Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 899

 

Research Article

 

Comparison studies of MnCo and MnCoCr layered double hydroxide on polymer electrolyte’s application

 

Fatin Nabihah Mukhtar, Nur Alyaa Kamal, Siti Nurul ‘Afini Mohd Johari, Nur Alia Maisarah Saiful Bhari, and Nazrizawati Ahmad Tajuddin*

 

School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 UiTM Shah Alam, Selangor, Malaysia

 

*Corresponding author: nazriza@uitm.edu.my

 

Received: 1 August 2023; Revised: 7 December 2024; Accepted: 8 January 2025; Published: 20 February 2025

 

Abstract

Polymer electrolytes are electrolytic materials which can be found in batteries, fuel cells and other applications. In this study, Mn3.0Co1.0 and Mn3.0Co1.0Cr1.0 layered double hydroxide (LDH) will be used as a filler in polymer electrolyte’s application. The addition of a filler into polymer electrolytes can extensively be applied in commercial Li-ion batteries. LDH are lamellar compounds and have been prepared via alkali-free co-precipitation method. Synthesis of LDH using alkali could cause a major problem in the battery reactor such as corrosion and subsequently will affect the environment. Thus, alkali-free route is chosen to overcome the above-mentioned problems. The samples were characterized using TGA, PXRD, FTIR and FESEM to determine their thermal stability, crystallinity, chemical bonding and morphology. The samples were then used as a filler in polymer electrolyte films. Polyethylene oxide (PEO) was used as the host polymer and LDH samples as the filler. There were two systems conducted which are PEO and PEO with addition of fillers. The characterization was carried out on electrical conductivity by using EIS and as expected, the usage of the calcined Mn3.0Co1.0 LDH gave excellent performance compared to all other samples with 1.1276 x 10-8 S/m.

 

Keywords: alkali-free method, filler, polymer electrolyte, layered double hydroxide, EIS

 


References

1.        Bocharova, V., and Sokolov, A. P. (2020). Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules, 53(11): 4141-4157.

2.        Sharma, S., Pathak, D., Kumar, R., Sharma, V., Arora, N., Kaur, S., and Sharma, V. (2021). Nanocomposite polymer electrolytes for energy devices. In Nano Tools and Devices for Enhanced Renewable Energy (pp. 27-40). Elsevier.

3.        Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., and Wang, G. (2019). Polymer electrolytes for lithium-based batteries: advances and prospects. Chemistry, 5(9): 2326-2352.

4.        Chua, S., Fang, R., Sun, Z., Wu, M., Gu, Z., Wang, Y., ... and Wang, D. W. (2018). Hybrid solid polymer electrolytes with two‐dimensional inorganic nanofillers. Chemistry–A European Journal, 24(69): 18180-18203.

5.        Meng, N., Zhu, X., and Lian, F. (2022). Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 60: 14-36.

6.        Qin, J., Shi, H., Lv, Q., He, M., Xu, Y., Chen, M., ... and Yu, J. (2023). Enhanced adsorption effect of defect ordering Mg/Al on layered double hydroxides nanosheets with highly efficient removal of Congo red. Materials & Design, 232: 112084.

7.        Sadavar, S. V., Padalkar, N. S., Shinde, R. B., Kochuveedu, S. T., Patil, U. M., Patil, A. S., ... and Gunjakar, J. L. (2022). Mesoporous nanohybrids of 2–D Cobalt–Chromium layered double hydroxide and polyoxovanadate anions for high performance hybrid asymmetric supercapacitors. Journal of Power Sources, 524: 231065.

8.        Tajuddin, N. A., Sokeri, E. F. B., Kamal, N. A., and Dib, M. (2023). Fluoride removal in drinking water using layered double hydroxide materials: preparation, characterization and the current perspective on IR4.0 technologies. Journal of Environmental Chemical Engineering, 11(3): 110305.

9.        Mohd Agus, R. A., Deraman, S. K., and A Tajuddin, N. (2021). Synthesis and characterization of two-dimensional (2D) nanosheet zinc aluminum layered double hydroxide (Zn/Al LDH) via an alkali-free route. Science Letters, 15(1): 82-89.

10.     Lu, Y., Du, Y., and Li, H. (2020). Template-sacrificing synthesis of Ni-Co layered double hydroxides polyhedron as advanced anode for lithium ions battery. Frontiers in Chemistry, 8: 581653.

