Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1284

 

Research Article

 

Modification of screen-printed gold electrode based molecularly imprinted polymer (MIP) for 17β-estradiol detection

 

Julia Hayati Saipol Bahri1, Tuan Mohamad Fauzan Tuan Omar1,2, Hafiza Mohamed Zuki1, and Azrilawani Ahmad1,2*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: azrilawani.ahmad@umt.edu.my

 

Received: 26 August 2024; Revised: 30 November 2024; Accepted: 12 February 2025; Published: 8 April 2025

 

Abstract

An efficient approach that integrates a molecularly imprinted conducting polymer, polypyrrole, with a sensitive electrochemical sensing platform for quantifying 17β-estradiol (17β-E2) is presented. The molecular imprinting process employed a one-pot step using the electrochemical polymerisation of pyrrole as a monomer and 17β-E2 as a template molecule, which enabled the control of polymer film thickness, easy adherence of the polymer layers on the sensing substrate, and simplicity of the fabrication on screen-printed gold electrode (SPGE). The molecularly imprinted electrochemical sensor (MIP/SPGE) was characterised physically using scanning electron microscopy and Fourier transform infrared, and it was electrochemically characterised using cyclic voltammetry and linear sweep voltammetry (LSV). The LSV technique was carried out as a detection method because 17β-E2 molecules are electrically insulative and non-electroactive. The MIP/SPGE demonstrates a wide linear detection range, spanning from 0.5 ppm to 10.0 ppm, with a detection limit of 0.00836 ppm and a quantification limit of 0.02785 ppm. The imprinted variant shows a significantly higher affinity for 17β-E2 binding than the non-imprinted sensor. Furthermore, selectivity assessments conducted with testosterone, a similar hormone, confirmed the sensor’s high selectivity.

 

Keywords: screen-printed gold electrode, 17β-estradiol, polypyrrole, electrochemical polymerisation, molecularly imprinted polymer



References

1.    Kaya, S. I., Cetinkaya, A., Bakirhan, N. K., and Ozkan, S. A. (2020). Trends in sensitive electrochemical sensors for endocrine disruptive compounds. Trends in Environmental Analytical Chemistry, 28: e00106.

2.    Omar, T. F. T., Ahmad, A., Aris, A. Z., and Yusoff, F. M. (2016). Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. TrAC - Trends in Analytical Chemistry, 85: 241-259.

3.    Ismail, N. A. H., Aris, A. Z., Wee, S. Y., Nasir, H. M., Razak, M. R., Kamarulzaman, N. H., and Omar, T. F. T. (2021). Occurrence and distribution of endocrine-disrupting chemicals in mariculture fish and the human health implications. Food Chemistry, 345: 128806.

4.    Chen, Y., Yang, J., Yao, B., Zhi, D., and Zhou, Y. (2022). Endocrine disrupting chemicals in the environment: Environmental sources, biological effects, remediation techniques, and perspective. Environmental Pollution. 310: 119918.

5.    Van Cauwenbergh, O., Di Serafino, A., Tytgat, J., and Soubry, A. (2020). Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: A systematic review on research in mammals. Clinical Epigenetics, 12(1): 1-23.

6.    Su, C., Cui, Y., Liu, D., Zhang, H., and Baninla, Y. (2020). Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: Which chemicals are the prioritized ones? Science of the Total Environment, 720: 137652.

7.    Calaf, G. M., Ponce-Cusi, R., Aguayo, F., Muñoz, J. P., and Bleak, T. C. (2020). Endocrine disruptors from the environment affecting breast cancer (Review). Oncology Letters, 20(1): 19-32.

8.    Lucaccioni, L., Trevisani, V., Marrozzini, L., Bertoncelli, N. B. P., Lugli, L., Berardi, A., and Iughetti, L. (2020). Endocrine-disrupting chemicals and their effects during female puberty: A review of current evidence. International Journal of Molecular Sciences, 21(6): 2078. 

9.    Adeel, M., Song, X., Wang, Y., Francis, D., and Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99: 107-119.

10.  Richards, J. S., and Pangas, S. A. (2010). The ovary: Basic biology and clinical implications. Journal of Clinical Investigation, 120(4): 963-972.

