Malays. J. Anal. Sci.
Volume 29 Number 2 (2025): 1284
Research Article
Modification of
screen-printed gold electrode based molecularly imprinted polymer (MIP) for
17β-estradiol detection
Julia
Hayati Saipol Bahri1, Tuan Mohamad Fauzan
Tuan Omar1,2, Hafiza Mohamed Zuki1, and Azrilawani Ahmad1,2*
1Faculty of Science
and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Ocean Pollution and Ecotoxicology Research Group, Faculty
of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: azrilawani.ahmad@umt.edu.my
Received:
26 August 2024; Revised: 30 November 2024; Accepted: 12 February 2025;
Published: 8 April 2025
Abstract
An efficient
approach that integrates a molecularly imprinted conducting polymer, polypyrrole, with a sensitive electrochemical sensing
platform for quantifying 17β-estradiol (17β-E2) is presented. The molecular
imprinting process employed a one-pot step using the electrochemical polymerisation of pyrrole as a monomer and 17β-E2 as a
template molecule, which enabled the control of polymer film thickness, easy
adherence of the polymer layers on the sensing substrate, and simplicity of the
fabrication on screen-printed gold electrode (SPGE). The molecularly imprinted
electrochemical sensor (MIP/SPGE) was characterised
physically using scanning electron microscopy and Fourier transform infrared,
and it was electrochemically characterised using
cyclic voltammetry and linear sweep voltammetry (LSV). The LSV technique was
carried out as a detection method because 17β-E2 molecules are
electrically insulative and non-electroactive. The MIP/SPGE demonstrates a wide
linear detection range, spanning from 0.5 ppm to 10.0 ppm, with a
detection limit of 0.00836 ppm and a quantification limit of
0.02785 ppm. The imprinted variant shows a significantly higher affinity
for 17β-E2 binding than the non-imprinted sensor. Furthermore, selectivity
assessments conducted with testosterone, a similar hormone, confirmed the
sensor’s high selectivity.
Keywords: screen-printed
gold electrode, 17β-estradiol, polypyrrole,
electrochemical polymerisation, molecularly imprinted
polymer
1. Kaya,
S. I., Cetinkaya, A., Bakirhan, N. K., and Ozkan, S.
A. (2020). Trends in sensitive electrochemical sensors for endocrine
disruptive compounds. Trends in Environmental Analytical Chemistry, 28:
e00106.
2. Omar,
T. F. T., Ahmad, A., Aris, A. Z., and Yusoff, F. M. (2016). Endocrine
disrupting compounds (EDCs) in environmental matrices: Review of analytical
strategies for pharmaceuticals, estrogenic hormones, and alkylphenol
compounds. TrAC - Trends in Analytical
Chemistry, 85: 241-259.
3. Ismail,
N. A. H., Aris, A. Z., Wee, S. Y., Nasir, H. M., Razak, M. R., Kamarulzaman,
N. H., and Omar, T. F. T. (2021). Occurrence and distribution of
endocrine-disrupting chemicals in mariculture fish and the human health
implications. Food Chemistry, 345: 128806.
4. Chen,
Y., Yang, J., Yao, B., Zhi, D., and Zhou, Y. (2022). Endocrine disrupting
chemicals in the environment: Environmental sources, biological effects,
remediation techniques, and perspective. Environmental Pollution. 310: 119918.
5. Van Cauwenbergh,
O., Di Serafino, A., Tytgat, J., and Soubry, A.
(2020). Transgenerational epigenetic effects from male exposure to
endocrine-disrupting compounds: A systematic review on research in mammals. Clinical
Epigenetics, 12(1): 1-23.
6. Su, C., Cui, Y., Liu, D., Zhang, H., and Baninla, Y. (2020). Endocrine disrupting compounds,
pharmaceuticals and personal care products in the aquatic environment of
China: Which chemicals are the prioritized ones? Science of the Total
Environment, 720: 137652.
7. Calaf,
G. M., Ponce-Cusi, R., Aguayo, F., Muñoz, J. P., and Bleak, T. C. (2020).
Endocrine disruptors from the environment affecting breast cancer (Review). Oncology
Letters, 20(1): 19-32.
8. Lucaccioni, L., Trevisani, V., Marrozzini,
L., Bertoncelli, N. B. P., Lugli, L., Berardi, A., and
Iughetti, L. (2020). Endocrine-disrupting chemicals
and their effects during female puberty: A review of current evidence. International
Journal of Molecular Sciences, 21(6): 2078.
9. Adeel,
M., Song, X., Wang, Y., Francis, D., and Yang, Y. (2017). Environmental impact
of estrogens on human, animal and plant life: A critical review. Environment
International, 99: 107-119.
