Malays. J. Anal. Sci. Volume 29 Number 1
(2025): 1415
Research Article
Synthesis and characterisation of
silyl-capped amino tolane of
4-((4-((trimethylsilyl)ethynyl)phenyl)ethynyl)aniline and its computational
investigation towards sensing and non-linear optical properties as potential
ammonia sensor
Chiong Hwee Hii1, Wan M.
Khairul1*, Mas Mohammed1, and Norazlan Mohmad Misnan2
1Faculty of Science and Marine
Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
2Herbal Medicine Research Centre,
Institute for Medical Research, National Institutes of Health, Setia Alam,
40170 Shah Alam, Malaysia
*Corresponding author: wmkhairul@umt.edu.my
Received: 18 November 2024;
Revised: 12 January 2025; Accepted: 18 January 2025; Published: 10 February
2025
Abstract
The synthesis, characterisation and
computational analysis of silyl-capped amino tolane 4-((4-((trimethylsilyl)ethynyl)phenyl)ethynyl)aniline
(TEPEA) are presented in this work. Greener
synthetic approach of Sonogashira cross-coupling reaction was used to
successfully synthesis TEPEA by incorporating water in the reaction. In
turn, NMR, FTIR, UV-Vis spectroscopy and UV-fluorescence were used to characterise
the targeted product. In order to optimize the structure of the TEPEA and examine its electrical and
optical properties, computational investigation were conducted using density
functional theory DFT using the B3LYP functional and 6-311+G(d,p) basis set. Increased
consistency in the outcome has raised the degree of confidence in the
simulation and computation of energy and sensing theory. Other than that, TEPEA interacts with target molecules
with a high sensitivity for electronic alterations because of its narrow
HOMO-LUMO gap of 3.7087 eV. According to the findings, the HOMO-LUMO gap
of TEPEA was reduced to 3.6014 eV
due to the presence of ammonia molecules. A stable molecular structure was
indicated by the global chemical reactivity descriptors, which showed a
chemical potential (μ) of -3.6111 eV, hardness (η) of 1.8544 eV,
and softness (S) of 0.2696 e-1V-1.
Furthermore, TEPEA's improved
nonlinear optical properties are highlighted by its considerable dipole moment
of 3.3920 Debye, linear polarizability of 50.4634 × 10⁻²⁴ esu, and
first-order hyperpolarizability of 229.6688 × 10⁻³⁰ esu. These
results imply that TEPEA has a great
deal of promise acting as a chemosensor.
Keywords: chemosensor, aryl-alkyne derivative,
Sonogashira reaction, density functional theory
References
1.
Wang, B., and Anslyn, E. V. (2011).
Chemosensors: Principles, Strategies, and Applications. John Wiley and Sons.
2.
Czarnik, A. W. (1993). Fluorescent chemosensors
for ion and molecule recognition. American Chemical Society, 538: 2-8.
3.
Kny,
E., Reiner-Rozman, C., Dostalek, J., Hassel, A. W., Nöhammer, C.,
Pfaffeneder-Mantai, F., Szunerits, S., Weber, V., Knoll, W., and Kleber, C.
(2022). State of the art of chemosensors in a biomedical context. Chemosensors, 10(6):
199.
4.
Yahya, M., Yaman, M., and
Seferoğlu, Z. (2022). Optical chemosensors: Principles, chemistry,
strategies, and applications. fluorescence imaging - recent advances and
applications.Intechopen Publisher.
5.
Lim, J., Fernández, C. A., Lee, S.
W., and Hatzell, M. C. (2021). Ammonia and nitric acid demands for fertilizer
use in 2050. ACS Energy Letters, 6(10): 3676-3685.
6.
Lakshmi, P. R., Mohan, B., Kang, P.,
Nanjan, P., and Shanmugaraju, S. (2023). Recent advances in fluorescence
chemosensors for ammonia sensing in the solution and vapor phases. Chemical
Communications, 59(13): 1728-1743.
7.
Anjana, N. S., Amarnath, A., and
Harindranathan Nair, M. V. (2018). Toxic hazards of ammonia release and
population vulnerability assessment using geographical information system. Journal
of Environmental Management, 210: 201-209.
8.
Danasa, A. S., Soesilo, T. E. B.,
Martono, D. N., Sodri, A., Hadi, A. S., and Chandrasa, G. T. (2019). The
ammonia release hazard and risk assessment: A case study of urea fertilizer
industry in Indonesia. IOP Conference Series: Earth and Environmental
Science, 399(1): 012087.
9.
Fedoruk, M. J., Bronstein, R., and
Kerger, B. D. (2005). Ammonia exposure and hazard assessment for selected
household cleaning product uses. Journal of Exposure Analysis and
Environmental Epidemiology, 15(6): 534-544.
10.
Wun, A. W., Snee, P. T., Chan, Y.,
Bawendi, M. G., and Nocera, D. G. (2005). Non-linear transduction strategies
for chemo/biosensing on small length scales. Journal of Materials Chemistry,
15(27-28): 2697-2706.