11.     Shaari, N., and Kamarudin, S. K. (2019). Recent advances in additive‐enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. International Journal of Energy Research43(7): 2756-2794.

12.     Li, J., Zhong, L., Li, J. X., Wu, H. F., Shao, W. W., Wang, P. Q., ... and Jing, M. X. (2023). Insights into the effects of different inorganic fillers on the electrochemical performances of polymer solid electrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 671: 131704.

13.     Ye, F., Liao, K., Ran, R., and Shao, Z. (2020). Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review. Energy & Fuels, 34(8): 9189-9207.

14.     Anuradha, K., and Arunkumar, A. (2023). Structural, conductivity and dielectric studies of pure and KCL doped polymer electrolyte films. Materials Today: Proceedings, 92: 1385-1388.

15.     Machrouhi, A., Khnifira, M., Boumya, W., Sadiq, M., Abdennouri, M., Elhalil, A., ... and Barka, N. (2023). Experimental and density functional theory studies of methyl orange adsorption on Ni-Al/LDH intercalated sodium dodecyl sulfate. Chemical Physics Impact, 6: 100214.

16.     Chawla, M., Dubey, R., Singh, G., Sengupta, S. K., and Siril, P. F. (2017). Controlling the morphology of layered double hydroxides of Mn and Co and their exceptional catalytic activities. Thermochimica Acta, 654: 130-139.

17.     Modrogan, C., Cǎprǎrescu, S., Dǎncilǎ, A. M., Orbuleț, O. D., Vasile, E., and Purcar, V. (2020). Mixed oxide layered double hydroxide materials: Synthesis, characterization and efficient application for Mn2+ removal from synthetic wastewater. Materials, 13(18): 4089.

18.     Cano, L. A., Barrera, D., Villarroel-Rocha, J., and Sapag, K. (2023). Influence of the synthesis method of layered double hydroxides on the textural properties and nitrate removal. Catalysis Today, 422: 114222.

19.     Ibrahim, E. H., Tajuddin, N. A., and Hamzah, N. (2019). Synthesis and characterization of alkali free Mg-Al layered double hydroxide for transesterification of waste cooking oil to biodiesel: Effect of Mg-Al ratio. International Journal Engineering Technology7: 154.

20.     Zulkifli, M., Pungot, N. H., Tajuddin, N. A., Aluwi, M. F. F. M., Jumali, N. S., and Shaameri, Z. (2022). A short review on the influence of the preparation method on the physicochemical properties of Mg/Al hydrotalcite for glucose isomerization. Malaysian Journal Analytical Sciences, 26: 191-201.

21.     Xu, W., Mertens, M., Kenis, T., Derveaux, E., Adriaensens, P., and Meynen, V. (2023). Can high temperature calcined Mg–Al layered double hydroxides (LDHs) fully rehydrate at room temperature in vapor or liquid condition?. Materials Chemistry and Physics, 295: 127113.

22.     Naderi, L., and Shahrokhian, S. (2023). Metal-organic framework-assisted Co3O4/CuO@ CoMnP with core-shell nanostructured architecture on Cu fibers for fabrication of flexible wire-typed enzyme-free micro-sensors. Chemical Engineering Journal, 456: 141088.

23.     Abdelrahman, A. A., Bendary, S. H., and Mahmoud, S. A. (2023). Synthesis and electrochemical properties of NiAl LDH@ RGO hierarchical nanocomposite as a potential counter electrode in dye sensitized solar cells. Diamond and Related Materials, 134: 109738.

24.     Hsiao, Y. C., Liao, C. H., Hsu, C. S., Yougbaré, S., Lin, L. Y., and Wu, Y. F. (2023). Novel synthesis of manganese cobalt layered double hydroxide and sulfur-doped nickel cobalt layered double hydroxide composite as efficient active material of battery supercapacitor hybrids. Journal of Energy Storage, 57: 106171.

25.     Kong, W., Li, J., Gong, J., Yu, Q., Chen, G., Chen, J., ... and Wang, W. (2023). Three-dimensional network structured MnCo2S4/NiCo2S4 electrode materials assembled with two-dimensional nanosheets as basic building units for asymmetric supercapacitor applications. Journal of Alloys and Compounds, 940: 168480.

26.     Zhang, Y., Liu, S., Chen, Z., Zhang, Y., Zeng, T., Wan, Q., and Yang, N. (2023). Trimetallic layered double hydroxides with a hierarchical heterostructure for high-performance supercapcitorsJournal of Energy Storage, 61: 106700.