10. Richards, J. S., and Pangas, S. A. (2010). The ovary: Basic biology and
clinical implications. Journal of Clinical Investigation, 120(4): 963-972.
11. Nazari,
E., and Suja, F. (2016). Effects of 17β-estradiol (E2) on aqueous
organisms and its treatment problem: A review. Reviews on Environmental
Health, 31(4): 465-491.
12. Sabri,
M. M., Omar, T. F. T., Ahmad, A., and Suratman, S. (2022). An optimized
analytical method to study the occurrence and distribution of bisphenol A (Bpa) and 17ß-Estradiol (E2) in the surface water of Ibai
River, Terengganu, Malaysia. Journal of Sustainability Science and
Management, 17(7): 195-203.
13. Dong,
Z., Xiao, C., Zeng, W., and Zhao, J. (2021). Impact of 17β-Estradiol on
natural water’s heterotrophic nitrifying bacteria. International Journal of
Environmental Science and Development, 12(1): 17-22.
14. Özgür,
E. (2021). Molecularly imprinted electrochemical sensors and their
applications. Molecular Imprinting for Nanosensors
and Other Sensing Applications, 2021: 203-221.
15. Zhang,
J. J., Cao, J. T., Shi, G. F., Huang, K. J., Liu, Y. M., and Chen, Y. H.
(2014). Label-free and sensitive electrochemiluminescence aptasensor
for the determination of 17β-estradiol based on a competitive assay with
cDNA amplification. Analytical Methods, 6(17): 6796-6801.
16. Wang,
L., Yang, P., Li, Y., and Zhu, C. (2006). A flow-injection chemiluminescence
method for the determination of some estrogens by enhancement of
luminol-hydrogen peroxide-tetrasulfonated manganese
phthalocyanine reaction. Talanta, 70: 219-224.
17. Li,
Y., Yang, L., Zhen, H., Chen, X., Sheng, M., Li, K., Xue, W., Zhao, H., Meng,
S., and Cao, G. (2021). Determination of estrogens and estrogen mimics by
solid-phase extraction with liquid chromatography-tandem mass spectrometry. Journal
of Chromatography B: Analytical Technologies in the Biomedical and Life
Sciences, 1168: 122559.
18. Silva, C. P., Lima, D. L. D., Schneider, R.
J., Otero, M., and Esteves, V. I. (2013). Development of ELISA methodologies
for the direct determination of 17β-estradiol and 17α-ethinylestradiol in complex aqueous matrices. Journal
of Environmental Management, 124: 121-127.
19. Alberti, G., Zanoni, C., Spina, S., Magnaghi, L. R., and Biesuz, R.
(2022). MIP-based screen-printed potentiometric cell for atrazine
sensing. Chemosensors, 10(8): 1-15.
20. Sarpong, K. A., Zhang, K., Luan, Y., Cao, Y.,
and Xu, W. (2019). Development and application of a novel electrochemical
sensor based on AuNPs and Difunctional monomer-MIPs for the selective
determination of Tetrabromobisphenol-S in water
samples. Microchemical Journal, 104526.
21. Rebocho, S., Cordas, C. M., Viveiros, R., and
Casimiro, T. (2018). Development of a ferrocenyl-based
MIP in supercritical carbon dioxide: Towards an electrochemical sensor for
bisphenol A. Journal of Supercritical Fluids, 135: 98-104.
22. Ni,
X., Tang, X., Wang, D., Zhang, J., Zhao, L., Gao, J., He, H., and Dramou, P. (2023). Research progress of sensors based on
molecularly imprinted polymers in analytical and biomedical analysis. Journal
of Pharmaceutical and Biomedical Analysis, 235: 115659.
23. Musa,
A. M., Kiely, J., Luxton, R., and Honeychurch, K. C. (2021). Recent progress
in screen-printed electrochemical sensors and biosensors for the detection of
estrogens. TrAC - Trends in Analytical
Chemistry, 139: 116254.
24. Mokni, M., Mazouz, Z., Attia, G., Fourati, N., Zerrouki,
C., Othmane, A., Omezzine, A., and Bouslama, A. (2018). Prime importance of the supporting
electrolyte in the realization of molecularly imprinted polymers. International
Conference on Multidisciplinary Sciences, 1: 5888.
25. Belbruno, J. J. (2019). Molecularly imprinted polymers. Chemical
Reviews, 119(1): 94-119.
26. Rahman,
S., Bozal-Palabiyik, B., Unal, D. N., Erkmen, C., Siddiq, M., Shah, A., and Uslu, B. (2022).
