Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1415

 

Research Article

 

Synthesis and characterisation of silyl-capped amino tolane of 4-((4-((trimethylsilyl)ethynyl)phenyl)ethynyl)aniline and its computational investigation towards sensing and non-linear optical properties as potential ammonia sensor

 

Chiong Hwee Hii1, Wan M. Khairul1*, Mas Mohammed1, and Norazlan Mohmad Misnan2

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, 40170 Shah Alam, Malaysia

 

*Corresponding author: wmkhairul@umt.edu.my

 

Received: 18 November 2024; Revised: 12 January 2025; Accepted: 18 January 2025; Published: 10 February 2025

 

Abstract

The synthesis, characterisation and computational analysis of silyl-capped amino tolane 4-((4-((trimethylsilyl)ethynyl)phenyl)ethynyl)aniline (TEPEA) are presented in this work. Greener synthetic approach of Sonogashira cross-coupling reaction was used to successfully synthesis TEPEA by incorporating water in the reaction. In turn, NMR, FTIR, UV-Vis spectroscopy and UV-fluorescence were used to characterise the targeted product. In order to optimize the structure of the TEPEA and examine its electrical and optical properties, computational investigation were conducted using density functional theory DFT using the B3LYP functional and 6-311+G(d,p) basis set. Increased consistency in the outcome has raised the degree of confidence in the simulation and computation of energy and sensing theory. Other than that, TEPEA interacts with target molecules with a high sensitivity for electronic alterations because of its narrow HOMO-LUMO gap of 3.7087 eV. According to the findings, the HOMO-LUMO gap of TEPEA was reduced to 3.6014 eV due to the presence of ammonia molecules. A stable molecular structure was indicated by the global chemical reactivity descriptors, which showed a chemical potential (μ) of -3.6111 eV, hardness (η) of 1.8544 eV, and softness (S) of 0.2696 e-1V-1. Furthermore, TEPEA's improved nonlinear optical properties are highlighted by its considerable dipole moment of 3.3920 Debye, linear polarizability of 50.4634 × 10⁻²⁴ esu, and first-order hyperpolarizability of 229.6688 × 10⁻³⁰ esu. These results imply that TEPEA has a great deal of promise acting as a chemosensor.

 

Keywords: chemosensor, aryl-alkyne derivative, Sonogashira reaction, density functional theory


 

References

1.        Wang, B., and Anslyn, E. V. (2011). Chemosensors: Principles, Strategies, and Applications. John Wiley and Sons.

2.        Czarnik, A. W. (1993). Fluorescent chemosensors for ion and molecule recognition. American Chemical Society, 538: 2-8.

3.        Kny, E., Reiner-Rozman, C., Dostalek, J., Hassel, A. W., Nöhammer, C., Pfaffeneder-Mantai, F., Szunerits, S., Weber, V., Knoll, W., and Kleber, C. (2022). State of the art of chemosensors in a biomedical context. Chemosensors, 10(6): 199.

4.        Yahya, M., Yaman, M., and Seferoğlu, Z. (2022). Optical chemosensors: Principles, chemistry, strategies, and applications. fluorescence imaging - recent advances and applications.Intechopen Publisher.

5.        Lim, J., Fernández, C. A., Lee, S. W., and Hatzell, M. C. (2021). Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Letters, 6(10): 3676-3685.

6.        Lakshmi, P. R., Mohan, B., Kang, P., Nanjan, P., and Shanmugaraju, S. (2023). Recent advances in fluorescence chemosensors for ammonia sensing in the solution and vapor phases. Chemical Communications, 59(13): 1728-1743.

7.        Anjana, N. S., Amarnath, A., and Harindranathan Nair, M. V. (2018). Toxic hazards of ammonia release and population vulnerability assessment using geographical information system. Journal of Environmental Management, 210: 201-209.

8.        Danasa, A. S., Soesilo, T. E. B., Martono, D. N., Sodri, A., Hadi, A. S., and Chandrasa, G. T. (2019). The ammonia release hazard and risk assessment: A case study of urea fertilizer industry in Indonesia. IOP Conference Series: Earth and Environmental Science, 399(1):  012087.

9.        Fedoruk, M. J., Bronstein, R., and Kerger, B. D. (2005). Ammonia exposure and hazard assessment for selected household cleaning product uses. Journal of Exposure Analysis and Environmental Epidemiology, 15(6): 534-544.

10.     Wun, A. W., Snee, P. T., Chan, Y., Bawendi, M. G., and Nocera, D. G. (2005). Non-linear transduction strategies for chemo/biosensing on small length scales. Journal of Materials Chemistry, 15(27-28): 2697-2706.

