Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1347

 

Research Article

 

Synthesis and characterisation of cationic iridium(III) complex with phenanthroline-based ancillary ligand

 

Nur Khaliesa Zulkarnaen, Noorshida Mohd Ali*, Suzaliza Mustafar, Azlan Kamari and Nurul Husna As Saedah Bain

 

Faculty of Sciences and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia

 

*Corresponding author: noorshida@fsmt.upsi.edu.my

 

Received: 19 September 2024; Revised: 27 November 2024; Accepted: 2 December 2024; Published: 23 February 2025

 

Abstract

The unique photophysical properties of cyclometalated iridium(III) complexes have sparked great interest in their synthesis as dopants for organic light-emitting diodes (OLEDs). Herein, a cationic iridium(III) complex, [Ir(dfppy)2(neocuproine)]+[PF6]- (dfppy = 2-(2,4-difluorophenyl)pyridine and neocuproine = 2,9-dimethyl-1,10-phenan throline) was synthesised and characterised. The essential structural conformation of the newly synthesised complex was accomplished by utilising a combination of FTIR, 1H, 13C, 19F, 31P-NMR spectroscopies and Elemental Analyser (CHN). FTIR spectrum revealed absorption bands for C=N and C=C stretching at 1406–1514 cm⁻¹ and 1558–1599 cm⁻¹, respectively. The ¹H-NMR spectrum displayed signals for phenylpyridine and phenanthroline protons between δ 5.64 and 8.51 ppm, along with a distinct methyl singlet at δ 2.22 ppm. The 13C-NMR spectrum showed 36 carbon atoms, corresponding to the number of carbon atoms present in the complex. In the ¹⁹F-NMR spectrum, the PF6counterion displayed signals at δ -72.5 and -74.1 ppm, while the fluorine atoms on the phenyl ring of dfppy gave signals at δ -106.2 and -108.5 ppm. At δ -134.4 to -154.5ppm in the 31P-NMR spectrum, the PF6 counterion exhibited a significant septet peak. Elemental analysis confirmed the complex's purity and composition of carbon, hydrogen, and nitrogen, aligning with its molecular formula. The UV-Vis spectrum showed a weaker band from 320 nm into the visible region, attributed to metal-to-ligand charge-transfer (MLCT) transitions. Steady-state emission spectroscopy demonstrated the iridium(III) complex emitted green light in dichloromethane solution at room temperature (lem = 483 nm) due to radiative deactivation of ³MLCT.

 

Keywords: Iridium(III) complex, 2-(2,4-difluorophenyl)pyridine, ancillary ligand, phenanthroline, 2,9-dimethyl-1,10-phenanthroline

 


References

1.        Lan, Y., Liu, D., Li, J., Mei, Y., and Tian, H. (2022). Blue heteroleptic iridium (iii) complexes for OLEDs: simultaneous optimization of color purity and efficiency. Journal of Materials Chemistry C, 10(47): 17965-17973.

2.        Luo, Y., Tang, L., Chen, Z., Xu, Z., Hu, J., and Tang, D. (2023). Theoretical investigation of the influence of heterocycles on the radiative and non-radiative decay processes of iridium (iii) complexes. New Journal of Chemistry, 47(17): 8131-8138.

3.        Corrêa Santos, D., and Vieira Marques, M. D. F. (2022). Blue light polymeric emitters for the development of OLED devices. Journal of Materials Science: Materials in Electronics, 33(16): 12529-12565.

4.        Ma, Z., Jing, C., Hang, D., Fan, H., Duan, L., Fang, S., and Yan, L. (2021). Synthesis, characterization, and photoelectric properties of iridium (III) complexes containing an N hetero-dibenzofuran CN ligand. RSC Advances, 11(18): 11004-11010.

5.        Tao, P., Lü, X., Zhou, G., and Wong, W. Y. (2022). Asymmetric tris-heteroleptic cyclometalated phosphorescent iridium (III) complexes: An emerging class of metallophosphors. Accounts of Materials Research, 3(8): 830-842.

6.        Zhang, K. Y., Liu, S., Zhao, Q., Li, F., and Huang, W. (2015). Phosphorescent iridium (III) complexes for bioimaging. Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents, 131-180.

7.        Ho, C. L., and Wong, W. Y. (2013). Small-molecular blue phosphorescent dyes for organic light-emitting devices. New Journal of Chemistry, 37(6): 1665-1683.

8.        Abbas, S., Din, I. U. D., Raheel, A., and Tameez ud Din, A. (2020). Cyclometalated Iridium (III) complexes: Recent advances in phosphorescence bioimaging and sensing applications. Applied Organometallic Chemistry, 34(3): e5413.

9.        Tao, P., and Wong, W. Y. (2023). Luminescent transition-metal complexes and their applications in electroluminescence. In Comprehensive Inorganic Chemistry III, Third Edition (pp. 2-79). Elsevier.

10.     Kamecka, A., Grochowska, O., and Kapturkiewicz, A. (2019). Luminescent Ir (III) complexes with deprotonated 1-methyl-2-(2′-pyridyl) pyridinium ligand and 1, 10-phenanthroline derivatives. Inorganic Chemistry Communications, 108: 107547.

