Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1293
Research Article
Theoretical investigation
of electronic and non-linear optical properties of new D-π-A compounds: A
TD-DFT approach
Said Kerraj1*, Ahmed Arif2,
Younes Rachdi1, Said Zouitina1, Mohammed El idrissi2,
and Said Belaaouad1
1Laboratory Physical
Chemistry of Materials, Department of chemistry, Faculty of Sciences Ben M’Sik,
University Hassan II, Casablanca, Morocco
2Team of Chemical Processes
and Applied Materials, Faculty Polydisciplinary Sultan Moulay Slimane University,
Beni-Mellal Morocco
*Corresponding author: Krjsaid@gmail.com
Received: 28 August 2024; Revised: 4 December 2024; Accepted:
6 January 2025; Published: 24 April 2025
Abstract
This
study evaluates the electronic structure, charge transfer properties, and
non-linear optical (NLO) potential of five new organic dyes with a
Donor-π-Acceptor (D-π-A) structure, containing the commonly used
anchoring group, cyanoacrylic acid. DFT/B3LYP calculations were carried out
using a 6-31G(d,p) basis set. The optimized geometries indicate many frontiers
molecular orbitals with energy gaps ranging from 1.766 to 2.717 eV, with MK162
having the lowest bandgap, making it a promising option for organic solar
cells. Natural bond orbital (NBO) study reveals extensive electron
delocalization, demonstrating strong donor-acceptor interactions within each
molecule, notably for MC20 and MK162, with high stabilization energies
indicating significant charge transfer properties. The Mulliken charge
distribution shows that sulfur has a positive charge, while the carbon atoms
that are close to sulfur have negative charges, which facilitates charge
transfer. Furthermore, MK162 has the greatest levels of polarizability,
hyperpolarizability, and dipole moments among the molecules examined by NLO
analysis, making it the most promising of the group. These results support the
possibility that these organic dyes might be useful options for organic solar
cells.
Keywords: Donor–π–Acceptor,
TD-DFT, NLO, NBO, intramolecular charge transfer
References
1.
Kang, D., Li,
R., Cao, S., and Sun, M. (2021). Nonlinear optical microscopies: Physical principle and
applications. Applied Spectroscopy Reviews, 56(1):52-66.
2.
Tian, T.,
Wang, Y., Zhang, W., Wang, B., and Fan, C. (2020). DAST optical damage
tolerance enhancement and robust lasing via supramolecular strategy. ACS
Photonics. 7(8): 2132-2138.
3.
Mohan, M.K.,
Ponnusamy, S., and Muthamizhchelvan, C. (2018);. Spectral, optical, etching,
second harmonic generation (SHG) and laser damage threshold studies of
nonlinear optical crystals of L-Histidine bromide. Applied Surface Sciences,
449: 92-95.
4.
Zhang, B.,
Shi, G., Yang, Z., Zhang, F., Pan, S. (2017), Fluorooxoborates: Beryllium-free
deep-ultraviolet nonlinear optical materials without layered growth. Angewandte
Chemie International Edition, 56: 3916–3919 .
5.
Pourebrahimi, S., Pirooz,
M.,Visscher, A. (2024). DFT-assisted
design of curcumin-based donor-π-bridge-acceptor molecular structures:
advancing non-linear optical materials and sustainable organic solar
cells. Journal of Molecular Structure, 1316.
6.
Janjua, M. R.
S. A., Liu, C.G., Guan, W., Zhuang, J., Muhammad, S., Yan, L.K., and Su, Z.M.
(2009) Prediction of remarkably large
second-order nonlinear optical properties of organoimidosubstituted
hexamolybdates. Journal Materials Chemistry A, 113:
3576-3587.
7.
Muhammad, S., Xu, H., Liao, Y.,
Kan, Y., and Su, Z. (2009). Quantum mechanical design and
structure of the Li@B10H14 basket with a remarkably enhanced electro-optical
response. Journal American Chemical Society, 131: 11833-11840.
8.
Bullo, S.,
Jawaria, R., Faiz, I., Shafiq, I., Khalid, M., Asghar, M. A., and Perveen, S.
(2023). Efficient synthesis, spectroscopic characterization, and nonlinear
optical properties of novel salicylaldehyde-based thiosemicarbazones:
experimental and theoretical studies. ACS Omega, 8(15):
13982-13992.
9.
Srinivas, K.,
Kumar, C. R., Reddy, M. A., Bhanuprakash, K., Rao, V. J., and Giribabu, L. (2011). D-π-A organic
dyes with carbazole as donor for dye-sensitized solar cells. Synthetic
Metals, 161(1-2): 96-105.
10. Azaid, A., Alaqarbeh, M.,
Abram, T., Raftani, M., Kacimi, R., Khaddam, Y., and Bouachrine, M. (2024).