11.  Nazari, E., and Suja, F. (2016). Effects of 17β-estradiol (E2) on aqueous organisms and its treatment problem: A review. Reviews on Environmental Health, 31(4): 465-491.

12.  Sabri, M. M., Omar, T. F. T., Ahmad, A., and Suratman, S. (2022). An optimized analytical method to study the occurrence and distribution of bisphenol A (Bpa) and 17ß-Estradiol (E2) in the surface water of Ibai River, Terengganu, Malaysia. Journal of Sustainability Science and Management, 17(7): 195-203.

13.  Dong, Z., Xiao, C., Zeng, W., and Zhao, J. (2021). Impact of 17β-Estradiol on natural water’s heterotrophic nitrifying bacteria. International Journal of Environmental Science and Development, 12(1): 17-22.

14.  Özgür, E. (2021). Molecularly imprinted electrochemical sensors and their applications. Molecular Imprinting for Nanosensors and Other Sensing Applications, 2021: 203-221.

15.  Zhang, J. J., Cao, J. T., Shi, G. F., Huang, K. J., Liu, Y. M., and Chen, Y. H. (2014). Label-free and sensitive electrochemiluminescence aptasensor for the determination of 17β-estradiol based on a competitive assay with cDNA amplification. Analytical Methods, 6(17): 6796-6801.  

16.  Wang, L., Yang, P., Li, Y., and Zhu, C. (2006). A flow-injection chemiluminescence method for the determination of some estrogens by enhancement of luminol-hydrogen peroxide-tetrasulfonated manganese phthalocyanine reaction. Talanta, 70: 219-224.

17.  Li, Y., Yang, L., Zhen, H., Chen, X., Sheng, M., Li, K., Xue, W., Zhao, H., Meng, S., and Cao, G. (2021). Determination of estrogens and estrogen mimics by solid-phase extraction with liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1168: 122559.

18.  Silva, C. P., Lima, D. L. D., Schneider, R. J., Otero, M., and Esteves, V. I. (2013). Development of ELISA methodologies for the direct determination of 17β-estradiol and 17α-ethinylestradiol in complex aqueous matrices. Journal of Environmental Management, 124: 121-127.

19.  Alberti, G., Zanoni, C., Spina, S., Magnaghi, L. R., and Biesuz, R. (2022). MIP-based screen-printed potentiometric cell for atrazine sensing. Chemosensors, 10(8): 1-15.  

20.  Sarpong, K. A., Zhang, K., Luan, Y., Cao, Y., and Xu, W. (2019). Development and application of a novel electrochemical sensor based on AuNPs and Difunctional monomer-MIPs for the selective determination of Tetrabromobisphenol-S in water samples. Microchemical Journal, 104526.

21.  Rebocho, S., Cordas, C. M., Viveiros, R., and Casimiro, T. (2018). Development of a ferrocenyl-based MIP in supercritical carbon dioxide: Towards an electrochemical sensor for bisphenol A. Journal of Supercritical Fluids, 135: 98-104.

22.  Ni, X., Tang, X., Wang, D., Zhang, J., Zhao, L., Gao, J., He, H., and Dramou, P. (2023). Research progress of sensors based on molecularly imprinted polymers in analytical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, 235: 115659.

23.  Musa, A. M., Kiely, J., Luxton, R., and Honeychurch, K. C. (2021). Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. TrAC - Trends in Analytical Chemistry, 139: 116254.

24.  Mokni, M., Mazouz, Z., Attia, G., Fourati, N., Zerrouki, C., Othmane, A., Omezzine, A., and Bouslama, A. (2018). Prime importance of the supporting electrolyte in the realization of molecularly imprinted polymers. International Conference on Multidisciplinary Sciences, 1: 5888.

25.  Belbruno, J. J. (2019). Molecularly imprinted polymers. Chemical Reviews, 119(1): 94-119.

26.  Rahman, S., Bozal-Palabiyik, B., Unal, D. N., Erkmen, C., Siddiq, M., Shah, A., and Uslu, B. (2022). Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants. Trends in Environmental Analytical Chemistry, 36(8): e00176.

27.  Yarman, A., and Scheller, F. W. (2020). How reliable is the electrochemical readout of MIP sensors? Sensors (Switzerland), 20(9): 2677.

