Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1347
Research Article
Synthesis and characterisation of
cationic iridium(III) complex with phenanthroline-based
ancillary ligand
Nur Khaliesa Zulkarnaen, Noorshida
Mohd Ali*, Suzaliza Mustafar, Azlan Kamari and Nurul
Husna As Saedah Bain
Faculty
of Sciences and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim,
Perak, Malaysia
*Corresponding author: noorshida@fsmt.upsi.edu.my
Received: 19 September 2024;
Revised: 27 November 2024; Accepted: 2 December 2024; Published: 23 February
2025
The unique photophysical properties of cyclometalated
iridium(III) complexes have sparked great interest in their synthesis as
dopants for organic light-emitting diodes (OLEDs). Herein, a cationic
iridium(III) complex, [Ir(dfppy)2(neocuproine)]+[PF6]-
(dfppy = 2-(2,4-difluorophenyl)pyridine and neocuproine =
2,9-dimethyl-1,10-phenan throline) was synthesised and characterised. The
essential structural conformation of the newly synthesised complex was
accomplished by utilising a combination of FTIR, 1H, 13C,
19F, 31P-NMR spectroscopies and Elemental Analyser (CHN).
FTIR spectrum revealed absorption bands for C=N and C=C stretching at 1406–1514
cm⁻¹ and 1558–1599 cm⁻¹, respectively. The ¹H-NMR spectrum
displayed signals for phenylpyridine and phenanthroline protons between δ
5.64 and 8.51 ppm, along with a distinct methyl singlet at δ 2.22 ppm. The
13C-NMR spectrum showed 36 carbon atoms, corresponding to the number
of carbon atoms present in the complex. In the ¹⁹F-NMR
spectrum, the PF6⁻ counterion displayed signals at
δ -72.5 and -74.1 ppm, while the fluorine atoms on the phenyl ring of
dfppy gave signals at δ -106.2 and -108.5 ppm. At δ -134.4 to -154.5ppm in the 31P-NMR
spectrum, the PF6⁻ counterion exhibited a
significant septet peak. Elemental
analysis confirmed the complex's purity and composition of carbon, hydrogen,
and nitrogen, aligning with its molecular formula. The UV-Vis spectrum showed a
weaker band from 320 nm into the visible region, attributed to metal-to-ligand
charge-transfer (MLCT) transitions. Steady-state emission spectroscopy
demonstrated the iridium(III) complex emitted green light in dichloromethane solution at
room temperature (lem = 483 nm) due to
radiative deactivation of ³MLCT.
Keywords: Iridium(III) complex,
2-(2,4-difluorophenyl)pyridine, ancillary ligand, phenanthroline, 2,9-dimethyl-1,10-phenanthroline
References
1.
Lan, Y., Liu, D., Li, J., Mei, Y., and Tian, H. (2022). Blue heteroleptic iridium (iii)
complexes for OLEDs: simultaneous optimization of color purity and
efficiency. Journal of Materials Chemistry C, 10(47):
17965-17973.
2.
Luo, Y., Tang, L., Chen, Z., Xu, Z., Hu, J., and Tang, D. (2023).
Theoretical investigation of the influence of heterocycles on the radiative and
non-radiative decay processes of iridium (iii) complexes. New Journal
of Chemistry, 47(17): 8131-8138.
3.
Corrêa Santos, D., and Vieira Marques, M. D. F. (2022). Blue light polymeric emitters for
the development of OLED devices. Journal of Materials Science:
Materials in Electronics, 33(16): 12529-12565.
4.
Ma, Z., Jing, C., Hang, D., Fan, H., Duan, L., Fang, S., and Yan, L.
(2021). Synthesis, characterization, and photoelectric properties of iridium
(III) complexes containing an N hetero-dibenzofuran CN ligand. RSC Advances, 11(18):
11004-11010.
5.
Tao, P., Lü, X., Zhou, G., and Wong, W. Y. (2022). Asymmetric
tris-heteroleptic cyclometalated phosphorescent iridium (III) complexes: An
emerging class of metallophosphors. Accounts of Materials Research, 3(8):
830-842.
6.
Zhang, K. Y., Liu, S., Zhao, Q., Li, F., and Huang, W. (2015).
Phosphorescent iridium (III) complexes for bioimaging. Luminescent and
Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular
Reagents, 131-180.
7.
Ho, C. L., and Wong, W. Y. (2013). Small-molecular blue phosphorescent
dyes for organic light-emitting devices. New Journal of Chemistry, 37(6):
1665-1683.
8.
Abbas, S., Din, I. U. D., Raheel, A., and Tameez ud Din, A. (2020).
Cyclometalated Iridium (III) complexes: Recent advances in phosphorescence
bioimaging and sensing applications. Applied Organometallic Chemistry, 34(3):
e5413.
9.
Tao, P., and Wong, W. Y. (2023). Luminescent transition-metal complexes
and their applications in electroluminescence. In Comprehensive
Inorganic Chemistry III, Third Edition (pp. 2-79). Elsevier.
10.
Kamecka, A., Grochowska, O., and Kapturkiewicz, A. (2019). Luminescent Ir
(III) complexes with deprotonated 1-methyl-2-(2′-pyridyl) pyridinium
ligand and 1, 10-phenanthroline derivatives. Inorganic Chemistry
Communications, 108: 107547.
11.