D-π-A push-pull chromophores based on N, N-Diethylaniline as a donor for
NLO applications: effects of structural modification of π-linkers. Journal
of Molecular Structure, 1295:136602.
11. Zhao, Y., and Truhlar, D. G.
(2008). The M06 suite of density functionals for main group thermochemistry,
thermochemical kinetics, noncovalent interactions, excited states, and
transition elements: two new functionals and systematic testing of four
M06-class functionals and 12 other functionals. Theoretical Chemistry
Account, 120: 215-241.
12. Khan, M. U., Fatima, A.,
Nadeem, S., Abbas, F., and Ahamad, T. (2023). Impact of π-linkers
modifications on tuning nonlinear optical amplitudes of
pyridoquinazolinone-based aromatic dyes: A rational entry to novel D-π-A
NLO materials. Polycyclic Aromatic Compounds, 2023: 1-31.
13. Khalid, M., Khan, M. U.,
Shafiq, I., Hussain, R., Ali, A., Imran, M., and Akram, M. S. (2021).
Structural modulation of π-conjugated linkers in D–π–A dyes based on
triphenylamine dicyanovinylene framework to explore the NLO properties. Royal
Society Open Science. 8(8): 210570..
14. Khan, M. U., Ibrahim, M.,
Khalid, M., Braga, A. A. C., Ahmed, S., and Sultan, A. (2019). Prediction of
second-order nonlinear optical properties of D–π–A compounds containing
novel fluorene derivatives: A promising route to giant
hyperpolarizabilities. Journal of Cluster Science, 30:
415-430.
15. Etabti, H., Fitri, A., Benjelloun, A. T., Benzakour, M., and
Mcharfi, M. (2023). Designing and
theoretical study of benzocarbazole-based D-π-D type small molecules donor
for organic solar cells. Journal of Molecular Graphics and Modelling, 121:
108455.
16. Khalid, M., Ali, A., Jawaria,
R., Asghar, M. A., Asim, S., Khan, M. U., and Akram, M. S. (2020). First
principles study of electronic and nonlinear optical properties of A–D–π–A
and D–A–D–π–A configured compounds containing novel quinoline–carbazole
derivatives. RSC Advances, 10(37): 22273-22283.
17. Zouitina, S., El Azze, S., Bensemlali, M., Faqir, M., and Tounsi,
A. (2022). First-principles study of
nonlinear optical and electronic properties of A-π-D-π-A configured
compounds with novel oligothio-phenes. Materials Science for Energy
Technologies. 5: 473-480.
18. Shen, D., Chen, W. C., Lo, M.
F., and Lee, C. S. (2021). Charge-transfer complexes and their applications in
optoelectronic devices. Materials Today Energy, 20: 100644.
19. Lee, M. W., Kim, J. Y., Lee, H.
G., Cha, H. G., Lee, D. H., and Ko, M. J. (2021). Effects of structure and
electronic properties of D-π-A organic dyes on photovoltaic performance of
dye-sensitized solar cells. Journal of Energy Chemistry, 54:
208-216.
20. Qu, W., Gao, Z., Fan, X., Tian,
X., Wang, H., and Wei, B. (2022). Organic fluorescent compounds with twisted
D-π-A molecular structure and acidochromic proper-ties. Journal of
Molecular Structure, 1260: 132831.
21. Ramalingam, A., Sambandam, S.,
Medimagh, M., Al-Dossary, O., Issaoui, N., and Wojcik, M. J. (2021). Study of a
new piperidone as an anti-Alzheimer agent: Molecular docking, electronic and
intermolecular interaction investigations by DFT method. Journal of
King Saud University-Science, 33(8): 101632.
22.
Frisch, M. J., Trucks, G. W.,
Schlegel, H. B., Scuseria, G. E., Robb, M., Cheeseman, J. R., ... and Fox, A.
D. (2009). Gaussian Inc. Wallingford Ct, 2009.
23.
Yanai, T.,
Tew, D. P., and Handy, N. C. (2004). A new hybrid exchange–correlation
functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics
Letters, 393(1-3): 51-57.
24.
Dennington,
R. D. I. I., Keith, T. A., and Millam, J. M. (2016). GaussView, version 6.0.
16. Semichem Inc Shawnee Mission KS.
25.
Avcı, D.
(2011). Second and third-order nonlinear optical properties and molecular
parameters of azo chromophores: Semiempirical analysis. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1): 37-43.
26.
Azaid, A.,
Raftani, M., Alaqarbeh, M., Kacimi, R., Abram, T., Khaddam, Y., and Bouachrine, M. (2022). New organic
dye-sensitized solar cells based on the D–A–π–A structure for efficient
DSSCs: DFT/TD-DFT investigations. RSC Advances, 12(47): 30626-30638.
27.
