Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1327
Research
Article
A
reflectance-based sensor for rapid and sensitive detection of carrageenan in
processed food samples
Riyadh Abdulmalek Hassan1,2*, Lee Yook Heng1, Sharina Abu Hanifah1, Fawaz
Al-badaii3, Alizar Ulianas4, and
Gameel Qasim Esmail2
1Department of Chemical Sciences, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia (UKM),
43600 Bangi, Selangor, Malaysia
2Department of Chemistry, Faculty of Science, Ibb University, PO Box 70270, Ibb,
Republic of Yemen
3Department of Biology, Faculty of Applied Science,
Thamar University, Republic of Yemen
4Department of Chemistry, Faculty of Mathematics and
Natural Science, Universitas Negeri Padang, 25131, Padang, Sumatera Barat,
Indonesia
*Corresponding
author: rydh1974@yahoo.com
Received: 18 September 2024;
Revised: 14 November 2024; Accepted: 18 November 2024; Published: 23 February
2025
Abstract
Carrageenan’s, widely utilized as food
thickeners, can pose health risks at high concentrations, making precise
detection crucial for quality control. This study introduces a novel
reflectance spectrophotometer sensor for carrageenan analysis using a methylene
blue (MB)-immobilized methylcellulose/poly n-butyl acrylate (Mc/PnBA) film. By combining the hydrophilic properties of Mc
with the hydrophobicity of PnBA, we created a stable
membrane for MB immobilization at room temperature. Upon interacting with carrageenan,
the sensor changes color from blue to purple, indicating their presence and
concentration. The reflectance intensity of MB shows a linear relationship with
kappa, iota, and lambda carrageenan concentrations in the 100-1000 mg L⁻¹
range, with detection limits of 80, 67, and 60 mg L⁻¹, respectively, and
correlation coefficients (R²) of 0.992, 0.972, and 0.955. Recovery experiments
with spiked apple juice showed 96% and 106% results, underscoring the sensor's
practical applicability. Starch, alginate, and Arabic gum were used to test the
reflectance sensor, and no interference was observed from these hydrocolloids.
It provides a fast, uncomplicated, and efficient alternative to intricate
analytical procedures, effectively addressing significant problems regarding
food safety and quality control.
Keywords: food control, reflectance spectrophotometry,
polymer composite, red seaweed, carrageenan
References
1.
Sabu Mathew, S.,
Jaiswal, A. K., and Jaiswal, S. (2024). Carrageenan-based sustainable
biomaterials for intelligent food packaging: A review. Carbohydrate Polymers, 342: 122267.
2.
Necas, J., and Bartosikova, L. (2013).
Carrageenan: a review. Veterinární
medicína, 58(4): 187-205.
3.
Hassan, R. A., Heng, L. Y., and Tan, L. L. (2019).
Novel DNA biosensor for direct determination of carrageenan. Scientific Reports, 9(1): 6379.
4.
Campo, V. L., Kawano, D. F., Silva, D. B. D., and
Carvalho, I. (2009). Carrageenans: biological properties, chemical
modifications, and structural analysis – A review. Carbohydrate Polymers, 77(2): 167-180.
5.
Tobacman, J. K. (2001). Review of harmful
gastrointestinal effects of carrageenan in animal experiments. Environmental Health Perspectives, 109(10):
983-994.
6.
Borsani, B., De Santis, R., Perico, V., Penagini,
F., Pendezza, E., Dilillo, D., Bosetti, A., Zuccotti, G. V., and D’Auria, E.
(2021). The role of carrageenan in inflammatory bowel diseases and allergic
reactions: where do we stand? Nutrients, 13(10):
3402.
7.
Burges Watson, D. (2009). Public health and
carrageenan regulation: a review and analysis. In M. A. Borowitzka, A. T.
Critchley, S. Kraan, A. Peters, K. Sjøtun, and M. Notoya (Eds.), Nineteenth International Seaweed Symposium:
Proceedings of the 19th International Seaweed Symposium, held in Kobe, Japan,
26-31 March, 2007. (pp. 55-63). Springer Netherlands.
8.
Weiner, M. L. (2014). Food additive carrageenan:
Part II: A critical review of carrageenan in vivo safety studies. Critical Reviews in Toxicology, 44(3):
244-269.
9.
McKim, J. M. (2014). Food additive carrageenan:
Part I: A critical review of carrageenan in vitro studies, potential pitfalls,
and implications for human health and safety. Critical Reviews in Toxicology,
44(3): 211-243.
10.
McKim, J. M., Willoughby Sr, J. A., Blakemore, W.
R., and Weiner, M. L. (2019). Clarifying the confusion between poligeenan,
degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature,
and in vivo toxicology by the oral route. Critical
Reviews in Food Science and Nutrition,
59(19): 3054-3073.
11.
