kang, D., Li, R., Cao, S., and Sun, M. (2021). Nonlinear optical microscopies: Physical principle and applications. Applied Spectroscopy Reviews, 56(1):52-66.

2.        Tian, T., Wang, Y., Zhang, W., Wang, B., and Fan, C. (2020). DAST optical damage tolerance enhancement and robust lasing via supramolecular strategy. ACS Photonics. 7(8): 2132-2138.

3.        Mohan, M.K., Ponnusamy, S., and Muthamizhchelvan, C. (2018);. Spectral, optical, etching, second harmonic generation (SHG) and laser damage threshold studies of nonlinear optical crystals of L-Histidine bromide. Applied Surface Sciences, 449: 92-95.

4.        Zhang, B., Shi, G., Yang, Z., Zhang, F., Pan, S. (2017), Fluorooxoborates: Beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angewandte Chemie International Edition, 56: 3916–3919   .

5.        Pourebrahimi, S., Pirooz, M.,Visscher, A. (2024). DFT-assisted design of curcumin-based donor-π-bridge-acceptor molecular structures: advancing non-linear optical materials and sustainable organic solar cells. Journal of Molecular Structure, 1316.

6.        Janjua, M. R. S. A., Liu, C.G., Guan, W., Zhuang, J., Muhammad, S., Yan, L.K., and Su, Z.M. (2009)  Prediction of remarkably large second-order nonlinear optical properties of organoimidosubstituted hexamolybdates. Journal Materials Chemistry A, 113: 3576-3587.

7.        Muhammad, S., Xu, H., Liao, Y., Kan, Y.,  and Su, Z. (2009). Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response. Journal American Chemical Society, 131: 11833-11840.

8.        Bullo, S., Jawaria, R., Faiz, I., Shafiq, I., Khalid, M., Asghar, M. A., and Perveen, S. (2023). Efficient synthesis, spectroscopic characterization, and nonlinear optical properties of novel salicylaldehyde-based thiosemicarbazones: experimental and theoretical studies. ACS Omega, 8(15): 13982-13992.

9.        Srinivas, K., Kumar, C. R., Reddy, M. A., Bhanuprakash, K., Rao, V. J.,  and Giribabu, L. (2011). D-π-A organic dyes with carbazole as donor for dye-sensitized solar cells. Synthetic Metals, 161(1-2): 96-105.

10.     Azaid, A., Alaqarbeh, M., Abram, T., Raftani, M., Kacimi, R., Khaddam, Y., and Bouachrine, M. (2024). D-π-A push-pull chromophores based on N, N-Diethylaniline as a donor for NLO applications: effects of structural modification of π-linkers. Journal of Molecular Structure, 1295:136602.

11.     Zhao, Y., and Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Account, 120: 215-241.

12.     Khan, M. U., Fatima, A., Nadeem, S., Abbas, F., and Ahamad, T. (2023). Impact of π-linkers modifications on tuning nonlinear optical amplitudes of pyridoquinazolinone-based aromatic dyes: A rational entry to novel D-π-A NLO materials. Polycyclic Aromatic Compounds, 2023: 1-31.

13.     Khalid, M., Khan, M. U., Shafiq, I., Hussain, R., Ali, A., Imran, M., and Akram, M. S. (2021). Structural modulation of π-conjugated linkers in D–π–A dyes based on triphenylamine dicyanovinylene framework to explore the NLO properties. Royal Society Open Science. 8(8): 210570..

14.     Khan, M. U., Ibrahim, M., Khalid, M., Braga, A. A. C., Ahmed, S., and Sultan, A. (2019). Prediction of second-order nonlinear optical properties of D–π–A compounds containing novel fluorene derivatives: A promising route to giant hyperpolarizabilities. Journal of Cluster Science, 30: 415-430.

15.     Etabti, H., Fitri, A., Benjelloun, A. T., Benzakour, M., and Mcharfi, M. (2023). Designing and theoretical study of benzocarbazole-based D-π-D type small molecules donor for organic solar cells. Journal of Molecular Graphics and Modelling, 121: 108455.

16.     Khalid, M., Ali, A., Jawaria, R., Asghar, M. A., Asim, S., Khan, M. U., and Akram, M. S. (2020). First principles study of electronic and nonlinear optical properties of A–D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Advances, 10(37): 22273-22283.

17.     Zouitina, S., El Azze, S., Bensemlali, M., Faqir, M., and Tounsi, A. (2022). First-principles study of nonlinear optical and electronic properties of A-π-D-π-A configured compounds with novel oligothio-phenes. Materials Science for Energy Technologies. 5: 473-480.

18.     Shen, D., Chen, W. C., Lo, M. F., and Lee, C. S. (2021). Charge-transfer complexes and their applications in optoelectronic devices. Materials Today Energy, 20: 100644.

19.     Lee, M. W., Kim, J. Y., Lee, H. G., Cha, H. G., Lee, D. H., and Ko, M. J. (2021). Effects of structure and electronic properties of D-π-A organic dyes on photovoltaic performance of dye-sensitized solar cells. Journal of Energy Chemistry, 54: 208-216.

20.     Qu, W., Gao, Z., Fan, X., Tian, X., Wang, H., and Wei, B. (2022). Organic fluorescent compounds with twisted D-π-A molecular structure and acidochromic proper-ties. Journal of Molecular Structure, 1260: 132831.

21.     Ramalingam, A., Sambandam, S., Medimagh, M., Al-Dossary, O., Issaoui, N., and Wojcik, M. J. (2021). Study of a new piperidone as an anti-Alzheimer agent: Molecular docking, electronic and intermolecular interaction investigations by DFT method. Journal of King Saud University-Science, 33(8): 101632.

