Malays. J. Anal. Sci.
Volume 29 Number 1 (2025): 1310
Research
Article
Effect of electrophoretic deposition kinetic behavior on
dielectric property of epoxy coatings under different n-methylethanolamine’s volumes
1Fakulti Teknologi dan Kejuruteraan Mekanikal, Universiti Teknikal Malaysia
Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
2Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti
Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka,
Malaysia
3Process Engineering Technology Section, Universiti Kuala Lumpur Malaysian
Institute of Chemical and Bioengineering Technology (UniKL MICET), 78000 Alor
Gajah, Melaka, Malaysia
4Faculty of Engineering and Technology, Multimedia University, Jalan Ayer
Keroh Lama,75450, Bukit Beruang, Melaka, Malaysia.
*Corresponding author: ktlau@utem.edu.my
Received: 12 September 2024;
Revised: 29 November 2024; Accepted: 6 December 2024; Published: 23 February
2025
Abstract
This study
investigates the influence of the electrophoretic deposition current–time
profile on the dielectric properties of diglycidyl
ether of bisphenol A (DGEBA) epoxy coatings applied via electrophoretic
deposition (EPD) under varying volumes of N-methylethanolamine
(MEA). Three cationic DGEBA suspensions were synthesised by mixing commercially
available DGEBA with different volumes of MEA (0.5, 1.0, and 1.5 ml) as the cationisation agent. The EPD processes using these suspensions
were monitored by recording the electric current versus deposition time
profiles. After curing, the deposited coatings were characterised using
electrochemical impedance spectroscopy, field-emission scanning electron
microscopy, and energy-dispersive X-ray spectroscopy analysis. The results
demonstrate that varying MEA volumes lead to distinct electric deposition
current–time profiles, subsequently affecting the coating thickness and
dielectric properties. The smooth exponential decay of the electric deposition
current–time profile observed during EPD with the 0.5 ml MEA suspension
resulted in a high coating thickness and enhanced dielectric properties.
Understanding the impact of the electric deposition current–time profile on
epoxy coatings deposited via EPD offers an initial quality screening tool to
identify poor-quality epoxy coatings with low dielectric properties
Keywords: electrophoretic
deposition, dielectric property, epoxy resin, functionalization, secondary
amine
References
1. Pourhashem,
S., Vaezi, M. R., Rashidi, A. and Bagherzadeh, M. R. (2017). Exploring corrosion
protection properties of solvent based epoxy-graphene oxide nanocomposite
coatings on mild steel. Corrosion Science,
115: 78-92.
2. Xiang, Q. and Xiao, F. (2020). Applications
of epoxy materials in pavement engineering. Construction
and Building Materials, 235: 117529.
3. Jin, F.-L., Li, X. and Park, S.-J. (2015).
Synthesis and application of epoxy resins: a review. Journal of Industrial and Engineering Chemistry, 29: 1-11.
4. Mora, A.-S., Tayouo, R., Boutevin, B.,
David, G. and Caillol, S. (2020). A perspective approach on the amine
reactivity and the hydrogen bonds effect on epoxy-amine systems. European Polymer Journal, 123: 109460.
5. Kalinina, E. and Pikalova, E. (2021).
Opportunities, challenges and prospects for electrodeposition of thin-film
functional layers in solid oxide fuel cell technology. Materials, 14 (19): 5584.
6. Pingale, A. D., Owhal, A., Belgamwar, S. U.
and Rathore, J. S. (2021). Effect of current on the characteristics of cuni-g
nanocomposite coatings developed by Dc, Pc and Prc electrodeposition. JOM, 73(12): 4299-4308.
7. Chemibond, Auto-Fix 8800-a & B: Product Information. 2024.
8. Bosso, J. F., Burrell, L. and Wismer, M.
(1974). Quaternary ammonium epoxy resin dispersion with boric acid for cationic
electro-deposition. United States US-3839252-A1974.