11.
Ávila, F. J. (2024). A review of
non-linear optical imaging techniques for cancer detection. Optics, 5(4):
416-433.
12.
Bishop, D. M. (1994). Aspects of
non-linear-optical calculations. Advances in Quantum Chemistry, 25: 1-45.
13.
Truong, C. K. P., Nguyen, T. D. D., and
Shin, I. S. (2019). Electrochemiluminescent chemosensors for clinical
applications: A review. Biochip Journal, 13(3): 203-216.
14.
Udhayakumari, D. (2024). Mechanistic innovations
in fluorescent chemosensors for detecting toxic ions: PET, ICT, ESIPT, FRET and
AIE approaches. Journal of Fluorescence, 2024: 1-30.
15.
Götzinger, A. C., and Müller, T. J.
J. (2016). Rapid access to unsymmetrical tolanes and alkynones by sequentially
palladium-catalyzed one-pot processes. Organic & Biomolecular Chemistry,
14(14): 3498-3500.
16.
Peng,
L., Xu, F., Shinohara, K., Nishida, T., Wakamatsu, K., Orita, A., and Otera, J.
(2015). Remarkable electron-withdrawing effect of the Ph2P(O)-ethynyl
group: Ph2P(O)-ethynyl-substituted aryl halides and copper
acetylides for tailor-made Sonogashira couplings. Organic Chemistry
Frontiers, 2(3): 248-252.
17.
Khairul,
W. M., Daud, A. I., Hanifaah, N. A. M., Arshad, S., Razak, I. A., Zuki, H. M., and
Erben, M. F. (2017). Structural study of a novel acetylide-thiourea derivative
and its evaluation as a detector of benzene. Journal of Molecular
Structure, 1139: 353-361.
18.
Sonogashira, K. (2002). Development
of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon
halides. Journal of Organometallic Chemistry, 653(1-2): 46-49.
19.
Liang, B., Huang, M., You, Z., Xiong, Z., Lu,
K., Fathi, R., Chen, J. and Yang, Z. (2005).
Pd-catalyzed copper-free carbonylative Sonogashira reaction of aryl iodides
with alkynes for the synthesis of alkynyl ketones and flavones by using water
as a solvent. Journal of Organic Chemistry, 70(15): 6097-6100.
20.
Beller, M., and Wu, X. F. (2013).
Transition metal catalyzed carbonylation reactions: Carbonylative activation of
C-X bonds. Chemical
Science Edge Article Springer.
21.
Liang, B., Dai, M., Chen, J., and
Yang, Z. (2005). Copper-free Sonogashira coupling reaction with PdCl2
in water under aerobic conditions. Journal of Organic Chemistry, 70(1): 391-393.
22.
Martek, B. A., Gazvoda, M., Urankar,
D., and Košmrlj, J. (2020). Designing homogeneous copper-free sonogashira
reaction through a prism of Pd-Pd transmetalation. Organic Letters,
22(13): 4938-4943.
23.
Mohajer, F., Heravi, M. M.,
Zadsirjan, V., and Poormohammad, N. (2021). Copper-free Sonogashira
cross-coupling reactions: an overview. RSC Advances, 11(12): 6885-6925.
24.
Khan, M. S., Al-Mandhary, M. R., Al-Suti, M. K.,
Hisahm, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia,
E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N., and Teat, S. J. (2002). Structural characterisation of a series of
acetylide-functionalised oligopyridines and the synthesis, characterisation and
optical spectroscopy of platinum di-ynes and poly-ynes containing oligopyridyl
linker groups in the backbone. Journal of the Chemical Society, Dalton
Transactions, (7): 1358-1368.
25.
Al-Sharji, H., Ilmi, R., Al Rasbi, N.
K., Haque, A., Raithby, P. R., and Khan, M. S. (2024). Synthesis, structures,
thermal stability and optical spectroscopy of Pt(II) di‑yne and
poly‑yne incorporating 2,2′-bipyridine-4,4′-diyl spacer. Journal
of Organometallic Chemistry, 1019:123309.
26.
Khan, M. S., Ahrens, B., Male, L., and
Raithby, P. R. (2004).
5,5′-bis(trimethylsilylethynyl)-2,2′-bipyridine. Acta
Crystallographica Section E: Structure Reports Online, 60(5): 915-916.
27.
Merrick, J. P., Moran, D., and Radom,
L. (2007). An evaluation of harmonic vibrational frequency scale factors. Journal
of Physical Chemistry A, 111(45): 11683-11700.
28.
Yang, H., Wang, T., Oehme, D.,
Petridis, L., Hong, M., and Kubicki, J. D. (2018). Structural factors affecting
13C NMR chemical shifts of cellulose: a computational study. Cellulose,
25(1): 23-36.
29.
Gauss, J. (1995). Accurate calculation
of NMR chemical shifts. Berichte der Bunsengesellschaft für physikalische
Chemie, 99(8): 1001-1008.
30.
