Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1290

 

Research Article

 

Photocatalytic reactor incorporating modified zinc oxide Acorus calamus nanoparticles to remediate anaerobic palm oil mill effluent

 

Noor Atiqah Zuraini1, Dilaeleyana Abu Bakar Sidik2*, Sham Darwish Shamhan2, Nur Hanis Hayati Hairom 1,3, Siti Samahani Suradi2, Rais Hanizam Madon4, Zarizi Awang1, Nor Hazren Abdul Hamid1, Raudah Mohd Adnan2, and Norhazimah Abdul Halim2

 

1Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Hab Pendidikan Tinggi Pagoh, KM1, Jalan Panchor 86400, Muar, Johor, Malaysia

2Centre for Diploma Studies, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Pagoh, Muar, 84600, Malaysia

3Microelectronic and Nanotechnology - Shamsuddin Research Centre, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit, Raja, Batu Pahat, 86400, Malaysia

4Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Parit, Raja, Batu Pahat, 86400, Malaysia

 

*Corresponding author: dila@uthm.edu.my

 

Received: 2 September 2024; Revised: 21 January 2025; Accepted: 11 March 2025; Published: 25 April 2025

 

Abstract

Massive amounts of pollutants in anaerobic palm oil mill effluent (APOME) can raise environmental and ecological issues. Thus, this study aimed to treat APOME using a photocatalytic reactor incorporating zinc oxide (ZnO) nanoparticles (NPs) and Acorus calamus (ACal) as green capping agent. The photocatalytic activity of various types of ZnO–ACal NPs in terms of chemical oxygen demand (COD), turbidity, and color removal efficiency was investigated. The results of this study suggested that ZnO–ACal NPs 3:1 and pH 6 were the best for removing color (~50%), turbidity (~90%), and COD (~80–90%) more effectively. This behavior was influenced by ZnO-ACal NPs' characteristics from the SEM image, which contrasted commercial ZnO, with the creation of uniform, small particles. It can be concluded that altering the synthesis conditions to produce particular nanoparticle characteristics can improve the breakdown of APOME organic contaminants during the photocatalytic process. The results of this study can serve as a guide for enhancing water quality for recycling and guaranteeing the nation's access to safe water. 

 

Keywords: Photocatalytic, nanoparticles, Acorus calamus, anaerobic palm oil mill effluent, zinc oxide, photocatalyst. 

 


References

1.      Sidik, D. A. B., Hairom, N. H. H., Ahmad, M. K., Madon, R. H., and Mohammad, A. W. (2020). Performance of membrane photo catalytic reactor incorporated with ZnO-Cymbopogon citratus in treating palm oil mill secondary effluent. Process Safety Environment Protection, 143: 273-284.

2.      Khongkliang, P., Nuchdang, S., Rattanaphra, D., Kingkam, W., Mahathanabodee, S., Boonnorat, J., Kadier, A., Aryanti, P.T.P., and Phalakornkule, C. (2024). Efficiency enhancement of electrocoagulation, ion-exchange resin and reverse osmosis (RO) membrane filtration by prior organic precipitation for treatment of anaerobically-treated palm oil mill effluent. Chemosphere, 363: 142899.

3.      Aziz, M. M. A., Kassim, K. A., ElSergany, M., Anuar, S., Jorat, M. E., Yaacob, H., Ahsan, A., Imteaz, M. A., and Arifuzzaman. (2020). Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production. Renewable and Sustainable Energy Reviews, 119: 109603.

4.      Nawaz, R., Chong, F. K., Chia, H. Y., Isa, M. N., Huei, L. W., Sahrin, N. T., and Khan, N. (2021). Countering major challenges confronting photocatalytic technology for the remediation of treated palm oil mill effluent: A review. Environmental Technology and Innovation, 23: 101764.

