Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1327

 

Research Article

 

A reflectance-based sensor for rapid and sensitive detection of carrageenan in processed food samples

 

Riyadh Abdulmalek Hassan1,2*, Lee Yook Heng1, Sharina Abu Hanifah1, Fawaz Al-badaii3, Alizar Ulianas4, and Gameel Qasim Esmail2

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

2Department of Chemistry, Faculty of Science, Ibb University, PO Box 70270, Ibb, Republic of Yemen

3Department of Biology, Faculty of Applied Science, Thamar University, Republic of Yemen

4Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, 25131, Padang, Sumatera Barat, Indonesia

 

*Corresponding author: rydh1974@yahoo.com

 

Received: 18 September 2024; Revised: 14 November 2024; Accepted: 18 November 2024; Published: 23 February 2025

 

Abstract

Carrageenan’s, widely utilized as food thickeners, can pose health risks at high concentrations, making precise detection crucial for quality control. This study introduces a novel reflectance spectrophotometer sensor for carrageenan analysis using a methylene blue (MB)-immobilized methylcellulose/poly n-butyl acrylate (Mc/PnBA) film. By combining the hydrophilic properties of Mc with the hydrophobicity of PnBA, we created a stable membrane for MB immobilization at room temperature. Upon interacting with carrageenan, the sensor changes color from blue to purple, indicating their presence and concentration. The reflectance intensity of MB shows a linear relationship with kappa, iota, and lambda carrageenan concentrations in the 100-1000 mg L⁻¹ range, with detection limits of 80, 67, and 60 mg L⁻¹, respectively, and correlation coefficients (R²) of 0.992, 0.972, and 0.955. Recovery experiments with spiked apple juice showed 96% and 106% results, underscoring the sensor's practical applicability. Starch, alginate, and Arabic gum were used to test the reflectance sensor, and no interference was observed from these hydrocolloids. It provides a fast, uncomplicated, and efficient alternative to intricate analytical procedures, effectively addressing significant problems regarding food safety and quality control.

 

Keywords: food control, reflectance spectrophotometry, polymer composite, red seaweed, carrageenan

 


References

1.         Sabu Mathew, S., Jaiswal, A. K., and Jaiswal, S. (2024). Carrageenan-based sustainable biomaterials for intelligent food packaging: A review. Carbohydrate Polymers, 342: 122267.

2.        Necas, J., and Bartosikova, L. (2013). Carrageenan: a review. Veterinární medicína, 58(4): 187-205.

3.        Hassan, R. A., Heng, L. Y., and Tan, L. L. (2019). Novel DNA biosensor for direct determination of carrageenan. Scientific Reports, 9(1): 6379.

4.        Campo, V. L., Kawano, D. F., Silva, D. B. D., and Carvalho, I. (2009). Carrageenans: biological properties, chemical modifications, and structural analysis – A review. Carbohydrate Polymers, 77(2): 167-180.

5.        Tobacman, J. K. (2001). Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environmental Health Perspectives, 109(10): 983-994.

6.        Borsani, B., De Santis, R., Perico, V., Penagini, F., Pendezza, E., Dilillo, D., Bosetti, A., Zuccotti, G. V., and D’Auria, E. (2021). The role of carrageenan in inflammatory bowel diseases and allergic reactions: where do we stand? Nutrients, 13(10): 3402.

7.        Burges Watson, D. (2009). Public health and carrageenan regulation: a review and analysis. In M. A. Borowitzka, A. T. Critchley, S. Kraan, A. Peters, K. Sjøtun, and M. Notoya (Eds.), Nineteenth International Seaweed Symposium: Proceedings of the 19th International Seaweed Symposium, held in Kobe, Japan, 26-31 March, 2007. (pp. 55-63). Springer Netherlands.

8.        Weiner, M. L. (2014). Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies. Critical Reviews in Toxicology, 44(3): 244-269.

9.        McKim, J. M. (2014). Food additive carrageenan: Part I: A critical review of carrageenan in vitro studies, potential pitfalls, and implications for human health and safety. Critical Reviews in Toxicology, 44(3): 211-243.

10.     McKim, J. M., Willoughby Sr, J. A., Blakemore, W. R., and Weiner, M. L. (2019). Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Critical Reviews in Food Science and Nutrition, 59(19): 3054-3073.

