Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1201

 

Research Article

 

 A simple CO2 enrichment incubator for investigating physiological responses of harmful algae to ocean acidification

 

Yee Qi Teo1, Kieng Soon Hii3, Chui Pin Leaw3, Po Teen Lim3, and Seng Chee Poh1,2*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2 Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia

 

*Corresponding author: poh@umt.edu.my

 

Received: 11 June 2024; Revised: 21 December 2024; Accepted: 30 December 2024; Published: 27 March 2025

 

Abstract

A CO2 manipulation incubation system using off-the-shelf components was developed to study the effects of ocean acidification (OA) on marine microalgae. The system successfully monitored CO2 concentrations in real time at the desired levels. The incubation experiment was based on the IPCC’s CMIP6 worst-case scenario (SSP5-8.5), with elevated CO2 concentrations of up to 1000 ppm. Under these conditions, exposure to 1000 ppm CO2 significantly increased growth rate, cell diameter, and biovolume of harmful microalgae, Alexandrium tamiyavanichii. These effects were more pronounced, highlighting the potential for ocean acidification to exacerbate harmful algal blooms. The study also emphasized the importance of accounting for light attenuation in the incubation setup, revealing a 20% loss in light within culture bottles due to uneven light distribution. Correcting light intensity variations caused by the materials of the culture vessels was essential for unbiased growth assessments.

 

Keywords: Ocean acidification, CO­2 enrichment, experimental setup, harmful algae, physiological studies


 


References

1.        Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1: 169-192.

2.        IPCC (2021). Climate Change 2021: The Physical Science Basis. In V. Masson-Delmotte, P. Zhai., A. Pirani, S. L. Connors, C. Péan, S. Berger, B. Zhou (Eds.), Climate Change 2021: The Physical Basis. Cambridge University Press. In Press.

3.        Riebesell, U., Aberle-malzahn, N., Achterberg, E. P., Algueró-muñiz, M., Alvarez-fernandez, S., Arístegui, J., and Taucher, J. (2018). Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nature Climate Change, 8: 1082-1086.

4.        Eberlein, T., Van De Waal, D. B., Brandenburg, K. M., John, U., Voss, M., Achterberg, E. P., and Rost, B. (2016). Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species. Marine Ecology Progress Series, 543: 127-140.

5.        Wang, H., Niu, X., Feng, X., Gonçalves, R. J., and Guan, W. (2019). Effects of ocean acidification and phosphate limitation on physiology and toxicity of the dinoflagellate Karenia mikimotoi. Harmful Algae, 87(April): 101621.

6.        Ou, G., Wang, H., Si, R., and Guan, W. (2017). The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity. Harmful Algae, 68, 118–127.

7.        Waal, D. B. Van De, John, U., Ziveri, P., Reichart, G., and Hoins, M. (2013). Ocean acidification reduces growth and calcification in a marine dinoflagellate, 8(6): 65987.

8.        Hallegraeff, G. M., Aligizaki, K., Amzil, Z., Andersen, P., Anderson, D. M., Arevalo, F., Zingone, A. (2021). Global HAB status report. a scientific summary for policy makers. Elsevier Journal Harmful Algae, 102.

9.        Uddin, S., Bebhehani, M., Al-Musallam, L., Kumar, V. V., and Sajid, S. (2020). Po uptake in microalgae at different seawater pH: An experimental study simulating ocean acidification. Marine Pollution Bulletin, 151: 110844.

10.     Flores-Moya, A., Rouco, M. nica, García-Sánchez, M. J. S., García-Balboa, C., González, R., Costas, E., and López-Rodas, V. (2012). Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification. Ecology and Evolution, 2(6): 1251-1259.

11.     Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J. P. (2011). Guide to best practices for ocean acidification research and data reporting. Office for Official Publications of the European Communities.

