Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1310

 

Research Article

 

Effect of electrophoretic deposition kinetic behavior on dielectric property of epoxy coatings under different n-methylethanolamine’s volumes

 

Nurhaliana Shazwani Mohd Halim1, Norshazlina Romzei2, Monisha Vani Siva Kumar2, Kok-Tee Lau2*, Kelly Tau Len Yong3, Umar Al-Amani Azlan2, and Ah Heng You4

 

1Fakulti Teknologi dan Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

2Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

3Process Engineering Technology Section, Universiti Kuala Lumpur Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), 78000 Alor Gajah, Melaka, Malaysia

4Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama,75450, Bukit Beruang, Melaka, Malaysia.

 

*Corresponding author: ktlau@utem.edu.my

 

Received: 12 September 2024; Revised: 29 November 2024; Accepted: 6 December 2024; Published: 23 February 2025

 

Abstract

This study investigates the influence of the electrophoretic deposition current–time profile on the dielectric properties of diglycidyl ether of bisphenol A (DGEBA) epoxy coatings applied via electrophoretic deposition (EPD) under varying volumes of N-methylethanolamine (MEA). Three cationic DGEBA suspensions were synthesised by mixing commercially available DGEBA with different volumes of MEA (0.5, 1.0, and 1.5 ml) as the cationisation agent. The EPD processes using these suspensions were monitored by recording the electric current versus deposition time profiles. After curing, the deposited coatings were characterised using electrochemical impedance spectroscopy, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis. The results demonstrate that varying MEA volumes lead to distinct electric deposition current–time profiles, subsequently affecting the coating thickness and dielectric properties. The smooth exponential decay of the electric deposition current–time profile observed during EPD with the 0.5 ml MEA suspension resulted in a high coating thickness and enhanced dielectric properties. Understanding the impact of the electric deposition current–time profile on epoxy coatings deposited via EPD offers an initial quality screening tool to identify poor-quality epoxy coatings with low dielectric properties

 

Keywords: electrophoretic deposition, dielectric property, epoxy resin, functionalization, secondary amine

 


References

1.    Pourhashem, S., Vaezi, M. R., Rashidi, A. and Bagherzadeh, M. R. (2017). Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corrosion Science, 115: 78-92.

2.    Xiang, Q. and Xiao, F. (2020). Applications of epoxy materials in pavement engineering. Construction and Building Materials, 235: 117529.

3.    Jin, F.-L., Li, X. and Park, S.-J. (2015). Synthesis and application of epoxy resins: a review. Journal of Industrial and Engineering Chemistry, 29: 1-11.

4.    Mora, A.-S., Tayouo, R., Boutevin, B., David, G. and Caillol, S. (2020). A perspective approach on the amine reactivity and the hydrogen bonds effect on epoxy-amine systems. European Polymer Journal, 123: 109460.

5.    Kalinina, E. and Pikalova, E. (2021). Opportunities, challenges and prospects for electrodeposition of thin-film functional layers in solid oxide fuel cell technology. Materials, 14 (19): 5584.

6.    Pingale, A. D., Owhal, A., Belgamwar, S. U. and Rathore, J. S. (2021). Effect of current on the characteristics of cuni-g nanocomposite coatings developed by Dc, Pc and Prc electrodeposition. JOM, 73(12): 4299-4308.

7.    Chemibond, Auto-Fix 8800-a & B: Product Information. 2024.

8.    Bosso, J. F., Burrell, L. and Wismer, M. (1974). Quaternary ammonium epoxy resin dispersion with boric acid for cationic electro-deposition. United States US-3839252-A1974.

9.    Wismer, M. and Bosso, J. F. (1983). Process for the preparation of cationic resins, aqueous, dispersions, thereof, and electrodeposition using the aqueous dispersions. United States US-4419467-A1983.

10.  Joshi, J. H., Kanchan, D., Joshi, M. J., Jethva, H. and Parikh, K. (2017). Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Materials Research Bulletin, 93: 63-73.

11.  Koh, R. E., Sun, C. C., Yap, Y. L., Cheang, P. L. and You, A. H. (2021). Investigation of lithium transference number in pmma composite polymer electrolytes using Monte Carlo (MC) simulation and recurrence relation. Journal of Electrochemical Science and Technology, 12(2): 217-224.

12.  Mohd Halim, N. S., Mohd Saed, M. A. A., Nik Abd Rashid, N. A. L. H., Lau, K.-T., Tau, L.-K. Y., Azlan, U. A.-A., and Nakaruk, A.  (2024). Dielectric property of epoxy coating deposited using electrophoretic deposition suspension synthesised under ambient and inert atmospheres. Journal of Advanced Research in Micro and Nano Engineering, 24(1): 35-45.

13.  Lau, K.-T. and Samsudin, S. (2022). Electrophoretic deposition of hexagonal boron nitride particles from low conductivity suspension. Journal of Science and Technology, 30(2): 1237-1256.

14.  Sarkar, P. and Nicholson, P. S. (1996). Electrophoretic deposition (Epd): Mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 79(8): 1987-2002.

15.  Hajizadeh, A., Aliofkhazraei, M., Hasanpoor, M. and Mohammadi, E. (2018). Comparison of electrophoretic deposition kinetics of graphene oxide nanosheets in organic and aqueous solutions. Ceramics International, 44(9): 10951-10960.

16.  Vassilikou‐Dova, A. and Kalogeras, I. M., Dielectric analysis (Dea), in thermal analysis of polymers: fundamentals and applications. J.D. MenczelR.B. Prime, Editors. 2009, John Wiley & Sons, Inc.: New Jersey. p. 497-613.

17.  Nioua, Y., El Bouazzaoui, S., Melo, B., Prezas, P., Graça, M., Achour, M., Costa, L. and Brosseau, C. (2017). Analyzing the frequency and temperature dependences of the ac conductivity and dielectric analysis of reduced graphene oxide/epoxy polymer nanocomposites. Journal of Materials Science, 52(24): 13790-13798.

18.  Lee, J., Jin, F., Park, S.-J. and Park, J.-M. (2004). Study of new fluorine-containing epoxy resin for low dielectric constant. Surface and Coatings Technology, 180-181:650-654.

19.  McMaster, M. S., Yilmaz, T. E., Patel, A., Maiorana, A., Manas-Zloczower, I., Gross, R. and Singer, K. D. (2018). Dielectric properties of bio-based diphenolate ester epoxies. ACS Applied Materials & Interfaces, 10(16): 13924-13930.

20.  Wang, Y., Du, B., Kong, X. and Li, X. (2024). Effects of crosslinked networks on dielectric properties of epoxy resins based on molecular dynamics. Journal of Applied Polymer Science, 141(11): e55104.

21.  Van der Biest, O. O. and Vandeperre, L. J. (1999). Electrophoretic deposition of materials. Annual Review Materials Sciences, 29(1): 327-352.

22.  Diba, M., García-Gallastegui, A., Klupp Taylor, R. N., Pishbin, F., Ryan, M. P., Shaffer, M. S. P. and Boccaccini, A. R. (2014). Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide. Carbon, 67 656-661.