Malays. J. Anal. Sci. Volume 29 Number 2 (2025): 1201
Research Article
A simple CO2 enrichment incubator
for investigating physiological responses of harmful algae to ocean
acidification
Yee
Qi Teo1, Kieng Soon Hii3, Chui Pin Leaw3, Po
Teen Lim3, and Seng Chee Poh1,2*
1Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
2 Institute of Oceanography and Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
3Bachok Marine Research Station, Institute of
Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan,
Malaysia
*Corresponding
author: poh@umt.edu.my
Received: 11 June 2024;
Revised: 21 December 2024; Accepted: 30 December 2024; Published: 27 March 2025
Abstract
A CO2 manipulation incubation system using off-the-shelf
components was developed to study the effects of ocean acidification (OA) on
marine microalgae. The system successfully monitored CO2
concentrations in real time at the desired levels. The incubation experiment
was based on the IPCC’s CMIP6 worst-case scenario (SSP5-8.5), with elevated CO2
concentrations of up to 1000 ppm. Under these conditions, exposure to 1000 ppm
CO2 significantly increased growth rate, cell diameter, and
biovolume of harmful microalgae, Alexandrium tamiyavanichii.
These effects were more pronounced, highlighting the potential for ocean
acidification to exacerbate harmful algal blooms. The study also emphasized the
importance of accounting for light attenuation in the incubation setup,
revealing a 20% loss in light within culture bottles due to uneven light
distribution. Correcting light intensity variations caused by the materials of
the culture vessels was essential for unbiased growth assessments.
Keywords: Ocean
acidification, CO2
enrichment, experimental setup, harmful algae, physiological studies
References
1.
Doney,
S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean
acidification: The other CO2 problem. Annual Review of Marine Science, 1:
169-192.
2.
IPCC
(2021). Climate Change 2021: The Physical Science Basis. In V. Masson-Delmotte,
P. Zhai., A. Pirani, S. L. Connors, C. Péan, S.
Berger, B. Zhou (Eds.), Climate Change 2021: The Physical Basis. Cambridge
University Press. In Press.
3.
Riebesell, U., Aberle-malzahn, N., Achterberg, E. P.,
Algueró-muñiz, M., Alvarez-fernandez, S., Arístegui, J., and Taucher, J.
(2018). Toxic algal
bloom induced by ocean acidification disrupts the pelagic food web. Nature
Climate Change, 8: 1082-1086.
4.
Eberlein,
T., Van De Waal, D. B., Brandenburg, K. M., John, U., Voss, M., Achterberg, E.
P., and Rost, B. (2016). Interactive effects of ocean acidification and
nitrogen limitation on two bloom-forming dinoflagellate species. Marine
Ecology Progress Series, 543: 127-140.
5.
Wang,
H., Niu, X., Feng, X., Gonçalves, R. J., and Guan, W. (2019). Effects of ocean
acidification and phosphate limitation on physiology and toxicity of the
dinoflagellate Karenia mikimotoi.
Harmful Algae, 87(April): 101621.
6.
Ou, G., Wang, H., Si, R., and Guan, W. (2017). The dinoflagellate Akashiwo sanguinea will benefit from future
climate change: The interactive effects of ocean acidification, warming and
high irradiance on photophysiology and hemolytic
activity. Harmful Algae, 68, 118–127.
7.
Waal,
D. B. Van De, John, U., Ziveri, P., Reichart, G., and
Hoins, M. (2013). Ocean acidification reduces growth and calcification in a
marine dinoflagellate, 8(6): 65987.
8.
Hallegraeff, G. M., Aligizaki,
K., Amzil, Z., Andersen, P., Anderson, D. M., Arevalo, F., Zingone, A. (2021).
Global HAB status report. a scientific summary for policy makers. Elsevier
Journal Harmful Algae, 102.
9.
Uddin,
S., Bebhehani, M., Al-Musallam, L., Kumar, V. V., and
Sajid, S. (2020). Po uptake in microalgae at different seawater pH: An
experimental study simulating ocean acidification. Marine
Pollution Bulletin, 151: 110844.
10. Flores-Moya, A., Rouco, M. nica, García-Sánchez, M. J. S., García-Balboa, C.,
González, R., Costas, E., and López-Rodas, V. (2012). Effects of adaptation,
chance, and history on the evolution of the toxic dinoflagellate Alexandrium
minutum under selection of increased temperature and acidification. Ecology
and Evolution, 2(6): 1251-1259.
11. Riebesell, U., Fabry, V. J., Hansson, L., and
Gattuso, J. P. (2011). Guide to best practices for ocean acidification
research and data reporting. Office for Official Publications of the
European Communities.