28.  Suryanarayanan, V., Wu, C. T., and Ho, K. C. (2010). Molecularly imprinted electrochemical sensors. Electroanalysis, 22(16): 1795-1811.

29.  Cui, B., Liu, P., Liu, X., Liu, S., and Zhang, Z. (2020). Molecularly imprinted polymers for electrochemical detection and analysis: progress and perspectives. Journal of Materials Research and Technology, 9(6): 12568-12584.

30.  Włoch, M., and Datta, J. (2019). Synthesis and polymerisation techniques of molecularly imprinted polymers. Comprehensive Analytical Chemistry, 86: 17-40.

31.  Abdollah, N. A., Ahmad, A., and Omar, T. F. T. (2020). Synthesis and characterization of molecular imprinted polymer for the determination of carbonate ion. Biointerface Research in Applied Chemistry, 11(3): 10620-10627.

32.  Biyana, M., and Nyokong, T. (2022). Synergistic recognition and electrochemical sensing of 17 β -Estradiol using ordered molecularly imprinted polymer-graphene oxide-silver nanoparticles composite films. Journal of Electroanalytical Chemistry, 922.

33.  Khosropour, H., Saboohi, M., Keramat, M., Rezaei, B., and Ensafi, A. A. (2023). Electrochemical molecularly imprinted polymer sensor for ultrasensitive indoxacarb detection by tin disulfide quantum dots/carbon nitride/multiwalled carbon nanotubes as a nanocomposite. Sensors and Actuators B: Chemical, 385(3): 133652.

34.  Korol, D., Kisiel, A., Cieplak, M., Michalska, A., Sharma, P. S., and Maksymiuk, K. (2023). Synthesis of conducting molecularly imprinted polymer nanoparticles for estriol chemosensing. Sensors and Actuators B: Chemical, 382(2): 133476.

35.  Murdaya, N., Triadenda, A. L., Rahayu, D., and Hasanah, A. N. (2022). A review: Using multiple templates for molecular imprinted polymer: Is it good? polymers, 14(20): 1-22.

36.  Ellwanger, A., Berggren, C., Bayoudh, S., Crecenzi, C., Karlsson, L., Owens, P. K., Ensing, K., Cormack, P., Sherrington, D., and Sellergren, B. (2001). Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst, 126(6): 784-792.

37.  Motia, S., Bouchikhi, B., Llobet, E., and El Bari, N. (2020). Synthesis and characterization of a highly sensitive and selective electrochemical sensor based on molecularly imprinted polymer with gold nanoparticles modified screen-printed electrode for glycerol determination in wastewater. Talanta, 216(3): 120953.

38.  Nabilah Muhamad, F., Mohamed Zuki, H., Ariffin, M., and Ahmad, A. (2023). Molecularly imprinted polymers for domoic acid detection in selected shellfish tissue. Malaysian Journal of Analytical Sciences, 27(2): 353-367.

39.  Duan, D., Si, X., Ding, Y., Li, L., Ma, G., Zhang, L., and Jian, B. (2019). A novel molecularly imprinted electrochemical sensor based on double sensitization by MOF/ CNTs and Prussian blue for detection of 17 β-estradiol. Bioelectrochemistry, 129: 211-217.

40.  Supchocksoonthorn, P., Alvior Sinoy, M. C., de Luna, M. D. G., and Paoprasert, P. (2021). Facile fabrication of 17β-estradiol electrochemical sensor using polyaniline/carbon dot-coated glassy carbon electrode with synergistically enhanced electrochemical stability. Talanta, 235: 122782.

41.  Salamon, M. N., Mustafa, M. K., and Raja, S. M. N. (2023). The effect of gold and carbon screen-printed electrode (SPE) for biosensing application by electrochemical method. Enhanced Knowledge in Sciences and Technology, 3(2): 255-262.

42.  Glosz, K., Stolarczyk, A., and Jarosz, T. (2021). Electropolymerised polypyrroles as active layers for molecularly imprinted sensors: Fabrication and applications. Materials, 14(6): 1369.

43.  Shafaat, A., and Faridbod, F. (2022). Overoxidized polypyrrole/ gold nanoparticles composite modified screen-printed voltammetric sensor for quantitative analysis of methadone in biological fluids. Analytical and Bioanalytical Electrochemistry, 14(3): 319-330.