Moon, D. B., and Choe, Y. S. (2013). Green and reddish-orange
light-emitting electrochemical cells using cationic iridium (III)
phenanthroline complexes. Molecular Crystals and Liquid Crystals, 584(1):
60-68.
12.
Sajoto, T., Djurovich, P. I., Tamayo, A., Yousufuddin, M., Bau, R.,
Thompson, M. E., ... and Forrest, S. R. (2005). Blue and near-UV
phosphorescence from iridium complexes with cyclometalated pyrazolyl or
N-heterocyclic carbene ligands. Inorganic Chemistry, 44(22):
7992-8003.
13.
El-Habeeb, A. A., and Refat, M. S. (2024). Synthesis, spectroscopic
characterizations and biological studies on gold (III), ruthenium (III) and
iridium (III) complexes of trimethoprim antibiotic drug. Bulletin of
the Chemical Society of Ethiopia, 38(3): 701-714.
14.
Smith, B. (2015). How to properly compare spectra, and determining alkane
chain length from infrared spectra. Spectroscopy, 30(9): 40-46
15.
Mackie, C. J., Candian, A., Huang, X., Maltseva, E., Petrignani, A.,
Oomens, J., ... and Tielens, A. G. (2018). The anharmonic quartic force field
infrared spectra of hydrogenated and methylated PAHs. Physical
Chemistry Chemical Physics, 20(2): 1189-1197.
16.
Chebli, A., Djafri, A., Boukabcha, N., Megrouss, Y., Drissi, M.,
Belhachemi, M. H. M., ... and Djafri, A. (2024). Synthesis, crystal structure,
DFT calculations, NBO, Fukui function, NCI-RDG, Hirshfeld surface analysis, NLO
properties and molecular docking analysis on
(E)-N'-(3-methoxybenzylidene)-2-(quinolin-8-yloxy) acetohydrazide. Journal
of Molecular Structure, 1310: 138287.
17.
Bain, N. H. A. S., Ali, N. M., Juahir, Y., Mustafar, S., Kassim, M.,
Muzakir, S. K., ... and Daran, J. C. (2023). Synthesis, crystal structure,
spectroscopic characterisation, and photophysical properties of iridium (III)
complex with pyridine-formimidamide ancillary ligand. Malaysian Journal
of Analytical Sciences, 27(2): 280-291.
18.
Hendi, Z., Kozina, D. O., Porsev, V. V., Kisel, K. S., Shakirova, J. R., and
Tunik, S. P. (2023). Investigation of the N^C ligand effects on emission
characteristics in a series of bis-metalated [Ir(N^C)2(N^N)]+ Complexes. Mole-
cules, 28(6): 2740.
19.
Tong, B., Wang, H., Chen, M., Zhou, S., Hu, Y., Zhang, Q., ... and Zhou,
H. (2018). High efficiency green OLEDs based on homoleptic iridium complexes
with steric phenylpyridazine ligands. Dalton Transactions, 47(35):
12243-12252.
20.
González, I., Natali, M., Cabrera, A. R., Loeb, B.,
Maze, J., and Dreyse, P. (2018). Substituent influence in phenanthroline-derived ancillary
ligands on the excited state nature of novel cationic Ir(III) complexes. New
Journal of Chemistry, 42(9): 6644-6654.
21.
Lo, K. K. W., Chung, C. K., and Zhu, N. (2006). Nucleic acid intercalators
and avidin probes derived from luminescent cyclometalated iridium
(III)–dipyridoquinoxaline and–dipyridophenazine complexes. Chemistry–A
European Journal, 12(5): 1500-1512.
22.
Cortés-Arriagada, D., Sanhueza, L., González, I.,
Dreyse, P., and Toro-Labbé, A. (2016). About the electronic and
photophysical properties of iridium (III)-pyrazino [2, 3-f][1,
10]-phenanthroline based complexes for use in electroluminescent devices. Physical
Chemistry Chemical Physics, 18(2): 726-734.
23.
Wilde, A. P., King, K. A., and Watts, R. J. (1991). Resolution and
analysis of the components in dual emission of mixed-chelate/ortho-metalate
complexes of iridium (III). The Journal of Physical Chemistry, 95(2):
629-634.
24.
Schmittel, M., and Lin, H. (2007). Luminescent iridium phenanthroline
crown ether complex for the detection of silver (I) ions in aqueous
media. Inorganic Chemistry, 46(22): 9139-9145.
25.
You,
Y., and Nam, W. (2012). Photofunctional triplet excited states of
cyclometalated Ir(III) complexes: beyond electro luminescence.
Chemical
Society Reviews, 41(21):
7061-7084.
26.
Li, G. N., Dou, S. B., Zheng, T., Chen, X. Q., Yang, X. H., Wang, S., ... and
Niu, Z. G. (2018). Orange-red phosphorescent iridium (III) complexes bearing
bisphosphine ligands: synthesis, photophysical and electrochemical properties,
and DFT calculations. Organometal-lics, 37(1): 78-86.
27.
Klaimanee, E., Sangwisut, P., Saithong, S., & Leesakul, N. (2021).
Synthesis, crystal structure and Hirshfeld surface analysis of [bis
(diphenylphosphanyl) methane-κP] chloridobis [2-(pyridin-2-yl)
phenyl-κ2N, C1] iridium (III). Acta Crystallographica Section E:
Crystallographic Communications, 77(3), 217-221.