12. Tatters, A. O., Flewelling, L. J.,
Fu, F., Granholm, A. A., and Hutchins, D. A. (2013). High CO2
promotes the production of paralytic shellfish poisoning toxins by Alexandrium
catenella from Southern California waters. Harmful
Algae, 30: 37-43.
13. Lian, Z., Li, F., He, X., Chen, J.,
& Yu, R.-C. (2022). Rising CO2 will
increase toxicity of marine dinoflagellate Alexandrium minutum. Journal
of Hazardous Materials, 431: 128627.
14. Finkel, Z. V., Beardall, J., Flynn,
K. J., Quigg, A., Rees, T. A. V., and Raven, J. A. (2010). Phytoplankton in a
changing world: cell size and elemental stoichiometry. Journal of Plankton
Research, 32(1): 119-137.
15. Lee, D. J. J., Kek, K. T., Wong, W.
W., Mohd Nadzir, M. S., Yan, J., Zhan, L., and Poh,
S. (2022). Design and optimization of wireless in‐situ sensor coupled
with gas–water equilibrators for continuous pCO2 measurement in
aquatic environments. Limnology and Oceanography: Methods, 20(8): 500-513.
16. Dickson, A. G., Sabine, C. L., and
Christian, J. R. (2007). Guide to best practices for ocean CO2
measurements. PICES Special Publication 3: 331784.
17. Millero, F. J., Graham, T. B., Huang, F.,
Bustos-Serrano, H., and Pierrot, D. (2006). Dissociation constants
of carbonic acid in seawater as a function of salinity and temperature. Marine
Chemistry, 100(1–2): 80-94.
18. Lim, P.T., Leaw,
C.P., Usup, G., Kobiyama,
A., Koike, K., and Ogata, T. (2006). Effects of light and temperature on
growth, nitrate uptake, and toxin production of two tropical dinoflagellates: Alexandrium
tamiyavanichii and Alexandrium minutum (dinophyceae). Journal of Phycology, 42(4),
786-799.
19. Kokinos, J. P., and Anderson, D. M.
(1995). Morphological development of resting cysts in cultures of the marine
dinoflagellate Lingulodinium polyedrum
(=L. Machaerophorum). Palynology, 19(1):
143-166.
20. Guillard, R. R. L. (1973). Division
rates. In J. R. Stein (Ed.), Handbook of phycological methods: Culture
methods and growth measurements (pp. 289–311). London: Cambridge University
Press.
21. Hillebrand, H., Dürselen,
C.-D., Kirschtel, D., Pollingher,
U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic
microalgae. Journal of Phycology, 35(2): 403-424.
22. Metya, A., Datye, A., Chakraborty, S.,
Tiwari, Y. K., Sarma, D., Bora, A., and Gogoi, N. (2021). Diurnal and seasonal
variability of CO2 and CH4 concentration in a semi-urban
environment of western India. Scientific Reports, 11(1): 82321.
23. Honkanen, M.,
Daniel Müller, J., Seppälä, J., Rehder, G., Kielosto, S., Ylöstalo, P., and Laakso,
L. (2018). Diurnal
cycle of the CO2 system in the coastal region of the Baltic Sea. Ocean
Sciences, 17(6): 1657-1675.
24. Shi, D., Xu, Y., and Morel, F. M. M.
(2009). Effects of the pH/pCO2 control method on medium chemistry
and phytoplankton growth. Biogeosciences,
6(7):
25. Errera, R. M., Yvon-Lewis, S.,
Kessler, J. D., and Campbell, L. (2014). Reponses of the dinoflagellate Karenia brevis to climate change: PCO2
and sea surface temperatures. Harmful Algae, 37: 110-116.
26. Hattenrath-Lehmann,
T. K., Smith, J. L., Wallace, R. B., Merlo, L. R., Koch, F., Mittelsdorf, H., …
Gobler, C. J. (2015). The effects of
elevated CO2 on the growth and toxicity of field populations and
cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense. Limnology and Oceanography, 60(1):
198-214.
27. Beardall, J., & Raven, J. A.
(2004). The potential effects of global climate change on microalgal
photosynthesis, growth and ecology. Phycologia,
43(1): 26-40.
28. Falkowski, P. G., and Raven, J. A.
(1997). Aquatic photosynthesis. Blackwell Science.
29. Badger, M. R., Andrews, T. J.,
Whitney, S. M., Ludwig, M., Yellowlees, D. C.,
Leggat, W., & Price, G. D. (1998). The diversity and coevolution of
Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating
mechan-isms in algae. Canadian Journal of Botany,
76(6), 1052–1071.
30. Wang, X., Feng,
X., Zhuang, Y., Lu, J., Wang, Y., Gonçalves, R. J., and Guan, W. (2019). Effects of ocean
acidification and solar ultraviolet radiation on physiology and toxicity of
dinoflagellate Karenia mikimotoi.
Harmful Algae, 81(7): 1-9.