Malays. J. Anal. Sci.
Volume 29 Number 1 (2025): 1298
Research
Article
Enhancing
water barrier and gas permeability of composite nano-coated biofilms for
postharvest mango preservation
Syaheerah Syazana Syalabiah Salim1, Ahmad Anas Nagoor
Gunny1,2*, Gidado M. J1, Subash C. B. Gonipath1,3,4,
Noor Hasyierah Mohd Salleh1,2, Sung Ting Sam1, and Yin
Fong Yeong5
1Faculty of Chemical Engineering & Technology, Universiti Malaysia
Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian
Jejawi, Perlis, Malaysia
2Centre of Excellence for Biomass Utilisation, Universiti Malaysia Perlis
(UniMAP), Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi,
Perlis, Malaysia
3Institute of Nano Electronic Engineering & Micro System Technology,
CoE, Universiti Malaysia Perlis, Arau, Perlis 02600, Malaysia
4Department of Computer Science and Engineering, Faculty of Science and
Information Technology, Daffodil International University, Daffodil smart City,
Dhaka 1216, Bangladesh
5Universiti Teknologi Petronas, Bandar Seri Iskandar, 32610 Perak, Malaysia
*Corresponding author: ahmadanas@unimap.edu.my
Abstract
This research developed a biofilm
integrating poly lactic acid (PLA) with a composite hydrophobic nanoemulsion
(C-HyDEN) to evaluate their effectiveness in water barrier properties, gas
permeability, and impact on the firmness of postharvest mango. We analysed
Chitosan-HyDEN and Konjac-HyDEN films for water uptake (WU), water vapor permeability
(WVP), diffusion coefficient, and gas permeability. We compared the best
performance of composite coating to a single hydrophobic nanoemulsion (HyDEN)
film in terms of mango firmness. Chitosan-HyDEN film demonstrated a
significantly lower WU (1.06%) than Konjac-HyDEN film (2.14%). The
Chitosan-HyDEN film exhibited lower WVP than the Konjac-HyDEN film, indicating
its superior nanofiltration capabilities. Chitosan-HyDEN film had a higher
diffusion coefficient than Konjac-HyDEN film, underscoring its effectiveness in
reducing fruit water loss during storage. Composite film also proved more
effective in controlling gas permeability than single HyDEN film. Due to its
outstanding water barrier properties, Chitosan-HyDEN film was selected for
firmness testing on postharvest mangoes, where it achieved the highest firmness
retention (806.08±3.59 N) compared to single HyDEN film (614.26±3.55 N) and the
commercial fungicide Antracol (174.75±5.35 N). These results indicate that
Chitosan-HyDEN significantly enhanced the film's properties and effectiveness,
thereby improving fruit products’ storage life, safety, and quality.
Keywords: composite
hydrophobic nanocoating, chitosan, konjac, antracol
References
1.
Le, T. D., Viet Nguyen, T., Muoi, N.
Van, Toan, H. T., Lan, N. M., and Pham, T. N. (2022). Supply chain management
of mango (Mangifera indica L.) fruit: A review with a focus on product
quality during postharvest. Frontiers in Sustainable Food Systems, 5(2):
799431.
2.
Tavassoli-Kafrani, E., Gamage, M. V., Dumée, L. F.,
Kong, L., and Zhao, S. (2022). Edible films and coatings for shelf life
extension of mango: a review. Critical Reviews in Food Science and Nutrition,
62(9): 2432-2459.
3. De
Corato, U. (2020). Improving the shelf-life and quality of fresh and
minimally-processed fruits and vegetables for a modern food industry: A
comprehensive critical review from the traditional technologies into the most
promising advancements. Critical Reviews in Food Science and Nutrition, 60(6):
940-975.
4. Cao,
J., and Su, E. (2021). Hydrophobic deep eutectic solvents: the new generation
of green solvents for diversified and colorful applications in green chemistry.
Journal of Cleaner Production, 314: 127965.
5. Cao,
J., and Su, E. (2021b). Hydrophobic deep eutectic solvents: the new generation
of green solvents for diversified and colorful applications in green chemistry.
Journal of Cleaner Production, 314(May): 127965.
6. Devi,
M., Moral, R., Thakuria, S., Mitra, A., and Paul, S. (2023). Hydrophobic deep
eutectic solvents as greener substitutes for conventional extraction media: Examples
and techniques. ACS Omega, 8(11): 9702-9728.