Molecularly imprinted polymers (MIPs) combined with nanomaterials as
electrochemical sensing applications for environmental pollutants. Trends
in Environmental Analytical Chemistry, 36(8): e00176.
27. Yarman,
A., and Scheller, F. W. (2020). How reliable is the electrochemical readout of
MIP sensors? Sensors (Switzerland), 20(9): 2677.
28. Suryanarayanan,
V., Wu, C. T., and Ho, K. C. (2010). Molecularly imprinted electrochemical
sensors. Electroanalysis, 22(16): 1795-1811.
29. Cui, B., Liu, P., Liu, X., Liu, S., and
Zhang, Z. (2020). Molecularly imprinted polymers for electrochemical
detection and analysis: progress and perspectives. Journal of Materials
Research and Technology, 9(6): 12568-12584.
30. Włoch, M., and Datta, J. (2019). Synthesis and polymerisation techniques of molecularly imprinted
polymers. Comprehensive Analytical Chemistry, 86: 17-40.
31. Abdollah,
N. A., Ahmad, A., and Omar, T. F. T. (2020). Synthesis and characterization of
molecular imprinted polymer for the determination of carbonate ion. Biointerface Research in Applied Chemistry, 11(3):
10620-10627.
32. Biyana, M., and Nyokong, T.
(2022). Synergistic recognition and electrochemical sensing of 17 β
-Estradiol using ordered molecularly imprinted polymer-graphene oxide-silver
nanoparticles composite films. Journal of Electroanalytical Chemistry,
922.
33. Khosropour, H., Saboohi, M.,
Keramat, M., Rezaei, B., and Ensafi, A. A. (2023).
Electrochemical molecularly imprinted polymer sensor for ultrasensitive
indoxacarb detection by tin disulfide quantum dots/carbon nitride/multiwalled
carbon nanotubes as a nanocomposite. Sensors and Actuators B: Chemical,
385(3): 133652.
34. Korol,
D., Kisiel, A., Cieplak, M., Michalska, A., Sharma,
P. S., and Maksymiuk, K. (2023). Synthesis of
conducting molecularly imprinted polymer nanoparticles for estriol chemosensing. Sensors and Actuators B: Chemical,
382(2): 133476.
35. Murdaya, N., Triadenda, A. L.,
Rahayu, D., and Hasanah, A. N. (2022). A review: Using multiple templates for
molecular imprinted polymer: Is it good? polymers, 14(20): 1-22.
36. Ellwanger,
A., Berggren, C., Bayoudh, S., Crecenzi,
C., Karlsson, L., Owens, P. K., Ensing, K., Cormack, P., Sherrington, D., and
Sellergren, B. (2001). Evaluation of methods aimed at complete removal of
template from molecularly imprinted polymers. Analyst, 126(6): 784-792.
37. Motia, S.,
Bouchikhi, B., Llobet, E., and El Bari, N. (2020). Synthesis and characterization of a
highly sensitive and selective electrochemical sensor based on molecularly
imprinted polymer with gold nanoparticles modified screen-printed electrode
for glycerol determination in wastewater. Talanta,
216(3): 120953.
38. Nabilah
Muhamad, F., Mohamed Zuki, H., Ariffin, M., and
Ahmad, A. (2023). Molecularly imprinted polymers for domoic acid detection in
selected shellfish tissue. Malaysian Journal of Analytical Sciences,
27(2): 353-367.
39. Duan,
D., Si, X., Ding, Y., Li, L., Ma, G., Zhang, L., and Jian, B. (2019). A novel
molecularly imprinted electrochemical sensor based on double sensitization by
MOF/ CNTs and Prussian blue for detection of 17 β-estradiol. Bioelectrochemistry,
129: 211-217.
40. Supchocksoonthorn,
P., Alvior Sinoy, M. C., de Luna, M. D. G., and Paoprasert, P. (2021). Facile fabrication of
17β-estradiol electrochemical sensor using polyaniline/carbon dot-coated
glassy carbon electrode with synergistically enhanced electrochemical
stability. Talanta, 235:
122782.
41. Salamon, M. N., Mustafa, M. K., and Raja, S.
M. N. (2023). The effect of gold and carbon screen-printed electrode
(SPE) for biosensing application by electrochemical method. Enhanced
Knowledge in Sciences and Technology, 3(2): 255-262.
42. Glosz, K., Stolarczyk, A., and Jarosz, T. (2021). Electropolymerised polypyrroles
as active layers for molecularly imprinted sensors: Fabrication and
applications. Materials, 14(6): 1369.