22.     Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M., Cheeseman, J. R., ... and Fox, A. D. (2009). Gaussian Inc. Wallingford Ct2009.

23.     Yanai, T., Tew, D. P., and Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3): 51-57.

24.     Dennington, R. D. I. I., Keith, T. A., and Millam, J. M. (2016). GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS.

25.     Avcı, D. (2011). Second and third-order nonlinear optical properties and molecular parameters of azo chromophores: Semiempirical analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1): 37-43.

26.     Azaid, A., Raftani, M., Alaqarbeh, M., Kacimi, R., Abram, T., Khaddam, Y.,  and Bouachrine, M. (2022). New organic dye-sensitized solar cells based on the D–A–π–A structure for efficient DSSCs: DFT/TD-DFT investigations. RSC Advances, 12(47): 30626-30638.

27.     Kadam, M. M., Patil, D., and Sekar, N. (2018). 4-(Diethylamino) salicylaldehyde based fluorescent Salen ligand with red-shifted emission–A facile synthesis and DFT investigation. Journal of Luminescence, 204: 354-367.

28.     Arulaabaranam, K., Muthu, S., Mani, G., and Geoffrey, A. B. (2021). Speculative assessment, molecular composition, PDOS, topology exploration (ELF, LOL, RDG), ligand-protein interactions, on 5-bromo-3-nitropyridine-2-carbonitrile. Heliyon, 7(5): e07061.

29.     Kores, J. J., Danish, I. A., Sasitha, T., Stuart, J. G., Pushpam, E. J., and Jebaraj, J. W. (2021). Spectral, NBO, NLO, NCI, aromaticity and charge transfer analyses of anthracene-9, 10-dicarboxaldehyde by DFT. Heliyon, 7(11): e08377.

30.     Sharma, K., Melavanki, R., Patil, S. S., Kusanur, R., Patil, N. R., and Shelar, V. M. (2019). Spectroscopic behavior, FMO, NLO and NBO analysis of two novel aryl boronic acid derivatives: Experimental and theoretical insights. Journal of Molecular Structure, 1181: 474-487.

31.     Khan, B., Khalid, M., Shah, M. R., Tahir, M. N., Asif, H. M., Aliabad, H. A. R., and Hussain, A. (2020). Synthetic, spectroscopic, SC-XRD and nonlinear optical analysis of potent hydrazide derivatives: a comparative experimental and DFT/TD-DFT exploration. Journal of Molecular Structure, 1200: 127140.

32.     Meenatchi, V., Cheng, L., Han, S. S. (2023). Twisted intramolecular charge transfer, nonlinear optical, antibacterial activity, and DFT analysis of ultrasound processed (E)-N′-(4-isopropylbenzylidene) nicotinohydra-zide. Journal of Molecular Liquids, 376: 121489.

33.     Ahmed, Z. K., Ermiş, T., and Ermiş, E. (2024). Theoretical and experimental study on (E)-N'-(2-hydroxy-5-(thiophen-3-yl) benzylidene) benzohydrazide compound: Its optimization with DFT and Fuzzy logic approach (FLA), structural and spectroscopic investigation, HOMO-LUMO, MEP, atomic charge, and NBO analysis. Journal of Molecular Structure, 1315: 138829.

34.     Ali, B., Khalid, M., Asim, S., Usman Khan, M., Iqbal, Z., Hussain, A., Hussain, R., Ahmed, S., Ali, A., Hussain, A., Imran, M., Assiri, M. A., Fayyaz ur Rehman, M., Wang, C., and Lu, C. (2021). Key electronic, linear and nonlinear optical properties of designed disubstituted quinoline with carbazole compounds. Molecules, 26(9): 2760.

35.     Saral, A., Manikandan, A., Javed, S., and Muthu, S. (2024). Vibrational spectra, molecular level solvent interaction, stabilization, donor-acceptor energies, thermodynamic, non-covalent interaction and electronic behaviors of 6-Methoxyisoquinoline-anti tubercular agent. Chemical Physics Impact, 8: 100392.

36.     Ojha, J. K., Ramesh, G., and Reddy, B. V. (2023). Structure, chemical reactivity, NBO, MEP analysis and thermodynamic parameters of pentamethyl benzene using DFT study. Chemical Physics Impact, 7: 100280.

37.     Sagir, M., Mushtaq, K., Khalid, M., Khan, M., Tahir, M. B., and Braga, A. A. (2023). Exploration of linear and third-order nonlinear optical properties for donor–π-linker–acceptor chromophores derived from ATT-2 based non-fullerene molecule. RSC Advances, 13(45): 31855-31872.

38.     Shivaleela, B., Shivraj, G. G., and Hanagodimath, S. M. (2023). Estimation of dipole moments by Solvatochromic shift method, spectroscopic analysis of UV–Visible, HOMO-LUMO, ESP map, Mulliken atomic charges, NBO and NLO properties of benzofuran derivative. Results in Chem-istry, 6:101046.

39.     Olea-Amezcua, M. A., Castellanos-Águila, J. E., and Trejo-Durán, M. (2022). Theoretical study of the non-linear optical properties of colloids formed by different Au and Ag nanocluster morphologies and molecular organic solvents. Journal of Molecular Liquids, 359: 119307.

40.     Singh, P., Kumar, A., Gupta, A., and Patil, P. S. (2022). Spectroscopic investigation and density functional theory prediction of first and second order hyperpolarizabilities of 1-(4-bromophenyl)-3-(2, 4-dichlorophenyl)‑

prop-2-en-1-one. Journal of Molecular Structure, 1269: 133807.