7. Lee,
J., Jung, D., and Park, K. (2019). Hydrophobic deep eutectic solvents for the
extraction of organic and inorganic analytes from aqueous environments. TrAC
- Trends in Analytical Chemistry, 118: 853-868.
8. Wang,
G., Zhang, D., Li, B., Wan, G., Zhao, G., and Zhang, A. (2019). Strong and
thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites
enabled by heat treatment. International Journal of Biological
Macromolecules, 129: 448-459.
9. Casalini,
T., Rossi, F., Castrovinci, A., and Perale, G. (2019). A perspective on
polylactic acid-based polymers use for nanoparticles synthesis and
applications. Frontiers in Bioengineering and Biotechnology, 7(10):
1-16.
10. Ehrmann,
G., and Ehrmann, A. (2021). Investigation of the shape-memory properties of 3D
printed pla structures with different infills. Polymers, 13(1): 1-11.
11. Pang,
X., Zhuang, X., Tang, Z., and Chen, X. (2010). Polylactic acid (PLA): Research,
development and industrialization. Biotechnology Journal, 5(11): 1125-1136.
12. Nilsen-Nygaard,
J., Strand, S. P., Vårum, K. M., Draget, K. I., and Nordgård, C. T. (2015).
Chitosan: Gels and interfacial properties. Polymers, 7(3): 552-579.
13. Bakshi,
P. S., Selvakumar, D., Kadirvelu, K., and Kumar, N. S. (2020). Chitosan as an
environment friendly biomaterial – a review on recent modifications and
applications. International Journal of Biological Macromolecules, 150: 1072-1083.
14. Riaz
Rajoka, M. S., Zhao, L., Mehwish, H. M., Wu, Y., and Mahmood, S. (2019).
Chitosan and its derivatives: synthesis, biotechnological applications, and
future challenges. Applied Microbiology and Biotechnology, 103(4): 1557-1571.
15. Santos,
V. P., Marques, N. S. S., Maia, P. C. S. V., de Lima, M. A. B., Franco, L. de
O., and de Campos-Takaki, G. M. (2020). Seafood waste as attractive source of
chitin and chitosan production and their applications. International Journal
of Molecular Sciences, 21(12): 1-17.
16. Moussout,
H., Aazza, M., and Ahlafi, H. (2020). Thermal degradation characteristics of
chitin, chitosan, Al2O3/chitosan, and benonite/chitosan
nanocomposites. In Handbook of Chitin and Chitosan: Volume 2: Composites and
Nanocomposites from Chitin and Chitosan, Manufacturing and Characterisations.
INC.
17. Khajavian,
M., Vatanpour, V., Castro-Muñoz, R., & Boczkaj, G. (2022). Chitin and
derivative chitosan-based structures — Preparation strategies aided by deep
eutectic solvents: A review. Carbohydrate Polymers, 275(8): 118702.
18. Takigami,
S. (2009). Konjac mannan. In Handbook of Hydrocolloids: Second Edition.
Woodhead Publishing Limited.
19. Liu,
Zhenjun, Ren, X., Cheng, Y., Zhao, G., and Zhou, Y. (2021). Gelation mechanism
of alkali induced heat-set konjac glucomannan gel. Trends in Food Science
and Technology, 116(4): 244-254.
20. Liu,
Zhe, Lin, D., Lopez-Sanchez, P., and Yang, X. (2020). Characterizations of
bacterial cellulose nanofibers reinforced edible films based on konjac
glucomannan. International Journal of Biological Macromolecules, 145: 634-645.
21. Tang,
J., Chen, J., Guo, J., Wei, Q., and Fan, H. (2018). Construction and evaluation
of fibrillar composite hydrogel of collagen/konjac glucomannan for potential
biomedical applications. Regenerative Biomaterials, 5(4): 239-250.
22. Jin, S.,
Li, K., Xia, C., and Li, J. (2019). Sodium
alginate-assisted route to antimicrobial biopolymer film combined with
aminoclay for enhanced mechanical behaviors. Industrial Crops and Products,
135(11): 271-282.
23. Cao,
W., Yan, J., Liu, C., Zhang, J., Wang, H., Gao, X., Yan, H., Niu, B., and Li,
W. (2020). Preparation and characterization of catechol-grafted
chitosan/gelatin/modified chitosan-AgNP blend films. Carbohydrate Polymers,
247(4): 116643.