9. Wismer, M. and Bosso, J. F. (1983). Process
for the preparation of cationic resins, aqueous, dispersions, thereof, and
electrodeposition using the aqueous dispersions. United States
US-4419467-A1983.
10. Joshi, J. H., Kanchan, D., Joshi, M. J.,
Jethva, H. and Parikh, K. (2017). Dielectric relaxation, complex impedance and
modulus spectroscopic studies of mix phase rod like cobalt sulfide
nanoparticles. Materials Research
Bulletin, 93: 63-73.
11. Koh, R. E., Sun, C. C., Yap, Y. L., Cheang, P.
L. and You, A. H. (2021). Investigation of lithium transference number in pmma
composite polymer electrolytes using Monte Carlo (MC) simulation and recurrence
relation. Journal of Electrochemical
Science and Technology, 12(2): 217-224.
12. Mohd Halim, N. S., Mohd Saed, M. A. A., Nik
Abd Rashid, N. A. L. H., Lau, K.-T., Tau, L.-K. Y., Azlan, U. A.-A., and Nakaruk,
A. (2024). Dielectric property of epoxy
coating deposited using electrophoretic deposition suspension synthesised under
ambient and inert atmospheres. Journal of
Advanced Research in Micro and Nano Engineering, 24(1): 35-45.
13. Lau, K.-T. and Samsudin, S. (2022).
Electrophoretic deposition of hexagonal boron nitride particles from low
conductivity suspension. Journal of
Science and Technology, 30(2): 1237-1256.
14. Sarkar, P. and Nicholson, P. S. (1996).
Electrophoretic deposition (Epd): Mechanisms, kinetics, and application to
ceramics. Journal of the American Ceramic
Society, 79(8): 1987-2002.
15. Hajizadeh, A., Aliofkhazraei, M., Hasanpoor,
M. and Mohammadi, E. (2018). Comparison of electrophoretic deposition kinetics
of graphene oxide nanosheets in organic and aqueous solutions. Ceramics International, 44(9):
10951-10960.
16. Vassilikou‐Dova, A. and Kalogeras, I.
M., Dielectric analysis (Dea), in
thermal analysis of polymers: fundamentals and applications. J.D.
MenczelR.B. Prime, Editors. 2009, John Wiley & Sons, Inc.: New Jersey. p.
497-613.
17. Nioua, Y., El Bouazzaoui, S., Melo, B.,
Prezas, P., Graça, M., Achour, M., Costa, L. and Brosseau, C. (2017). Analyzing
the frequency and temperature dependences of the ac conductivity and dielectric
analysis of reduced graphene oxide/epoxy polymer nanocomposites. Journal of Materials Science, 52(24):
13790-13798.
18. Lee, J., Jin, F., Park, S.-J. and Park, J.-M.
(2004). Study of new fluorine-containing epoxy resin for low dielectric
constant. Surface and Coatings Technology,
180-181:650-654.
19. McMaster, M. S., Yilmaz, T. E., Patel, A.,
Maiorana, A., Manas-Zloczower, I., Gross, R. and Singer, K. D. (2018).
Dielectric properties of bio-based diphenolate ester epoxies. ACS Applied Materials & Interfaces,
10(16): 13924-13930.
20. Wang, Y., Du, B., Kong, X. and Li, X. (2024).
Effects of cross‐linked networks on
dielectric properties of epoxy resins based on molecular dynamics. Journal of Applied Polymer Science,
141(11): e55104.
21. Van der Biest, O. O. and Vandeperre, L. J.
(1999). Electrophoretic deposition of materials. Annual Review Materials Sciences, 29(1): 327-352.
22. Diba, M., García-Gallastegui, A., Klupp
Taylor, R. N., Pishbin, F., Ryan, M. P., Shaffer, M. S. P. and Boccaccini, A.
R. (2014). Quantitative evaluation of electrophoretic deposition kinetics of
graphene oxide. Carbon, 67 656-661.