5.      Zainuri, N.Z., Hairom, N.H.H., Sidik, D.A.B., Desa, A.L., Misdan, N., Yusof, N., and Mohammad, A.W. (2018). Palm oil mill secondary effluent (POMSE) treatment via photocatalysis process in presence of ZnO-PEG nanoparticles. Journal of Water Process Engineering, 26: 10-16.

6.      Imam, S.S., Adnan, R., Kaus, N.H.M., Saqib, N.U. (2023). Influence of various operational parameters on the photocatalytic degradation of ciprofloxacin in aqueous media: a short review. Toxin Reviews, 42(3): 655-670.

7.      Punyasamudram, S., Puthalapattu, R.P., Bathinapatla, A., Mulpuri, R., Kanchi, S., and Kumar, P.V.N. (2024). Multifunctional characteristics of biosynthesized CoFe2O4@Ag nanocomposite by photocatalytic, antibacterial and cytotoxic applications. Chemoshphere, 349: 140892.

8.      Puasa, N.A., Hairom, N.H.H., Dzinun, H., Madon, R.H., Ahmad, N.S., Sidik, D.A.B., and Azmi, A.A.A.R. (2021). Photocatalytic degradation of palm oil mill secondary effluent in presence of zinc oxide nanoparticles. Environmental Nanotechnology, Monitoring & Management, 15: 100413.

9.      Hairom, N.H.H., Mohammad, A.W., and Kadhum, A.A.H. (2014). Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Separation Purificaiton Technology, 137: 74-81.

10.   Tejashwini, D.M., Harini, H.V., Nagaswarupa, H.P., Naik, R., Deshmukh, V.V., and Basavaraju, N. (2023). An in-depth exploration of eco-friendly synthesis methods for metal oxide nanoparticles and their role in photocatalysis for industrial dye degradation. Chemical Physics Impact, 7: 100355.

11.   Ezhilarasi, A.A.,Vijaya, J.J., Kaviyarasu, K., Kennedy, L.J., Ramalingam, R.J., and Al-Lohedan, H A. (2018). Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Journal of Photochemistry & Photobiology, B: Biology, 180: 39-50.

12.   Thanh, N.T.K., Maclean, N., and Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114: 7610-7630.

13.   Puthur, S., Raj, K.K., Anoopkumar, A.N,, Rebello, S., and Aneesh, E.M. (2020). Acorus calamus mediated green synthesis of ZnONPs: A novel nano antioxidant to future perspective. Advanced Powder Technology, 31: 4679-4682.

14.   Prabu, J. H., and Johnson, I. (2015). Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala International Journal of Modern Science, 1(4): 237-246.

15.   Choudhary, B.C., Paul, D., Gupta, T., Tetgure, S.R., Garole, V.J., Borse, A.U., and Garole, D.J. (2017). Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. Journal of environmental science, 55: 236-246.

16.   Sana, S. S., and Dogiparthi, L. K. (2018). Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Materials Letters, 226: 47-51.

17.   Sadia, S. I., Shishir, M. K. H., Ahmed, S., Alam, M. A., Al-Reza, S. M., and Afrin, S. (2024). Green synthesis of crystalline silver nanoparticles by bio-mediated plant extract: A critical perspective analysis. Nano-Structures & Nano-Objects, 39: 101272.

18.   Awang, Z., Hairom, N. H. H., Hamid, N. H. A., Sidik, D. A. B., Nadzim, U. K. H. M., Madon, R. H., and Yong, N. L. (2024). Palm oil mill secondary effluent treatment using ZnO-clay liquid photocatalyst in membrane photocatalytic reactor. Journal of the Indian Chemical Society, 101(7): 101158.

19.   Schnabel, T., Dutschke, M., Schuetz, F., Hauser, F., Springer, C. (2022). Photocatalytic air purification of polycyclic aromatic hydrocarbons: Application of a flow-through reactor, kinetic studies and degradation pathways. Journal of Photochemistry & Photobiology, A: Chemistry, 430:113993.