24. Wang,
H., Gong, X., Miao, Y., Guo, X., Liu, C., Fan, Y. Y., Zhang, J., Niu, B., and
Li, W. (2019). Preparation and characterization of multilayer films composed of
chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food
Chemistry, 283(11): 397-403.
25. Gidado,
M. J., Gunny, A. A. N., Gopinath, S. C. B., Wongs-Aree, C., Makhtar, M. M. Z., and
Shukor, H. (2023). Formulation of selective hydrophobic deep eutectic
oil-in-water nanoemulsion as green fungicides for mitigating anthracnose fungus
Colletotrichum gloeosporioides. Process Biochemistry, 135(11): 40-49.
26. Petchwattana,
N., Naknaen, P., Jakrabutr, W., Sanetuntikul, J., and Narupai, B. (2017).
Modification of poly(lactic acid) by blending with poly(methyl
methacrylate-co-ethyl acrylate) for extrusion blow molding application. Journal
of Engineering Science and Technology, 12(10): 2766-2777.
27. Gidado,
M. J., Gunny, A. A. N., Gopinath, S. C. B., Wongs-Aree, C., Yusoff, N. H. A.,
Ibrahim, R., Laboh, R., and Ali, A. (2024). Effect of hydrophobic deep eutectic
oil-in-water nano coating on the quality preservation of postharvest
‘Harumanis’ mango. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 691: 113808.
28. Amin,
U., Khan, M. K. I., Khan, M. U., Akram, M. E., Pateiro, M., Lorenzo, J. M., and
Maan, A. A. (2021). Improvement of the performance of chitosan–aloe vera
coatings by adding beeswax on postharvest quality of mango fruit. Foods,
10(10): 2240.
29. Thakur,
R., Pristijono, P., Bowyer, M., Singh, S. P., Scarlett, C. J., Stathopoulos, C.
E., and Vuong, Q. V. (2019). A starch edible surface coating delays banana
fruit ripening. LWT, 100: 341-347.
30. Wang,
J., Xu, H., Battocchi, D., and Bierwagen, G. (2014). The determination of
critical pigment volume concentration (CPVC) in organic coatings with
fluorescence microscopy. Progress in Organic Coatings, 77: 2147-2154.
31. Colinart,
T., and Glouannec, P. (2022). Accuracy of water vapor permeability of building
materials reassessed by measuring cup’s inner relative humidity. Building
and Environment, 217(4): 109038.
32. Jiang,
C., Tian, L., Hou, Y., and Niu, Q. J. (2019). Nanofiltration membranes with
enhanced microporosity and inner-pore interconnectivity for water treatment:
Excellent balance between permeability and selectivity. Journal of Membrane
Science, 586(5): 192-201.
33. Singh,
S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., and Pruncu, C. I.
(2020). 3D printed biodegradable composites: An insight into mechanical
properties of PLA/chitosan scaffold. Polymer Testing, 89:106722.
34. Miyamoto,
S., and Shimono, K. (2020). Molecular modeling to estimate the diffusion
coefficients of drugs and other small molecules. Molecules, 25(22): 5340.
35. Melzi,
N., Zentou, H., Laidi, M., Hanini, S., Ammi, Y., and Khaouane, L. (2019).
Usporedna studija predviđanja koeficijenta molekularne difuzije za polarni
i nepolarni binarni plin pomoću neuronskih mreža i višestrukih linearnih
regresija. Kemija u Industriji, 68(11-12): 573-582.
36. Trinh,
B. M., Chang, B. P., and Mekonnen, T. H. (2023). The barrier properties of
sustainable multiphase and multicomponent packaging materials: A review. Progress
in Materials Science, 133(11): 101071.
37. Fathizadeh,
Z., Aboonajmi, M., and Hassan-Beygi, S. R. (2021). Nondestructive methods for
determining the firmness of apple fruit flesh. Information Processing in
Agriculture, 8(4): 515-527.
38. Xing,
Y., Yang, H., Guo, X., Bi, X., Liu, X., Xu, Q., Wang, Q., Li, W., Li, X., Shui,
Y., Chen, C., and Zheng, Y. (2020). Effect of chitosan/Nano-TiO2
composite coatings on the postharvest quality and physicochemical
characteristics of mango fruits. Scientia Horticulturae, 263(12):
109135.