Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1288

 

Research Article

 

Evaluation of phytochemical, antioxidant and antibacterial properties of Laurus nobilis leaf extract

 

Fazilah Ariffin1,3, Hirooshini Subramaniam1, Ahmad Nazif Aziz1,2, Asnuzilawati Asari1,2, Maulidiani Maulidiani1,2 and Nurul Huda Abdul Wahab1,2*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Malaysia

2Advanced Nano Materials (ANoMa) Research Group, Universiti Malaysia Terengganu, 21030, Malaysia

3Biological Security and Sustainability (Bioses) Research Interest Group, Universiti Malaysia Terengganu, 21030, Malaysia

 

*Corresponding author: nhuda@umt.edu.my

 

Received: 25 August 2024; Revised: 3 December 2024; Accepted: 7 January 2025; Published: xx April 2025

 

Abstract

Laurus nobilis (L. nobilis) is a valuable source of medicinal compounds with diverse applications in the pharmaceutical industry. This study aimed to identify secondary metabolites through phytochemical screening, assess total phenolic content (TPC), total flavonoid content (TFC), and evaluate radical scavenging activity along with antioxidant and antimicrobial activities by using thin-layer chromatography bioautography (TLC-DB). Dried leaves of L. nobilis were selected for extraction using hexane, ethyl acetate, and methanol. Both qualitative and quantitative phytochemical analyses were conducted on the crude extracts. The major phytochemicals identified in the L. nobilis crude extracts included alkaloids, polyphenols, flavonoids, saponins, tannins, triterpenes, steroids, terpenoids, proteins, coumarins, and reduce sugars. The total flavonoid content, total phenolic content, DPPH radical scavenging activities, and TLC-DB assays for antibacterial and antioxidant activities were also studied. Quantitative analysis revealed that ethyl acetate crude extract contained the highest levels of flavonoids and phenolic content, with values of 6.28×10˛ mg QE/g and 1.98×10˛ mg GAE/g of extract sample, respectively, as compared to the other extracts. Hexane, ethyl acetate, and methanol crude extracts exhibited strong antioxidant activities against DPPH, with IC50 values of 50.75 µg/mL, 44.65 µg/mL, and 51.31 µg/mL, respectively. TLC-DB analysis showed that hexane crude extract exhibited antibacterial activity against both Bacillus subtilis and Staphylococcus aureus, while methanol crude extract showed activity against Staphylococcus aureus only. All plant extracts demonstrated antioxidant activity in the TLC-DB analysis. The findings of this study suggest that the screened extracts of L. nobilis possess significant potential as antioxidant and antibacterial agents, and could serve as valuable resources for the development of novel therapeutic agents.

 

Keywords: Laurus nobilis, total flavonoid content, total phenolic content, thin-layer chromatography bioautography (TLC-DB), antioxidant, antimicrobe

 


References

1.      Damasceno, C. S. B., Fabri Higaki, N. T., Dias, J. de F. G., Miguel, M. D., and Miguel, O. G. (2019). Chemical composition and biological activities of essential oils in the family lauraceae: A systematic review of the literature. Planta Medica, 85(13): 1054-1072.

2.      Chahal, K. K., Singh, D. K., Panchbhaiya, A., Singh, N., Kaur, M., Bhardwaj, U., Singla, N., and Kaur, A. (2017). A review on chemistry and biological activities    of Laurus nobilis L. essential oil. Journal of Pharmacognosy and Phytochemistry, 6(4): 1153.

3.      Fernández-Palacios, J. M., Otto, R., Nascimento, L., and Whittaker, R. J. (2023). Microsatellites reveal high levels of genetic admixture in the natural populations of Laurus L. (Lauraceae) in the Canary Islands. Plant Systematics and Evolution, 309(2): 1-14

4.      Paparella, A., Nawade, B., Shaltiel-Harpaz, L., and Ibdah, M. (2022). A review of the botany, volatile composition, biochemical and molecular aspects, and traditional uses of Laurus nobilis. Plants, 11(9): 1209.

5.      Awada, F., Hamade, K., Kassir, M., Hammoud, Z., Mesnard, F., Rammal, H., and Fliniaux, O. (2023). Laurus nobilis Leaves and Fruits: A review of metabolite composition and interest in human health. Applied Sciences (Switzerland): 13(7): 4606.

6.      Ozcan, M. M., and Chalchat, J. C. (2005). Chemical composition and antifungal effect of an essential oil of Laurus nobilis L. Journal of Ethnopharmacology, 99(3): 285-292.

7.      El-Hawary, S. S.(2013). Chemical composition and biological activities of the essential oil of Laurus nobilis L. from Egypt. Journal of Applied Pharmaceutical Science, 3(1): 52-55.

8.      Mouhajir, F., Hudson, J. B., Rejdali, M., and Towers, G. H. N. (2001). Antimicrobial activity of essential oils from Laurus nobilis against some microorganisms. Natural Product Research, 15(6): 405-410.

9.      Ajiboye, B. O., Ibukun, E. O., Edobor, G., Ojo, A. O., and Onikanni, S. A. (2013).  Qualitative and quantitative analysis of phytochemicals in senecio. International Journal of Inventions in Pharmaceutical Sciences, 1(5): 428-432.

10.   Shaikh, J.R. and Patil, M.K. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2): 603-608.

11.   Iqbal, E., Salim, K. A., and Lim, L. B. L. (2015). Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. Journal of King Saud University - Science, 27(3): 224-232.