44.  Sravanthi, M., and Manjunatha, K. G. (2020). Synthesis and characterization of conducting polypyrrole with various dopants. Materials Today: Proceedings, 46: 5964-5968.

45.  Pineda, E. G., Azpeitia, L. A., Presa, M. J. R., Bolzán, A. E., and Gervasi, C. A. (2023). Benchmarking electrodes modified with bi-doped polypyrrole for sensing applications. Electrochimica Acta, 444: 142011.

46.  Terán-Alcocer, Á., Bravo-Plascencia, F., Cevallos-Morillo, C., and Palma-Cando, A. (2021). Electrochemical sensors based on conducting polymers for the aqueous detection of biologically relevant molecules. Nanomaterials, 11: 1-62.

47.  Dechtrirat, D., Sookcharoenpinyo, B., Prajongtat, P., Sriprachuabwong, C., Sanguankiat, A., Tuantranont, A., and Hannongbua, S. (2018). An electrochemical MIP sensor for selective detection of salbutamol based on a graphene/PEDOT:PSS modified screen printed carbon electrode. RSC Advances, 8(1) : 206-212.

48.  Valentino, M., Imbriano, A., Tricase, A., Della Pelle, F., Compagnone, D., Macchia, E., Torsi, L., Bollella, P., and Ditaranto, N. (2023). Electropolymerized molecularly imprinted polypyrrole film for dimethoate sensing: investigation on template removal after the imprinting process. Analytical Methods, 15(10): 1250-1253.

49.  Ratautaite, V., Boguzaite, R., Brazys, E., Ramanaviciene, A., Ciplys, E., Juozapaitis, M., Slibinskas, R., Bechelany, M. and Ramanavicius, A. (2022). Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochimica Acta, 403: 139581.

50.  Mazzotta, E., Di Giulio, T., and Malitesta, C. (2022). Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Analytical and Bioanalytical Chemistry, 414(18): 5165-5200).

51.  Lah, N. F. C., Ahmad, A. L., Low, S. C., and Zaulkiflee, N. D. (2021). Isotherm and electrochemical properties of atrazine sensing using PVC/MIP: Effect of porogenic solvent concentration ratio. Membranes, 11(9): 657.

52.  Karimi-Maleh, H., Yola, M. L., Atar, N., Orooji, Y., Karimi, F., Senthil Kumar, P., Rouhi, J., and Baghayeri, M. (2021). A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. Journal of Colloid and Interface Science, 592(2):174-185.

53.  Bolat, G., Yaman, Y. T., and Abaci, S. (2019). Molecularly imprinted electrochemical impedance sensor for sensitive dibutyl phthalate (DBP) determination. Sensors and Actuators, B: Chemical, 299(3): 127000.

54.  Regasa, M. B., Soreta, T. R., Femi, O. E., Ramamurthy, P. C., and Subbiahraj, S. (2020). Novel multifunctional molecular recognition elements based on molecularly imprinted poly (aniline-co-itaconic acid) composite thin film for melamine electrochemical detection. Sensing and Bio-Sensing Research, 27(12): 100318.

55.  Pirzada, M., and Altintas, Z. (2021). Template Removal in Molecular Imprinting: Principles, Strategies, and Challenges. Molecular Imprinting for Nanosensors and Other Sensing Applications. Elsevier Inc.

56.  Wu, Y., Li, G., Tian, Y., Feng, J., Xiao, J., Liu, J., Liu, X., and He, Q. (2021). Electropolymerization of molecularly imprinted polypyrrole film on multiwalled carbon nanotube surface for highly selective and stable determination of carcinogenic amaranth. Journal of Electroanalytical Chemistry, 895: 115494.

57.  Marques, G. L., Rocha, L. R., Prete, M. C., Gorla, F. A., Moscardi dos Santos, D., Segatelli, M. G., and Teixeira Tarley, C. R. (2021). Development of electrochemical platform based on molecularly imprinted poly(methacrylic acid) grafted on iniferter-modified carbon nanotubes for 17β-estradiol determination in water samples. Electroanalysis, 33(3): 568-578.