Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1290
Research Article
Photocatalytic reactor incorporating
modified zinc oxide Acorus calamus nanoparticles to remediate anaerobic
palm oil mill effluent
Noor Atiqah Zuraini1,
Dilaeleyana Abu Bakar Sidik2*, Sham Darwish Shamhan2, Nur
Hanis Hayati Hairom 1,3, Siti Samahani Suradi2, Rais
Hanizam Madon4, Zarizi Awang1, Nor Hazren Abdul Hamid1,
Raudah Mohd Adnan2, and Norhazimah Abdul Halim2
1Faculty of
Engineering Technology, Universiti Tun Hussein Onn Malaysia, Hab Pendidikan
Tinggi Pagoh, KM1, Jalan Panchor 86400, Muar, Johor, Malaysia
2Centre for
Diploma Studies, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education
Hub, Pagoh, Muar, 84600, Malaysia
3Microelectronic
and Nanotechnology - Shamsuddin Research Centre, Faculty of Electrical and
Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit, Raja, Batu
Pahat, 86400, Malaysia
4Faculty of
Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia,
Parit, Raja, Batu Pahat, 86400, Malaysia
*Corresponding
author: dila@uthm.edu.my
Received: 2 September 2024;
Revised: 21 January 2025; Accepted: 11 March 2025; Published: 25 April 2025
Abstract
Massive amounts of pollutants in anaerobic palm oil mill effluent
(APOME) can raise environmental and ecological issues. Thus, this study aimed
to treat APOME using a photocatalytic reactor incorporating zinc oxide (ZnO) nanoparticles (NPs) and Acorus calamus (ACal)
as green capping agent. The photocatalytic activity of various types of ZnO–ACal NPs in terms of chemical oxygen demand (COD),
turbidity, and color removal efficiency was
investigated. The results of this study suggested that ZnO–ACal
NPs 3:1 and pH 6 were the best for removing color
(~50%), turbidity (~90%), and COD (~80–90%) more effectively. This behavior was influenced by ZnO-ACal
NPs' characteristics from the SEM image, which contrasted commercial ZnO, with the creation of uniform, small particles. It can
be concluded that altering the synthesis conditions to produce particular nanoparticle characteristics can improve the
breakdown of APOME organic contaminants during the photocatalytic process. The
results of this study can serve as a guide for enhancing water quality for
recycling and guaranteeing the nation's access to safe water.
Keywords:
Photocatalytic, nanoparticles, Acorus calamus, anaerobic palm oil mill
effluent, zinc oxide, photocatalyst.
References
1.
Sidik,
D. A. B., Hairom, N. H. H., Ahmad, M. K., Madon, R.
H., and Mohammad, A. W. (2020). Performance of membrane photo catalytic reactor
incorporated with ZnO-Cymbopogon citratus
in treating palm oil mill secondary effluent. Process Safety Environment
Protection, 143: 273-284.
2.
Khongkliang,
P., Nuchdang, S., Rattanaphra,
D., Kingkam, W., Mahathanabodee,
S., Boonnorat, J., Kadier,
A., Aryanti, P.T.P., and Phalakornkule,
C. (2024). Efficiency enhancement of electrocoagulation, ion-exchange resin and
reverse osmosis (RO) membrane filtration by prior organic precipitation for
treatment of anaerobically-treated palm oil mill effluent. Chemosphere,
363: 142899.
3.
Aziz, M. M. A., Kassim, K. A., ElSergany, M., Anuar, S., Jorat, M. E., Yaacob, H., Ahsan,
A., Imteaz, M. A., and Arifuzzaman.
(2020). Recent advances on palm oil mill effluent (POME) pretreatment and
anaerobic reactor for sustainable biogas production. Renewable
and Sustainable Energy Reviews, 119: 109603.
4.
Nawaz, R., Chong, F. K., Chia, H. Y., Isa,
M. N., Huei, L. W., Sahrin, N. T., and Khan, N.
(2021). Countering major challenges confronting photocatalytic technology for
the remediation of treated palm oil mill effluent: A review. Environmental
Technology and Innovation, 23: 101764.
5.
Zainuri,
N.Z., Hairom, N.H.H., Sidik,
D.A.B., Desa, A.L., Misdan, N., Yusof, N., and Mohammad,
A.W. (2018). Palm oil mill secondary effluent (POMSE) treatment via
photocatalysis process in presence of ZnO-PEG
nanoparticles. Journal of Water Process Engineering, 26: 10-16.