11.     Wang, J., Zhu, K., Zhang, M., Zhou, Q., Ji, W., Yao, Z., and Li, D. (2024). Pharmacokinetics, tissue distribution, and subacute toxicity of oral carrageenan in mice. International Journal of Biological Macromolecules, 266: 130725.

12.     Li, L., Ni, R., Shao, Y., and Mao, S. (2014). Carrageenan and its applications in drug delivery. Carbohydrate Polymers, 103: 1-11.

13.      Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Filipič, M., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G. G., Lambré, C., Leblanc, J.-C., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Dusemund, B. (2018). Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. European Food Safety Authority Journal, 16(4): e05238.

14.     Sokolova, E. V., Kravchenko, A. O., Sergeeva, N. V., Davydova, V. N., Bogdanovich, L. N., and Yermak, I. M. (2020). Effect of carrageenans on some lipid metabolism components in vitro. Carbohydrate Polymers, 230: 115629.

15.     Gunness, P., and Gidley, M. J. (2010). Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food and Function, 1(2): 149-155.

16.     Roberts, M. A., and Quemener, B. (1999). Measurement of carrageenans in food: challenges, progress, and trends in analysis. Trends in Food Science and Technology, 10(4): 169-181.

17.     Heng, L. Y., and Hall, E. A. H. (2000). Producing “self-plasticizing” ion-selective membranes. Analytical Chemistry, 72(1): 42-51.

18.     Alva, S., Lee, Y., and Ahmad, M. (2006). Screen-printed potassium ion sensor fabricated from photocurable and self-plasticized acrylic film. Journal of Physical Therapy Science, 17(2): 141-150.

19.     Ruedas-Rama, M. J., and Hall, E. A. H. (2006). K+-selective nanospheres: maximising response range and minimising response time. Analyst, 131(12): 1282-1291.

20.     Hassan, R. A., Heng, L. Y., and Tan, L. L. (2020). Highly sensitive fluorescence sensor for carrageenan from a composite methylcellulose/ polyacrylate membrane. Sensors, 20(18): 5043.

21.     Nowik-Zajac, A., Zawierucha, I., Lagiewka, J., Jaksender, K., Witt, K., Malina, G., and Sabadash, V. (2024). Removal of methylene blue dye from aqueous solutions using polymer inclusion membrane containing calix[4]pyrrole. Membranes, 14(4): 92.

22.     Forgacs, E., Cserháti, T., and Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30(7): 953-971.

23.     Davidson, G. F. (1948). 6—The acidic properties of cotton cellulose and derived oxycelluloses. Part II. The absorption of methylene blue. Journal of the Textile Institute Transactions, 39(3): T65-T86.

24.     Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., and Walker, G. M. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77(1): 16-23.

25.     Hu, Y., Guo, T., Ye, X., Li, Q., Guo, M., Liu, H., and Wu, Z. (2013). Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions. Chemical Engineering Journal, 228: 392-397.

26.     Dell'antone, P., Colonna, R., and Azzone, G. F. (1972). The membrane structure studied with cationic dyes. European Journal of Biochemistry, 24(3): 553-565.

27.     Soedjak, H. S. (1994). Colorimetric determination of carrageenans and other anionic hydrocolloids with methylene blue. Analytical Chemistry, 66(24): 4514-4518.

28.     Hassan, R. A., Heng, L. Y., Hanifah, S. A., and Al-badai, F. (2024). Competitive binding of methylene blue to calf thymus dna and carrageenan: implications for sensor development. Thamar University Journal of Natural and Applied Sciences, 9(1): 1-6.

29.     Ziółkowska, D., Kaniewska, A., Lamkiewicz, J., and Shyichuk, A. (2017). Determination of carrageenan by means of photometric titration with methylene blue and toluidine blue dyes. Carbohydrate Polymers, 165: 1-6.

30.     Rohart, A., Jouan-Rimbaud Bouveresse, D., Rutledge, D. N., and Michon, C. (2015). Spectrophotometric analysis of polysaccharide/milk protein interactions with methylene blue using independent components analysis. Food Hydrocolloids, 43: 769-776.

31.     Ling, Y. P., and Heng, L. Y. (2014). Reflectance based sensor for carrageenan utilizing methylene blue embedded acrylic microspheres. Sensors and Actuators B: Chemical, 192: 247-252.