12.     Tatters, A. O., Flewelling, L. J., Fu, F., Granholm, A. A., and Hutchins, D. A. (2013). High CO2 promotes the production of paralytic shellfish poisoning toxins by Alexandrium catenella from Southern California waters. Harmful Algae, 30: 37-43.

13.     Lian, Z., Li, F., He, X., Chen, J., & Yu, R.-C. (2022). Rising CO2 will increase toxicity of marine dinoflagellate Alexandrium minutum. Journal of Hazardous Materials, 431: 128627.

14.     Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V., and Raven, J. A. (2010). Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research, 32(1): 119-137.

15.     Lee, D. J. J., Kek, K. T., Wong, W. W., Mohd Nadzir, M. S., Yan, J., Zhan, L., and Poh, S. (2022). Design and optimization of wireless in‐situ sensor coupled with gas–water equilibrators for continuous pCO2 measurement in aquatic environments. Limnology and Oceanography: Methods, 20(8): 500-513.

16.     Dickson, A. G., Sabine, C. L., and Christian, J. R. (2007). Guide to best practices for ocean CO2 measurements. PICES Special Publication 3: 331784.

17.     Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., and Pierrot, D. (2006). Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry, 100(1–2): 80-94.

18.     Lim, P.T., Leaw, C.P., Usup, G., Kobiyama, A., Koike, K., and Ogata, T. (2006). Effects of light and temperature on growth, nitrate uptake, and toxin production of two tropical dinoflagellates: Alexandrium tamiyavanichii and Alexandrium minutum (dinophyceae). Journal of Phycology, 42(4), 786-799.

19.     Kokinos, J. P., and Anderson, D. M. (1995). Morphological development of resting cysts in cultures of the marine dinoflagellate Lingulodinium polyedrum (=L. Machaerophorum). Palynology, 19(1): 143-166.

20.     Guillard, R. R. L. (1973). Division rates. In J. R. Stein (Ed.), Handbook of phycological methods: Culture methods and growth measurements (pp. 289–311). London: Cambridge University Press.

21.     Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2): 403-424.

22.     Metya, A., Datye, A., Chakraborty, S., Tiwari, Y. K., Sarma, D., Bora, A., and Gogoi, N. (2021). Diurnal and seasonal variability of CO2 and CH4 concentration in a semi-urban environment of western India. Scientific Reports, 11(1): 82321.

23.     Honkanen, M., Daniel Müller, J., Seppälä, J., Rehder, G., Kielosto, S., Ylöstalo, P., and Laakso, L. (2018). Diurnal cycle of the CO2 system in the coastal region of the Baltic Sea. Ocean Sciences, 17(6): 1657-1675.

24.     Shi, D., Xu, Y., and Morel, F. M. M. (2009). Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences, 6(7):

25.     Errera, R. M., Yvon-Lewis, S., Kessler, J. D., and Campbell, L. (2014). Reponses of the dinoflagellate Karenia brevis to climate change: PCO2 and sea surface temperatures. Harmful Algae, 37: 110-116.

26.     Hattenrath-Lehmann, T. K., Smith, J. L., Wallace, R. B., Merlo, L. R., Koch, F., Mittelsdorf, H., … Gobler, C. J. (2015). The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense. Limnology and Oceanography, 60(1): 198-214.

27.     Beardall, J., & Raven, J. A. (2004). The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 43(1): 26-40.

28.     Falkowski, P. G., and Raven, J. A. (1997). Aquatic photosynthesis. Blackwell Science.

29.     Badger, M. R., Andrews, T. J., Whitney, S. M., Ludwig, M., Yellowlees, D. C., Leggat, W., & Price, G. D. (1998). The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechan-isms in algae. Canadian Journal of Botany, 76(6), 1052–1071.

30.     Wang, X., Feng, X., Zhuang, Y., Lu, J., Wang, Y., Gonçalves, R. J., and Guan, W. (2019). Effects of ocean acidification and solar ultraviolet radiation on physiology and toxicity of dinoflagellate Karenia mikimotoi. Harmful Algae, 81(7): 1-9.