Suresh, C. H., Remya, G. S., and
Anjalikrishna, P. K. (2022). Molecular electrostatic potential analysis: A
powerful tool to interpret and predict chemical reactivity. Wiley
Interdisciplinary Reviews: Computational Molecular Science, 12(5): e1601.
31.
Politzer, P., Laurence, P. R., and
Jayasuriya, K. (1985). Molecular electrostatic potentials: an effective tool
for the elucidation of biochemical phenomena. Environmental Health
Perspectives, 61, pp. 191-202.
32.
Toba, M., Nakashima, T., and Kawai,
T. (2009). Phenyleneethynylene- and thienylene ethynylene-based
π-conjugated polymers with imidazolium units in the main chain. Macromolecules,
42(21): 8068-8075.
33.
Li, D., Li, H., Liu, M., Chen, J., Ding, J.,
Huang, X., and Wu, H. (2013). Synthesis, optical and
electrochemical properties of novel D-π-A type conjugated polymers based
on benzo[c][1,2,5]selenadiazole unit via alkyne module. Polymer, 54(22):
6158-6164.
34.
Langhals, H. (2022). Determination of
the overlap between UV absorption spectrum and fluorescence spectrum.
35.
Abengózar, A., Sucunza, D.,
García-García, P., and Vaquero, J. J. (2019). Remarkable effect of alkynyl
substituents on the fluorescence properties of a BN-phenanthrene. Beilstein
Journal of Organic Chemistry, 15: 1257-1261.
36.
Gao, Y., Li, M., Tian, X., Xu, K., Gong, S.,
Zhang, Y., Yang, Y., Wang, Z., and Wang, S. (2022).
Colorimetric and turn-on fluorescent chemosensor with large stokes shift for
sensitively probing cyanide anion in real samples and living systems. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 271: 120882.
37.
Bhalla, P., and Malhotra, R. (2024).
Optical chemosensor as a sensitive and selective tool for the detection of
thiocyanate ions via Cu2+ induced sensor and its practical
application. Journal of Fluorescence, 2024: 1-13.
38.
Patil, N. S., Dhake, R. B., Ahamed,
M. I., and Fegade, U. (2020). A mini review on organic chemosensors for cation
recognition (2013-19). Journal of Fluorescence, 30(6): 1295-1330,
39.
Islam, S., Mansha, A., and Asim, S.
(2023). Effects of metal ions and substituents on HOMO–LUMO gap evident from UV–visible
and fluorescence spectra of anthracene derivatives. Journal of Fluorescence,
2023:1-18.
40.
Ziarani, G. M., Rezakhani, M.,
Feizi-Dehnayebi, M., and Nikolova, S. (2024). Fumed-Si-Pr-Ald-Barb as a
fluorescent chemosensor for the Hg2+ detection and Cr2O72-
ions: A combined experimental and computational perspective. Molecules,
29(20): 4825.
41.
Meenakshi, R. (2017). Spectral
investigations, DFT based global reactivity descriptors, Inhibition efficiency
and analysis of 5-chloro-2-nitroanisole as π-spacer with donor-acceptor
variations effect for DSSCs performance. Journal of Molecular Structure,
1127: 694-707.
42.
Mohammed, M., Khairul, W. M., Rahamathullah, R.,
Razak, F. I. A., Sapari, S., Arshad, S., and Razak, I. A. (2022). Optical and electrical properties of new NLO active
ethynylated chalcone as solution-processed OLEDs material: Experimental and
theoretical approaches. Optical Materials, 131: 112582.
43.
Xavier, S., Periandy, S., and
Ramalingam, S. (2015). NBO, conformational, NLO, HOMO–LUMO, NMR and electronic
spectral study on 1-phenyl-1-propanol by quantum computational methods. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 137: 306-320.
44.
Muhammad, S. (2022). Symmetric vs.
asymmetric: Which one is the better molecular configuration for achieving
robust NLO response? Journal of Molecular Graphics and Modelling, 114: 108209.
45.
Mandal, U., Beg, H., and Misra, A.
(2023). Effect of charge transfer on the first hyper-polarizability of
N,N-dimethylaniline and julolidine: a DFT based comparative study. Journal
of Molecular Modeling, 29(11): 1-15.
46.
Shuvaeva, O. V. (2007). Calculation
of the anisotropy of molecular polarizability of liquid n-alkanes and
n-alcohols. Russian Journal of Physical Chemistry A, 81(5): 798-801.
47.
Santos, F. A., Cardoso, C. E. R.,
Rodrigues, J. J., De Boni, L., and Abegão, L. M. G. (2023). Nonlinear optical
materials: Predicting the first-order molecular hyperpolarizability of organic
molecular structures. Photonics, 10(5): 545.
48.
Bowen, W., Vollmer, F., and Gordon,
R. (Eds.). (2022). Single molecule sensing beyond fluorescence. Springer.
49. Tadros,
T. (2013). Interaction energy. Encyclopedia of Colloid and Interface Science,
pp. 633-634.