Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1298

 

Research Article

 

Enhancing water barrier and gas permeability of composite nano-coated biofilms for postharvest mango preservation

 

Syaheerah Syazana Syalabiah Salim1, Ahmad Anas Nagoor Gunny1,2*, Gidado M. J1, Subash C. B. Gonipath1,3,4, Noor Hasyierah Mohd Salleh1,2, Sung Ting Sam1, and Yin Fong Yeong5

 

1Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Perlis, Malaysia

2Centre of Excellence for Biomass Utilisation, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Perlis, Malaysia

3Institute of Nano Electronic Engineering & Micro System Technology, CoE, Universiti Malaysia Perlis, Arau, Perlis 02600, Malaysia

4Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil smart City, Dhaka 1216, Bangladesh

5Universiti Teknologi Petronas, Bandar Seri Iskandar, 32610 Perak, Malaysia

 

*Corresponding author: ahmadanas@unimap.edu.my

 

Received: 2 September 2024; Revised: 20 December 2024; Accepted: 30 December 2024; Published: 5 February 2025

 

Abstract

This research developed a biofilm integrating poly lactic acid (PLA) with a composite hydrophobic nanoemulsion (C-HyDEN) to evaluate their effectiveness in water barrier properties, gas permeability, and impact on the firmness of postharvest mango. We analysed Chitosan-HyDEN and Konjac-HyDEN films for water uptake (WU), water vapor permeability (WVP), diffusion coefficient, and gas permeability. We compared the best performance of composite coating to a single hydrophobic nanoemulsion (HyDEN) film in terms of mango firmness. Chitosan-HyDEN film demonstrated a significantly lower WU (1.06%) than Konjac-HyDEN film (2.14%). The Chitosan-HyDEN film exhibited lower WVP than the Konjac-HyDEN film, indicating its superior nanofiltration capabilities. Chitosan-HyDEN film had a higher diffusion coefficient than Konjac-HyDEN film, underscoring its effectiveness in reducing fruit water loss during storage. Composite film also proved more effective in controlling gas permeability than single HyDEN film. Due to its outstanding water barrier properties, Chitosan-HyDEN film was selected for firmness testing on postharvest mangoes, where it achieved the highest firmness retention (806.08±3.59 N) compared to single HyDEN film (614.26±3.55 N) and the commercial fungicide Antracol (174.75±5.35 N). These results indicate that Chitosan-HyDEN significantly enhanced the film's properties and effectiveness, thereby improving fruit products’ storage life, safety, and quality.

 

Keywords: composite hydrophobic nanocoating, chitosan, konjac, antracol

 


References

1.        Le, T. D., Viet Nguyen, T., Muoi, N. Van, Toan, H. T., Lan, N. M., and Pham, T. N. (2022). Supply chain management of mango (Mangifera indica L.) fruit: A review with a focus on product quality during postharvest. Frontiers in Sustainable Food Systems, 5(2): 799431.

2.        Tavassoli-Kafrani, E., Gamage, M. V., Dumée, L. F., Kong, L., and Zhao, S. (2022). Edible films and coatings for shelf life extension of mango: a review. Critical Reviews in Food Science and Nutrition, 62(9): 2432-2459.

3.      De Corato, U. (2020). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60(6): 940-975.

4.      Cao, J., and Su, E. (2021). Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry. Journal of Cleaner Production, 314: 127965.

5.      Cao, J., and Su, E. (2021b). Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry. Journal of Cleaner Production, 314(May): 127965.

6.      Devi, M., Moral, R., Thakuria, S., Mitra, A., and Paul, S. (2023). Hydrophobic deep eutectic solvents as greener substitutes for conventional extraction media: Examples and techniques. ACS Omega, 8(11): 9702-9728.

7.      Lee, J., Jung, D., and Park, K. (2019). Hydrophobic deep eutectic solvents for the extraction of organic and inorganic analytes from aqueous environments. TrAC - Trends in Analytical Chemistry, 118: 853-868.

8.      Wang, G., Zhang, D., Li, B., Wan, G., Zhao, G., and Zhang, A. (2019). Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. International Journal of Biological Macromolecules, 129: 448-459.

9.      Casalini, T., Rossi, F., Castrovinci, A., and Perale, G. (2019). A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Frontiers in Bioengineering and Biotechnology, 7(10): 1-16.

10.    Ehrmann, G., and Ehrmann, A. (2021). Investigation of the shape-memory properties of 3D printed pla structures with different infills. Polymers, 13(1): 1-11.

11.    Pang, X., Zhuang, X., Tang, Z., and Chen, X. (2010). Polylactic acid (PLA): Research, development and industrialization. Biotechnology Journal, 5(11): 1125-1136.

12.   Nilsen-Nygaard, J., Strand, S. P., Vårum, K. M., Draget, K. I., and Nordgård, C. T. (2015). Chitosan: Gels and interfacial properties. Polymers, 7(3): 552-579.

13.    Bakshi, P. S., Selvakumar, D., Kadirvelu, K., and Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. International Journal of Biological Macromolecules, 150: 1072-1083.

14.    Riaz Rajoka, M. S., Zhao, L., Mehwish, H. M., Wu, Y., and Mahmood, S. (2019). Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Applied Microbiology and Biotechnology, 103(4): 1557-1571.

15.    Santos, V. P., Marques, N. S. S., Maia, P. C. S. V., de Lima, M. A. B., Franco, L. de O., and de Campos-Takaki, G. M. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences, 21(12): 1-17.

16.    Moussout, H., Aazza, M., and Ahlafi, H. (2020). Thermal degradation characteristics of chitin, chitosan, Al2O3/chitosan, and benonite/chitosan nanocomposites. In Handbook of Chitin and Chitosan: Volume 2: Composites and Nanocomposites from Chitin and Chitosan, Manufacturing and Characterisations. INC.