11.     Ávila, F. J. (2024). A review of non-linear optical imaging techniques for cancer detection. Optics, 5(4): 416-433.

12.     Bishop, D. M. (1994). Aspects of non-linear-optical calculations. Advances in Quantum Chemistry, 25: 1-45.

13.     Truong, C. K. P., Nguyen, T. D. D., and Shin, I. S. (2019). Electrochemiluminescent chemosensors for clinical applications: A review. Biochip Journal, 13(3): 203-216.

14.     Udhayakumari, D. (2024). Mechanistic innovations in fluorescent chemosensors for detecting toxic ions: PET, ICT, ESIPT, FRET and AIE approaches. Journal of Fluorescence, 2024: 1-30.

15.     Götzinger, A. C., and Müller, T. J. J. (2016). Rapid access to unsymmetrical tolanes and alkynones by sequentially palladium-catalyzed one-pot processes. Organic & Biomolecular Chemistry, 14(14): 3498-3500.

16.     Peng, L., Xu, F., Shinohara, K., Nishida, T., Wakamatsu, K., Orita, A., and Otera, J. (2015). Remarkable electron-withdrawing effect of the Ph2P(O)-ethynyl group: Ph2P(O)-ethynyl-substituted aryl halides and copper acetylides for tailor-made Sonogashira couplings. Organic Chemistry Frontiers, 2(3): 248-252.

17.     Khairul, W. M., Daud, A. I., Hanifaah, N. A. M., Arshad, S., Razak, I. A., Zuki, H. M., and Erben, M. F. (2017). Structural study of a novel acetylide-thiourea derivative and its evaluation as a detector of benzene. Journal of Molecular Structure, 1139: 353-361.

18.     Sonogashira, K. (2002). Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. Journal of Organometallic Chemistry, 653(1-2): 46-49.

19.     Liang, B., Huang, M., You, Z., Xiong, Z., Lu, K., Fathi, R., Chen, J. and Yang, Z.  (2005). Pd-catalyzed copper-free carbonylative Sonogashira reaction of aryl iodides with alkynes for the synthesis of alkynyl ketones and flavones by using water as a solvent. Journal of Organic Chemistry, 70(15): 6097-6100.

20.     Beller, M., and Wu, X. F. (2013). Transition metal catalyzed carbonylation reactions: Carbonylative activation of C-X bonds. Chemical Science Edge Article Springer.

21.     Liang, B., Dai, M., Chen, J., and Yang, Z. (2005). Copper-free Sonogashira coupling reaction with PdCl2 in water under aerobic conditions. Journal of Organic Chemistry, 70(1): 391-393.

22.     Martek, B. A., Gazvoda, M., Urankar, D., and Košmrlj, J. (2020). Designing homogeneous copper-free sonogashira reaction through a prism of Pd-Pd transmetalation. Organic Letters, 22(13): 4938-4943.

23.     Mohajer, F., Heravi, M. M., Zadsirjan, V., and Poormohammad, N. (2021). Copper-free Sonogashira cross-coupling reactions: an overview. RSC Advances, 11(12): 6885-6925.

24.     Khan, M. S., Al-Mandhary, M. R., Al-Suti, M. K., Hisahm, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N., and Teat, S. J. (2002). Structural characterisation of a series of acetylide-functionalised oligopyridines and the synthesis, characterisation and optical spectroscopy of platinum di-ynes and poly-ynes containing oligopyridyl linker groups in the backbone. Journal of the Chemical Society, Dalton Transactions, (7): 1358-1368.

25.     Al-Sharji, H., Ilmi, R., Al Rasbi, N. K., Haque, A., Raithby, P. R., and Khan, M. S. (2024). Synthesis, structures, thermal stability and optical spectroscopy of Pt(II) di‑yne and poly‑yne incorporating 2,2′-bipyridine-4,4′-diyl spacer. Journal of Organometallic Chemistry, 1019:123309.

26.     Khan, M. S., Ahrens, B., Male, L., and Raithby, P. R. (2004). 5,5′-bis(trimethylsilylethynyl)-2,2′-bipyridine. Acta Crystallographica Section E: Structure Reports Online, 60(5): 915-916.

27.     Merrick, J. P., Moran, D., and Radom, L. (2007). An evaluation of harmonic vibrational frequency scale factors. Journal of Physical Chemistry A, 111(45): 11683-11700.

28.     Yang, H., Wang, T., Oehme, D., Petridis, L., Hong, M., and Kubicki, J. D. (2018). Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study. Cellulose, 25(1): 23-36.