6.
Imam, S.S., Adnan, R., Kaus, N.H.M.,
Saqib, N.U. (2023). Influence of various operational parameters on the
photocatalytic degradation of ciprofloxacin in aqueous media: a short review. Toxin
Reviews, 42(3): 655-670.
7.
Punyasamudram,
S., Puthalapattu, R.P., Bathinapatla,
A., Mulpuri, R., Kanchi, S., and Kumar, P.V.N.
(2024). Multifunctional characteristics of biosynthesized CoFe2O4@Ag
nanocomposite by photocatalytic, antibacterial and cytotoxic applications. Chemoshphere, 349: 140892.
8.
Puasa, N.A., Hairom,
N.H.H., Dzinun, H., Madon, R.H., Ahmad, N.S., Sidik, D.A.B., and Azmi, A.A.A.R.
(2021). Photocatalytic degradation of palm oil mill secondary effluent in
presence of zinc oxide nanoparticles. Environmental Nanotechnology,
Monitoring & Management, 15: 100413.
9.
Hairom,
N.H.H., Mohammad, A.W., and Kadhum, A.A.H. (2014). Effect of various zinc oxide
nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Separation
Purificaiton Technology, 137: 74-81.
10.
Tejashwini, D.M., Harini, H.V., Nagaswarupa, H.P., Naik, R., Deshmukh, V.V., and Basavaraju, N. (2023). An in-depth exploration of
eco-friendly synthesis methods for metal oxide nanoparticles and their role in
photocatalysis for industrial dye degradation. Chemical Physics Impact,
7: 100355.
11.
Ezhilarasi, A.A.,Vijaya,
J.J., Kaviyarasu, K., Kennedy, L.J., Ramalingam, R.J., and Al-Lohedan, H A. (2018). Green synthesis of NiO nanoparticles using Aegle marmelos
leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and
photocatalytic properties. Journal of Photochemistry & Photobiology, B:
Biology, 180: 39-50.
12.
Thanh, N.T.K., Maclean, N., and Mahiddine, S. (2014). Mechanisms of nucleation and growth
of nanoparticles in solution. Chemical Reviews, 114: 7610-7630.
13.
Puthur,
S., Raj, K.K., Anoopkumar, A.N,, Rebello, S., and Aneesh,
E.M. (2020). Acorus calamus mediated green synthesis of ZnONPs: A novel nano antioxidant to future perspective. Advanced
Powder Technology, 31: 4679-4682.
14.
Prabu, J. H., and Johnson, I. (2015).
Plant-mediated biosynthesis and characterization of silver nanoparticles by
leaf extracts of Tragia involucrata,
Cymbopogon citronella, Solanum verbascifolium and
Tylophora ovata. Karbala
International Journal of Modern Science, 1(4): 237-246.
15.
Choudhary, B.C., Paul, D., Gupta, T., Tetgure, S.R., Garole, V.J.,
Borse, A.U., and Garole, D.J. (2017). Photocatalytic
reduction of organic pollutant under visible light by
green route synthesized gold nanoparticles. Journal of environmental science,
55: 236-246.
16.
Sana, S. S., and Dogiparthi,
L. K. (2018). Green synthesis of silver nanoparticles using Givotia
moluccana leaf extract and evaluation of their
antimicrobial activity. Materials Letters, 226: 47-51.
17.
Sadia, S. I., Shishir, M. K. H., Ahmed,
S., Alam, M. A., Al-Reza, S. M., and Afrin, S. (2024). Green synthesis of
crystalline silver nanoparticles by bio-mediated plant extract: A critical
perspective analysis. Nano-Structures & Nano-Objects, 39: 101272.
18.
Awang, Z., Hairom,
N. H. H., Hamid, N. H. A., Sidik, D. A. B., Nadzim, U. K. H. M., Madon, R. H., and Yong, N. L. (2024).
Palm oil mill secondary effluent treatment using ZnO-clay
liquid photocatalyst in membrane photocatalytic reactor. Journal of the
Indian Chemical Society, 101(7): 101158.
19.
Schnabel, T., Dutschke, M., Schuetz, F.,
Hauser, F., Springer, C. (2022). Photocatalytic air purification of polycyclic
aromatic hydrocarbons: Application of a flow-through reactor, kinetic studies
and degradation pathways. Journal of Photochemistry & Photobiology, A:
Chemistry, 430:113993.