17.    Khajavian, M., Vatanpour, V., Castro-Muñoz, R., & Boczkaj, G. (2022). Chitin and derivative chitosan-based structures — Preparation strategies aided by deep eutectic solvents: A review. Carbohydrate Polymers, 275(8): 118702.

18.    Takigami, S. (2009). Konjac mannan. In Handbook of Hydrocolloids: Second Edition. Woodhead Publishing Limited.

19.    Liu, Zhenjun, Ren, X., Cheng, Y., Zhao, G., and Zhou, Y. (2021). Gelation mechanism of alkali induced heat-set konjac glucomannan gel. Trends in Food Science and Technology, 116(4): 244-254.

20.    Liu, Zhe, Lin, D., Lopez-Sanchez, P., and Yang, X. (2020). Characterizations of bacterial cellulose nanofibers reinforced edible films based on konjac glucomannan. International Journal of Biological Macromolecules, 145: 634-645.

21.    Tang, J., Chen, J., Guo, J., Wei, Q., and Fan, H. (2018). Construction and evaluation of fibrillar composite hydrogel of collagen/konjac glucomannan for potential biomedical applications. Regenerative Biomaterials, 5(4): 239-250.

22.    Jin, S., Li, K., Xia, C., and Li, J. (2019). Sodium alginate-assisted route to antimicrobial biopolymer film combined with aminoclay for enhanced mechanical behaviors. Industrial Crops and Products, 135(11): 271-282.

23.    Cao, W., Yan, J., Liu, C., Zhang, J., Wang, H., Gao, X., Yan, H., Niu, B., and Li, W. (2020). Preparation and characterization of catechol-grafted chitosan/gelatin/modified chitosan-AgNP blend films. Carbohydrate Polymers, 247(4): 116643.

24.    Wang, H., Gong, X., Miao, Y., Guo, X., Liu, C., Fan, Y. Y., Zhang, J., Niu, B., and Li, W. (2019). Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chemistry, 283(11): 397-403.

25.    Gidado, M. J., Gunny, A. A. N., Gopinath, S. C. B., Wongs-Aree, C., Makhtar, M. M. Z., and Shukor, H. (2023). Formulation of selective hydrophobic deep eutectic oil-in-water nanoemulsion as green fungicides for mitigating anthracnose fungus Colletotrichum gloeosporioides. Process Biochemistry, 135(11): 40-49.

26.    Petchwattana, N., Naknaen, P., Jakrabutr, W., Sanetuntikul, J., and Narupai, B. (2017). Modification of poly(lactic acid) by blending with poly(methyl methacrylate-co-ethyl acrylate) for extrusion blow molding application. Journal of Engineering Science and Technology, 12(10): 2766-2777.

27.    Gidado, M. J., Gunny, A. A. N., Gopinath, S. C. B., Wongs-Aree, C., Yusoff, N. H. A., Ibrahim, R., Laboh, R., and Ali, A. (2024). Effect of hydrophobic deep eutectic oil-in-water nano coating on the quality preservation of postharvest ‘Harumanis’ mango. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 691: 113808.

28.    Amin, U., Khan, M. K. I., Khan, M. U., Akram, M. E., Pateiro, M., Lorenzo, J. M., and Maan, A. A. (2021). Improvement of the performance of chitosan–aloe vera coatings by adding beeswax on postharvest quality of mango fruit. Foods, 10(10): 2240.

29.    Thakur, R., Pristijono, P., Bowyer, M., Singh, S. P., Scarlett, C. J., Stathopoulos, C. E., and Vuong, Q. V. (2019). A starch edible surface coating delays banana fruit ripening. LWT, 100: 341-347.

30.    Wang, J., Xu, H., Battocchi, D., and Bierwagen, G. (2014). The determination of critical pigment volume concentration (CPVC) in organic coatings with fluorescence microscopy. Progress in Organic Coatings, 77: 2147-2154.

31.    Colinart, T., and Glouannec, P. (2022). Accuracy of water vapor permeability of building materials reassessed by measuring cup’s inner relative humidity. Building and Environment, 217(4): 109038.

32.    Jiang, C., Tian, L., Hou, Y., and Niu, Q. J. (2019). Nanofiltration membranes with enhanced microporosity and inner-pore interconnectivity for water treatment: Excellent balance between permeability and selectivity. Journal of Membrane Science, 586(5): 192-201.

33.    Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., and Pruncu, C. I. (2020). 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold. Polymer Testing, 89:106722.

34.    Miyamoto, S., and Shimono, K. (2020). Molecular modeling to estimate the diffusion coefficients of drugs and other small molecules. Molecules, 25(22): 5340.

35.    Melzi, N., Zentou, H., Laidi, M., Hanini, S., Ammi, Y., and Khaouane, L. (2019). Usporedna studija predviđanja koeficijenta molekularne difuzije za polarni i nepolarni binarni plin pomoću neuronskih mreža i višestrukih linearnih regresija. Kemija u Industriji, 68(11-12): 573-582.

36.    Trinh, B. M., Chang, B. P., and Mekonnen, T. H. (2023). The barrier properties of sustainable multiphase and multicomponent packaging materials: A review. Progress in Materials Science, 133(11): 101071.

37.    Fathizadeh, Z., Aboonajmi, M., and Hassan-Beygi, S. R. (2021). Nondestructive methods for determining the firmness of apple fruit flesh. Information Processing in Agriculture, 8(4): 515-527.

38.    Xing, Y., Yang, H., Guo, X., Bi, X., Liu, X., Xu, Q., Wang, Q., Li, W., Li, X., Shui, Y., Chen, C., and Zheng, Y. (2020). Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae, 263(12): 109135.