29.     Gauss, J. (1995). Accurate calculation of NMR chemical shifts. Berichte der Bunsengesellschaft für physikalische Chemie, 99(8): 1001-1008.

30.     Suresh, C. H., Remya, G. S., and Anjalikrishna, P. K. (2022). Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(5): e1601.

31.     Politzer, P., Laurence, P. R., and Jayasuriya, K. (1985). Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environmental Health Perspectives, 61, pp. 191-202.

32.     Toba, M., Nakashima, T., and Kawai, T. (2009). Phenyleneethynylene- and thienylene ethynylene-based π-conjugated polymers with imidazolium units in the main chain. Macromolecules, 42(21): 8068-8075.

33.     Li, D., Li, H., Liu, M., Chen, J., Ding, J., Huang, X., and Wu, H. (2013). Synthesis, optical and electrochemical properties of novel D-π-A type conjugated polymers based on benzo[c][1,2,5]selenadiazole unit via alkyne module. Polymer, 54(22): 6158-6164.

34.     Langhals, H. (2022). Determination of the overlap between UV absorption spectrum and fluorescence spectrum.

35.     Abengózar, A., Sucunza, D., García-García, P., and Vaquero, J. J. (2019). Remarkable effect of alkynyl substituents on the fluorescence properties of a BN-phenanthrene. Beilstein Journal of Organic Chemistry, 15: 1257-1261.

36.     Gao, Y., Li, M., Tian, X., Xu, K., Gong, S., Zhang, Y., Yang, Y., Wang, Z., and Wang, S.  (2022). Colorimetric and turn-on fluorescent chemosensor with large stokes shift for sensitively probing cyanide anion in real samples and living systems. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 271: 120882.

37.     Bhalla, P., and Malhotra, R. (2024). Optical chemosensor as a sensitive and selective tool for the detection of thiocyanate ions via Cu2+ induced sensor and its practical application. Journal of Fluorescence, 2024: 1-13.

38.     Patil, N. S., Dhake, R. B., Ahamed, M. I., and Fegade, U. (2020). A mini review on organic chemosensors for cation recognition (2013-19). Journal of Fluorescence, 30(6): 1295-1330,

39.     Islam, S., Mansha, A., and Asim, S. (2023). Effects of metal ions and substituents on HOMO–LUMO gap evident from UV–visible and fluorescence spectra of anthracene derivatives. Journal of Fluorescence, 2023:1-18.

40.     Ziarani, G. M., Rezakhani, M., Feizi-Dehnayebi, M., and Nikolova, S. (2024). Fumed-Si-Pr-Ald-Barb as a fluorescent chemosensor for the Hg2+ detection and Cr2O72- ions: A combined experimental and computational perspective. Molecules, 29(20): 4825.

41.     Meenakshi, R. (2017). Spectral investigations, DFT based global reactivity descriptors, Inhibition efficiency and analysis of 5-chloro-2-nitroanisole as π-spacer with donor-acceptor variations effect for DSSCs performance. Journal of Molecular Structure, 1127: 694-707.

42.     Mohammed, M., Khairul, W. M., Rahamathullah, R., Razak, F. I. A., Sapari, S., Arshad, S., and Razak, I. A. (2022). Optical and electrical properties of new NLO active ethynylated chalcone as solution-processed OLEDs material: Experimental and theoretical approaches. Optical Materials, 131: 112582.

43.     Xavier, S., Periandy, S., and Ramalingam, S. (2015). NBO, conformational, NLO, HOMO–LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137: 306-320.

44.     Muhammad, S. (2022). Symmetric vs. asymmetric: Which one is the better molecular configuration for achieving robust NLO response? Journal of Molecular Graphics and Modelling, 114: 108209.

45.     Mandal, U., Beg, H., and Misra, A. (2023). Effect of charge transfer on the first hyper-polarizability of N,N-dimethylaniline and julolidine: a DFT based comparative study. Journal of Molecular Modeling, 29(11): 1-15.

46.     Shuvaeva, O. V. (2007). Calculation of the anisotropy of molecular polarizability of liquid n-alkanes and n-alcohols. Russian Journal of Physical Chemistry A, 81(5): 798-801.

47.     Santos, F. A., Cardoso, C. E. R., Rodrigues, J. J., De Boni, L., and Abegão, L. M. G. (2023). Nonlinear optical materials: Predicting the first-order molecular hyperpolarizability of organic molecular structures. Photonics, 10(5): 545.

48.     Bowen, W., Vollmer, F., and Gordon, R. (Eds.). (2022). Single molecule sensing beyond fluorescence. Springer.

49.     Tadros, T. (2013). Interaction energy. Encyclopedia of Colloid and Interface Science, pp. 633-634.