12.   Hossain, M. A., AL-Raqmi, K. A. S., AL-Mijizy, Z. H., Weli, A. M., and Al-Riyami, Q. (2013). Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pacific Journal of Tropical Biomedicine, 3(9): 705-710.

13.   Ram, J., Moteriya, P., Chanda, S., and Chanda Phytochemical, S. (2015). Phytochemical screening and reported biological activities of some medicinal plants of Gujarat region. Journal of Pharmacognosy and Phytochemistry, 4(2): 192-198. 

14.   Alabri, T. H. A., Al Musalami, A. H. S., Hossain, M. A., Weli, A. M., and Al-Riyami, Q.  (2014). Comparative study of phytochemical screening, antioxidant and antimicrobial capacities of fresh and dry leaves crude plant extracts of Datura metel L. Journal of King Saud University - Science, 26(3): 237-243.  

15.   Das, B. K., Al-Amin, M. M., Russel, S. M., Kabir, S., Bhattacherjee, R., and Hannan, J. M. A. (2014). Phytochemical screening and evaluation of analgesic activity of Oroxylum indicum. Indian Journal of Pharmaceutical Sciences, 76(6): 571.

16.   Subroto, E., Lembong, E., Filianty, F., Indiarto, R., Primalia, G., Salza Kirana, M., Putri, Z., Theodora, H. C., and Junar, S. (2020). The analysis techniques of amino acid and protein in food and agricultural products. International Journal of Scientific & Technology Research, 9(10): 29-36.

17.   Bansode, T. S., and Salalkar, B. K. (2015). Phytochemical analysis and antibacterial properties of some selected Indian medicinal plants. International Journal of Pharma and Bio Sciences, 4(3): 228-235.

18.   Azizan, A., Lee, A. X., Hamid, N. A. A., Maulidiani, M., Mediani, A., Ghafar, S. Z. A., Zolkeflee, N. K. Z., and Abas, F. (2020). Potentially bioactive metabolites from pineapple waste extracts and their antioxidant and α-glucosidase inhibitory activities by 1H NMR. Foods, 9(2): 173.

19.   Sambandam, B., Thiyagarajan, D., Arivarasan, A., Raman, P., Kulasekaran, J., and Venkatasamy, H. (2016). Extraction and isolation of flavonoid quercetin from the leaves of Trigonella foenum-graecum and their anti-oxidant activity. International Journal of Pharmacy and Pharmaceutical Sciences8(6): 120-124.

20.   Gu, L., Wu, T., and Wang, Z. (2009). TLC bioautography-guided isolation of antioxidants from fruit of Perilla frutescens var. acuta. LWT, 42(1): 131-136.

21.   Hamburger, M. O., and Cordell, G. A. (1987). A direct bioautographic TLC assay for compounds possessing antibacterial activity. Journal of natural products, 50(1): 19-22.

22.   Smith, J. E., Tucker, D., Watson, K., and Jones, G. L. (2007). Identification of antibacterial constituents from the indigenous Australian medicinal plant Eremophila duttonii F. Muell. (Myoporaceae). Journal of Ethnopharmacology, 112(2): 386-393.

23.   Tiwari, U. and Cummins, E. (2013). Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Research International, 50(2): 497-506.

24.   Sarac, I. (2017). Chemical composition and antimicrobial activity of Laurus nobilis essential oil. Journal of Essential Oil Research, 29(1): 53-60.

25.   Prakash, V. (2015). Phytochemical and pharmacological activities of Laurus nobilis L. Natural Product Research, 29(22): 2054-2064.

26.   Kumar, S., and Pandey, A. K. (2015). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2015: 162750.

27.   Taiz, L., Zeiger, E. (2010). Plant Physiology (5th edition). Sunderland, MA: Sinauer Associates, Inc.

28.   Borges, G. (2010). Antioxidant activity of phenolic and flavonoid compounds in methanol extracts of some medicinal plants. Food Research International, 43(3), 1303-1310.

29.   Shahidi, F. and Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages, and health benefits: A review. Journal of Functional Foods, 18: 820-837.

30.   Lai L. S., Chou S. T., Chao W. W. (2001). Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. Journal Agriculture Food Chemistry, 49: 963-968.

31.   Liu R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. American Journal Clininical Nutrition, 78: 517S-520S.

32.   Yamaguchi T., Takamura H., Matoba T., and Terao J. (1998). HPLC method for evaluation of the free radical scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, Biochemistry. 62: 1201-1204.

33.   Xu, D. P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J. J., and Li, H. Bin. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. In International Journal of Molecular Sciences, 18(1): 96.

34.   Choma, I., and Jesionek, W. (2015). TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography, 2(2): 225-238.

35.   Benziane, Z., and Boukir, A. (2009). Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco. Australian Journal of Basic and Applied Sciences3(4): 3818-3824.

36.   Belletti, N., Ndagijimana, M., Sisto, C., Guerzoni, M. E., Lanciotti, R., and Gardini, F. (2004). Evaluation of the antimicrobial activity of citrus essences on Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 52(23): 6932-6938.

37.   Suleiman, M. M., McGaw, L. I., Naidoo, V., and Eloff, J. (2010). Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. African Journal of Traditional, Complementary and Alternative Medicines7(1): 64-78.