Kadam, M. M.,
Patil, D., and Sekar, N. (2018). 4-(Diethylamino) salicylaldehyde based
fluorescent Salen ligand with red-shifted emission–A facile synthesis and DFT
investigation. Journal of Luminescence, 204: 354-367.
28.
Arulaabaranam,
K., Muthu, S., Mani, G., and Geoffrey, A. B. (2021). Speculative assessment,
molecular composition, PDOS, topology exploration (ELF, LOL, RDG),
ligand-protein interactions, on 5-bromo-3-nitropyridine-2-carbonitrile. Heliyon,
7(5): e07061.
29.
Kores, J. J.,
Danish, I. A., Sasitha, T., Stuart, J. G., Pushpam, E. J., and Jebaraj, J. W.
(2021). Spectral, NBO, NLO, NCI, aromaticity and charge transfer analyses of
anthracene-9, 10-dicarboxaldehyde by DFT. Heliyon, 7(11):
e08377.
30.
Sharma, K., Melavanki, R.,
Patil, S. S., Kusanur, R., Patil, N. R., and Shelar, V. M. (2019).
Spectroscopic behavior, FMO, NLO and NBO analysis of two novel aryl boronic
acid derivatives: Experimental and theoretical insights. Journal of
Molecular Structure, 1181: 474-487.
31.
Khan, B.,
Khalid, M., Shah, M. R., Tahir, M. N., Asif, H. M., Aliabad, H. A. R., and Hussain,
A. (2020). Synthetic, spectroscopic, SC-XRD and nonlinear optical analysis of
potent hydrazide derivatives: a comparative experimental and DFT/TD-DFT
exploration. Journal of Molecular Structure, 1200: 127140.
32.
Meenatchi,
V., Cheng, L., Han, S. S. (2023). Twisted intramolecular charge transfer,
nonlinear optical, antibacterial activity, and DFT analysis of ultrasound
processed (E)-N′-(4-isopropylbenzylidene) nicotinohydra-zide. Journal
of Molecular Liquids, 376: 121489.
33.
Ahmed, Z. K.,
Ermiş, T., and Ermiş, E. (2024). Theoretical and experimental study
on (E)-N'-(2-hydroxy-5-(thiophen-3-yl) benzylidene) benzohydrazide compound:
Its optimization with DFT and Fuzzy logic approach (FLA), structural and
spectroscopic investigation, HOMO-LUMO, MEP, atomic charge, and NBO
analysis. Journal of Molecular Structure, 1315: 138829.
34.
Ali, B.,
Khalid, M., Asim, S., Usman Khan, M., Iqbal, Z., Hussain, A., Hussain, R.,
Ahmed, S., Ali, A., Hussain, A., Imran, M., Assiri, M. A., Fayyaz ur Rehman,
M., Wang, C., and Lu, C. (2021). Key electronic, linear and nonlinear optical
properties of designed disubstituted quinoline with carbazole compounds. Molecules,
26(9): 2760.
35.
Saral, A.,
Manikandan, A., Javed, S., and Muthu, S. (2024). Vibrational spectra, molecular
level solvent interaction, stabilization, donor-acceptor energies,
thermodynamic, non-covalent interaction and electronic behaviors of
6-Methoxyisoquinoline-anti tubercular agent. Chemical Physics Impact, 8:
100392.
36.
Ojha, J. K.,
Ramesh, G., and Reddy, B. V. (2023). Structure, chemical reactivity, NBO, MEP
analysis and thermodynamic parameters of pentamethyl benzene using DFT
study. Chemical Physics Impact, 7: 100280.
37.
Sagir, M.,
Mushtaq, K., Khalid, M., Khan, M., Tahir, M. B., and Braga, A. A. (2023).
Exploration of linear and third-order nonlinear optical properties for
donor–π-linker–acceptor chromophores derived from ATT-2 based
non-fullerene molecule. RSC Advances, 13(45): 31855-31872.
38.
Shivaleela,
B., Shivraj, G. G., and Hanagodimath, S. M. (2023). Estimation of dipole
moments by Solvatochromic shift method, spectroscopic analysis of UV–Visible,
HOMO-LUMO, ESP map, Mulliken atomic charges, NBO and NLO properties of
benzofuran derivative. Results in Chem-istry, 6:101046.
39.
Olea-Amezcua, M. A.,
Castellanos-Águila, J. E., and Trejo-Durán, M. (2022). Theoretical study of the non-linear optical properties of
colloids formed by different Au and Ag nanocluster morphologies and molecular
organic solvents. Journal of Molecular Liquids, 359: 119307.
40.
Singh, P.,
Kumar, A., Gupta, A., and Patil, P. S. (2022). Spectroscopic investigation and
density functional theory prediction of first and second order
hyperpolarizabilities of 1-(4-bromophenyl)-3-(2, 4-dichlorophenyl)‑
prop-2-en-1-one. Journal
of Molecular Structure, 1269: 133807.