20.   Aalami, Z., Hoseinzadeh, M., Manesh, P.H., Aalami, A.H., Es’haghi, Z., Darroudi, M., Sahebkar, A., and Hosseini, H.A. (2024). Synthesis, characterization, and photocatalytic activities of green sol-gel ZnO nanoparticles using Abelmoschus esculentus and Salvia officinalis: A comparative study versus co-precipitation-synthesized nanoparticles. Heliyon, 10: e24212.

21.   Boro, B., Boruah, J.S., Devi, C., Alemtoshi, Gogoi, B., Bharali, P., Reddy, P.V.B., Chowdhury, D., and Kalita, P. (2024). A novel route to fabricate ZnO nanoparticles using Xanthium indicum ethanolic leaf extract: Green nanosynthesis perspective towards photocatalytic and biological applications. Journal of Molecular Structure, 1300: 137227.

22.   Sedefoglu, N. (2024). Green synthesis of ZnO nanoparticles by Myrtus communis plant extract with investigation of effect of precursor, calcination temperature and study of photocatalytic performance. Ceramics International, 50: 9884-9895.

23.   Alsohaimi, I.H., Alotaibi, N.F., Albarkani, A.M., Chen, Q., Moustafa, S.M.N., Alshammari, M.S., and Nassar, A.M. (2023). Photocatalytic wastewater treatment and disinfection using green ZnO-NP synthesized via cera alba extract. Alexandria Engineering Journal, 83: 113-121.

24.   Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., and Umbreen, S. (2022). Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-Response, 2022: 1-11.

25.   Adnan, H., Ismail, N., Hassan, H., and Mat-Ali, M.S. (2021). Anti-salmonellosis agent for foodborne illness from Mangifera odorata (kuini) extracts. Food Research, 5(3): 262-272.

26.   Bello, M.M., and Abdul Raman, A.A. (2017). Trend and current practices of palm oil mill effluent polishing: Application of advanced oxidation processes and their future perspectives. Journal of Environmental Management, 198: 170-182.

27.   Razali, N.A.M., Salleh, W.N.W., Aziz, F., Jye, L.W., Yusof, N., Jaafar, J., and Ismail, A.F. (2022). Influence of g-C3N4 and PANI onto WO3 photocatalyst on the photocatalytic degradation of POME. Materials Today: Proceedings, 65: 3054-3059.

28.   Assefa, E. T., Shumi, G., Gendo, K. M., Kenasa, G., and Roba, N. (2024). Review on green synthesis, characterization, and antibacterial activity of CuO nanoparticles using biomolecules of plant extract. Results in Chemistry, 6: 101606.

29.   Le, A.T., Samsuddin, N.S., Chiam, S-L, and Pung, S-Y. (2021). Synergistic effect of pH solution and photocorrosion of ZnO particles on the photocatalytic degradation of Rhodamine B. Bulletin of Material Science, 44(5): 1-10.

30.   Ribut, S.H., Abdullah, C.A.C., Mustafa, M., Yusoff, M.Z.M., and Azman, S.N.A. (2019). Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity. Materials Research Express, 6: 025016.

31.   Siddiqi, K.S., Rahman, A., Tajuddin, H. A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Reseatch Letters, 13 (141): 1-13.

32.   Fadhila, F.R., Umar, A., Chandren, S., Apriandanu, D.O.B., and Yulizar, Y. (2024). Biosynthesis of CoCr2O4/ZnO nanocomposites using Basella alba L. leaves extracts with enhanced photocatalytic degradation of malachite green in aqueous media. Chemosphere, 352: 141215.

33.   Ahmouda, K., Benhaoua, B., Boudiaf, M., and Barani, D. (2024). Increasing photocatalytic activity of magnetite NPs with the inclusion of methyl orange and Evans blue functional groups in the photoactivation of acid sites. Optical Materials, 150: 115207.