Wang, J., Zhu, K., Zhang, M., Zhou, Q., Ji, W.,
Yao, Z., and Li, D. (2024). Pharmacokinetics, tissue distribution, and subacute
toxicity of oral carrageenan in mice. International
Journal of Biological Macromolecules,
266: 130725.
12.
Li, L., Ni, R., Shao, Y., and Mao, S. (2014).
Carrageenan and its applications in drug delivery. Carbohydrate Polymers, 103: 1-11.
13.
Younes, M.,
Aggett, P., Aguilar, F., Crebelli, R., Filipič, M., Frutos, M. J.,
Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G. G., Lambré, C., Leblanc,
J.-C., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic,
I., Dusemund, B. (2018). Re-evaluation of carrageenan (E 407) and
processed Eucheuma seaweed (E 407a) as food additives. European Food Safety Authority Journal, 16(4):
e05238.
14.
Sokolova, E. V., Kravchenko, A. O., Sergeeva, N.
V., Davydova, V. N., Bogdanovich, L. N., and Yermak, I. M. (2020). Effect of carrageenans
on some lipid metabolism components in vitro. Carbohydrate Polymers, 230: 115629.
15.
Gunness, P., and Gidley, M. J. (2010). Mechanisms
underlying the cholesterol-lowering properties of soluble dietary fibre
polysaccharides. Food and Function, 1(2):
149-155.
16.
Roberts, M. A., and Quemener, B. (1999).
Measurement of carrageenans in food: challenges, progress, and trends in
analysis. Trends in Food Science and
Technology, 10(4): 169-181.
17.
Heng, L. Y., and Hall, E. A. H. (2000). Producing
“self-plasticizing” ion-selective membranes. Analytical Chemistry, 72(1): 42-51.
18.
Alva, S., Lee, Y., and Ahmad, M. (2006).
Screen-printed potassium ion sensor fabricated from photocurable and
self-plasticized acrylic film. Journal of
Physical Therapy Science, 17(2): 141-150.
19.
Ruedas-Rama, M. J., and Hall, E. A. H. (2006).
K+-selective nanospheres: maximising response range and minimising response
time. Analyst, 131(12): 1282-1291.
20.
Hassan, R. A., Heng, L. Y., and Tan, L. L. (2020).
Highly sensitive fluorescence sensor for carrageenan from a composite
methylcellulose/ polyacrylate membrane. Sensors, 20(18):
5043.
21.
Nowik-Zajac, A., Zawierucha, I., Lagiewka, J.,
Jaksender, K., Witt, K., Malina, G., and Sabadash, V. (2024). Removal of
methylene blue dye from aqueous solutions using polymer inclusion membrane
containing calix[4]pyrrole. Membranes, 14(4):
92.
22.
Forgacs, E., Cserháti, T., and Oros, G. (2004).
Removal of synthetic dyes from wastewaters: a review. Environment International, 30(7): 953-971.
23.
Davidson, G. F. (1948). 6—The acidic properties of
cotton cellulose and derived oxycelluloses. Part II. The absorption of
methylene blue. Journal of the Textile
Institute Transactions, 39(3): T65-T86.
24.
Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh,
A. H., and Walker, G. M. (2008). Effect of solution pH, ionic strength, and
temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77(1): 16-23.
25.
Hu, Y., Guo, T., Ye, X., Li, Q., Guo, M., Liu, H.,
and Wu, Z. (2013). Dye adsorption by resins: Effect of ionic strength on
hydrophobic and electrostatic interactions. Chemical
Engineering Journal, 228: 392-397.
26.
Dell'antone, P., Colonna, R., and Azzone, G. F.
(1972). The membrane structure studied with cationic dyes. European Journal of Biochemistry, 24(3): 553-565.
27.
Soedjak, H. S. (1994). Colorimetric determination
of carrageenans and other anionic hydrocolloids with methylene blue. Analytical Chemistry, 66(24):
4514-4518.
28.
Hassan, R. A., Heng, L. Y., Hanifah, S. A., and
Al-badai, F. (2024). Competitive binding of methylene blue to calf thymus dna
and carrageenan: implications for sensor development. Thamar University Journal of Natural and Applied Sciences, 9(1):
1-6.
29.
Ziółkowska, D., Kaniewska, A., Lamkiewicz,
J., and Shyichuk, A. (2017). Determination of carrageenan by means of
photometric titration with methylene blue and toluidine blue dyes. Carbohydrate Polymers, 165:
1-6.
30.
Rohart, A., Jouan-Rimbaud Bouveresse, D.,
Rutledge, D. N., and Michon, C. (2015). Spectrophotometric analysis of
polysaccharide/milk protein interactions with methylene blue using independent components
analysis. Food Hydrocolloids, 43:
769-776.
31.
Ling, Y. P., and Heng, L. Y. (2014). Reflectance
based sensor for carrageenan utilizing methylene blue embedded acrylic
microspheres. Sensors and Actuators B:
Chemical, 192: 247-252.