43. Shafaat,
A., and Faridbod, F. (2022). Overoxidized polypyrrole/ gold nanoparticles composite modified
screen-printed voltammetric sensor for quantitative
analysis of methadone in biological fluids. Analytical and Bioanalytical
Electrochemistry, 14(3): 319-330.
44. Sravanthi, M., and Manjunatha, K. G. (2020). Synthesis and characterization of
conducting polypyrrole with various dopants. Materials
Today: Proceedings, 46: 5964-5968.
45. Pineda,
E. G., Azpeitia, L. A., Presa, M. J. R., Bolzán, A.
E., and Gervasi, C. A. (2023). Benchmarking electrodes modified with bi-doped polypyrrole for sensing applications. Electrochimica Acta, 444: 142011.
46. Terán-Alcocer, Á., Bravo-Plascencia, F.,
Cevallos-Morillo, C., and Palma-Cando, A. (2021). Electrochemical sensors based on
conducting polymers for the aqueous detection of biologically relevant
molecules. Nanomaterials, 11: 1-62.
47. Dechtrirat, D., Sookcharoenpinyo,
B., Prajongtat, P., Sriprachuabwong,
C., Sanguankiat, A., Tuantranont,
A., and Hannongbua, S. (2018). An electrochemical
MIP sensor for selective detection of salbutamol based on a graphene/PEDOT:PSS
modified screen printed carbon electrode. RSC Advances, 8(1) : 206-212.
48. Valentino,
M., Imbriano, A., Tricase, A., Della Pelle, F.,
Compagnone, D., Macchia, E., Torsi, L., Bollella,
P., and Ditaranto, N. (2023). Electropolymerized molecularly imprinted polypyrrole film for dimethoate sensing: investigation on
template removal after the imprinting process. Analytical Methods,
15(10): 1250-1253.
49. Ratautaite, V., Boguzaite, R., Brazys, E., Ramanaviciene, A., Ciplys, E., Juozapaitis, M., Slibinskas, R., Bechelany, M. and
Ramanavicius, A. (2022). Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2
spike glycoprotein. Electrochimica Acta,
403: 139581.
50. Mazzotta,
E., Di Giulio, T., and Malitesta, C. (2022).
Electrochemical sensing of macromolecules based on molecularly imprinted
polymers: challenges, successful strategies, and opportunities. Analytical
and Bioanalytical Chemistry, 414(18): 5165-5200).
51. Lah,
N. F. C., Ahmad, A. L., Low, S. C., and Zaulkiflee,
N. D. (2021). Isotherm and electrochemical properties of atrazine sensing
using PVC/MIP: Effect of porogenic solvent
concentration ratio. Membranes, 11(9): 657.
52. Karimi-Maleh,
H., Yola, M. L., Atar, N., Orooji, Y., Karimi, F.,
Senthil Kumar, P., Rouhi, J., and Baghayeri, M.
(2021). A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor
based on core-shell Co3O4@MOF-74 nanocomposite. Journal
of Colloid and Interface Science, 592(2):174-185.
53. Bolat,
G., Yaman, Y. T., and Abaci, S. (2019). Molecularly imprinted electrochemical
impedance sensor for sensitive dibutyl phthalate (DBP) determination. Sensors
and Actuators, B: Chemical, 299(3): 127000.
54. Regasa, M. B.,
Soreta, T. R., Femi, O. E., Ramamurthy, P. C., and Subbiahraj,
S. (2020). Novel multifunctional molecular recognition elements based
on molecularly imprinted poly (aniline-co-itaconic acid) composite thin film
for melamine electrochemical detection. Sensing and Bio-Sensing Research, 27(12):
100318.
55. Pirzada,
M., and Altintas, Z. (2021). Template Removal in Molecular Imprinting:
Principles, Strategies, and Challenges. Molecular Imprinting for Nanosensors and Other Sensing Applications. Elsevier
Inc.
56. Wu,
Y., Li, G., Tian, Y., Feng, J., Xiao, J., Liu, J., Liu, X., and He, Q. (2021).
Electropolymerization of molecularly imprinted polypyrrole film on multiwalled carbon nanotube surface
for highly selective and stable determination of carcinogenic amaranth. Journal
of Electroanalytical Chemistry, 895: 115494.
57. Marques,
G. L., Rocha, L. R., Prete, M. C., Gorla, F. A., Moscardi
dos Santos, D., Segatelli, M. G., and Teixeira
Tarley, C. R. (2021). Development of electrochemical platform based on
molecularly imprinted poly(methacrylic acid) grafted on iniferter-modified
carbon nanotubes for 17β-estradiol determination in water samples. Electroanalysis,
33(3): 568-578.