20.
Aalami,
Z., Hoseinzadeh, M., Manesh, P.H., Aalami, A.H., Es’haghi, Z., Darroudi, M., Sahebkar, A., and Hosseini,
H.A. (2024). Synthesis, characterization, and photocatalytic activities of
green sol-gel ZnO nanoparticles using Abelmoschus
esculentus and Salvia officinalis: A comparative study versus
co-precipitation-synthesized nanoparticles. Heliyon,
10: e24212.
21.
Boro, B., Boruah, J.S., Devi, C., Alemtoshi, Gogoi, B., Bharali, P., Reddy, P.V.B.,
Chowdhury, D., and Kalita, P. (2024). A novel route to fabricate ZnO nanoparticles using Xanthium indicum ethanolic
leaf extract: Green nanosynthesis perspective towards
photocatalytic and biological applications. Journal of Molecular Structure,
1300: 137227.
22.
Sedefoglu,
N. (2024). Green synthesis of ZnO nanoparticles by Myrtus
communis plant extract with investigation of effect of precursor,
calcination temperature and study of photocatalytic performance. Ceramics
International, 50: 9884-9895.
23.
Alsohaimi,
I.H., Alotaibi, N.F., Albarkani, A.M., Chen, Q.,
Moustafa, S.M.N., Alshammari, M.S., and Nassar, A.M. (2023). Photocatalytic
wastewater treatment and disinfection using green ZnO-NP
synthesized via cera alba extract. Alexandria Engineering Journal, 83:
113-121.
24.
Asif, M., Yasmin, R., Asif, R., Ambreen,
A., Mustafa, M., and Umbreen, S. (2022). Green
synthesis of silver nanoparticles (AgNPs), structural
characterization, and their antibacterial potential. Dose-Response, 2022:
1-11.
25.
Adnan, H., Ismail, N., Hassan, H., and Mat-Ali,
M.S. (2021). Anti-salmonellosis agent for foodborne illness from Mangifera
odorata (kuini) extracts. Food Research,
5(3): 262-272.
26.
Bello, M.M., and Abdul Raman, A.A. (2017).
Trend and current practices of palm oil mill effluent polishing: Application of
advanced oxidation processes and their future perspectives. Journal of
Environmental Management, 198: 170-182.
27.
Razali, N.A.M., Salleh, W.N.W., Aziz, F.,
Jye, L.W., Yusof, N., Jaafar, J., and Ismail, A.F. (2022). Influence of g-C3N4
and PANI onto WO3 photocatalyst on the photocatalytic degradation of POME. Materials
Today: Proceedings, 65: 3054-3059.
28.
Assefa, E. T., Shumi, G., Gendo, K. M., Kenasa, G., and Roba, N. (2024). Review on
green synthesis, characterization, and antibacterial activity of CuO nanoparticles using biomolecules of plant extract. Results
in Chemistry, 6: 101606.
29.
Le, A.T., Samsuddin,
N.S., Chiam, S-L, and Pung, S-Y. (2021). Synergistic
effect of pH solution and photocorrosion of ZnO particles on the photocatalytic degradation of
Rhodamine B. Bulletin of Material Science, 44(5): 1-10.
30.
Ribut,
S.H., Abdullah, C.A.C., Mustafa, M., Yusoff, M.Z.M., and Azman, S.N.A. (2019).
Influence of pH variations on zinc oxide nanoparticles and their antibacterial
activity. Materials Research Express, 6: 025016.
31.
Siddiqi, K.S., Rahman, A., Tajuddin, H. A.
(2018). Properties of zinc oxide nanoparticles and their activity against
microbes. Nanoscale Reseatch Letters, 13
(141): 1-13.
32.
Fadhila, F.R., Umar, A., Chandren, S., Apriandanu, D.O.B.,
and Yulizar, Y. (2024). Biosynthesis of CoCr2O4/ZnO nanocomposites using Basella alba L. leaves
extracts with enhanced photocatalytic degradation of malachite green in aqueous
media. Chemosphere, 352: 141215.
33.
Ahmouda, K., Benhaoua, B., Boudiaf,
M., and Barani, D. (2024). Increasing photocatalytic activity
of magnetite NPs with the inclusion of methyl orange and Evans blue functional
groups in the photoactivation of acid sites. Optical Materials, 150:
115207.