11.     Moon, D. B., and Choe, Y. S. (2013). Green and reddish-orange light-emitting electrochemical cells using cationic iridium (III) phenanthroline complexes. Molecular Crystals and Liquid Crystals, 584(1): 60-68.

12.     Sajoto, T., Djurovich, P. I., Tamayo, A., Yousufuddin, M., Bau, R., Thompson, M. E., ... and Forrest, S. R. (2005). Blue and near-UV phosphorescence from iridium complexes with cyclometalated pyrazolyl or N-heterocyclic carbene ligands. Inorganic Chemistry, 44(22): 7992-8003.

13.     El-Habeeb, A. A., and Refat, M. S. (2024). Synthesis, spectroscopic characterizations and biological studies on gold (III), ruthenium (III) and iridium (III) complexes of trimethoprim antibiotic drug. Bulletin of the Chemical Society of Ethiopia, 38(3): 701-714.

14.     Smith, B. (2015). How to properly compare spectra, and determining alkane chain length from infrared spectra. Spectroscopy, 30(9): 40-46

15.     Mackie, C. J., Candian, A., Huang, X., Maltseva, E., Petrignani, A., Oomens, J., ... and Tielens, A. G. (2018). The anharmonic quartic force field infrared spectra of hydrogenated and methylated PAHs. Physical Chemistry Chemical Physics, 20(2): 1189-1197.

16.     Chebli, A., Djafri, A., Boukabcha, N., Megrouss, Y., Drissi, M., Belhachemi, M. H. M., ... and Djafri, A. (2024). Synthesis, crystal structure, DFT calculations, NBO, Fukui function, NCI-RDG, Hirshfeld surface analysis, NLO properties and molecular docking analysis on (E)-N'-(3-methoxybenzylidene)-2-(quinolin-8-yloxy) acetohydrazide. Journal of Molecular Structure, 1310: 138287.

17.     Bain, N. H. A. S., Ali, N. M., Juahir, Y., Mustafar, S., Kassim, M., Muzakir, S. K., ... and Daran, J. C. (2023). Synthesis, crystal structure, spectroscopic characterisation, and photophysical properties of iridium (III) complex with pyridine-formimidamide ancillary ligand. Malaysian Journal of Analytical Sciences27(2): 280-291.

18.     Hendi, Z., Kozina, D. O., Porsev, V. V., Kisel, K. S., Shakirova, J. R., and Tunik, S. P. (2023). Investigation of the N^C ligand effects on emission characteristics in a series of bis-metalated [Ir(N^C)2(N^N)]+ Complexes. Mole-

cules28(6): 2740.

19.     Tong, B., Wang, H., Chen, M., Zhou, S., Hu, Y., Zhang, Q., ... and Zhou, H. (2018). High efficiency green OLEDs based on homoleptic iridium complexes with steric phenylpyridazine ligands. Dalton Transactions, 47(35): 12243-12252.

20.     González, I., Natali, M., Cabrera, A. R., Loeb, B., Maze, J., and Dreyse, P. (2018). Substituent influence in phenanthroline-derived ancillary ligands on the excited state nature of novel cationic Ir(III) complexes. New Journal of Chemistry, 42(9): 6644-6654.

21.     Lo, K. K. W., Chung, C. K., and Zhu, N. (2006). Nucleic acid intercalators and avidin probes derived from luminescent cyclometalated iridium (III)–dipyridoquinoxaline and–dipyridophenazine complexes. Chemistry–A European Journal, 12(5): 1500-1512.

22.     Cortés-Arriagada, D., Sanhueza, L., González, I., Dreyse, P., and Toro-Labbé, A. (2016). About the electronic and photophysical properties of iridium (III)-pyrazino [2, 3-f][1, 10]-phenanthroline based complexes for use in electroluminescent devices. Physical Chemistry Chemical Physics, 18(2): 726-734.

23.     Wilde, A. P., King, K. A., and Watts, R. J. (1991). Resolution and analysis of the components in dual emission of mixed-chelate/ortho-metalate complexes of iridium (III). The Journal of Physical Chemistry, 95(2): 629-634.

24.     Schmittel, M., and Lin, H. (2007). Luminescent iridium phenanthroline crown ether complex for the detection of silver (I) ions in aqueous media. Inorganic Chemistry, 46(22): 9139-9145.

25.     You, Y., and Nam, W. (2012). Photofunctional triplet excited states of cyclometalated Ir(III) complexes: beyond electro luminescence. 

Chemical Society Reviews, 41(21): 7061-7084.

26.     Li, G. N., Dou, S. B., Zheng, T., Chen, X. Q., Yang, X. H., Wang, S., ... and Niu, Z. G. (2018). Orange-red phosphorescent iridium (III) complexes bearing bisphosphine ligands: synthesis, photophysical and electrochemical properties, and DFT calculations. Organometal-lics37(1): 78-86.

27.     Klaimanee, E., Sangwisut, P., Saithong, S., & Leesakul, N. (2021). Synthesis, crystal structure and Hirshfeld surface analysis of [bis (diphenylphosphanyl) methane-κP] chloridobis [2-(pyridin-2-yl) phenyl-κ2N, C1] iridium (III). Acta Crystallographica Section E: Crystallographic Communications77(3), 217-221.