Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1292

 

Research Article

 

Preparation and characterization of modified rambutan peels for the removal of chromium(VI) and nickel(II) from aqueous solution: Environmental impact and optimization

 

Northaqifah Hasna Mohamed Khir1,2, Nur Fatien Muhamad Salleh1*, Noraini Abdul Ghafar1, Nurasmat Mohd Shukri1, and Rohayu Jusoh3

 

1School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia

2Faculty of Applied Sciences, Universiti Teknologi MARA, Terengganu Branch, Bukit Besi Campus, 23200 Dungun, Terengganu, Malaysia

3Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang, Kuantan 26300, Pahang, Malaysia

 

*Corresponding author: nurfatiensalleh@usm.my

 

Received: 29 August 2024; Revised: 19 November 2024; Accepted: 3 December 2024; Published: 10 February 2025

 

Abstract

Recently, environmental remediation has focused on using cheap biosorbents to get rid of heavy metals. Agricultural wastes like rambutan peels are gaining more attention because they contain cellulose and hemicellulose and metal-binding capabilities. The natural presence of functional groups like hydroxyl (-OH) and methylene (-CH₂) in these peels facilitates metal biosorption, which can be further enhanced by acid treatment. This study evaluates the effectiveness of raw rambutan peels (RRP) and acid-treated rambutan peels (ATRP) in removing nickel (Ni(II)) and chromium (Cr(VI)) from aqueous solutions under varying conditions of contact time (30-150 minutes), pH (3-11), adsorbent dosage (0.5-4 g) and initial metal concentration (5-100 mg/L). Fourier-transform infrared (FTIR) analysis indicated an enhancement of O–H on the surface of ATRP following acid modification by stronger transmittance peaks at 3333.89 cm⁻¹, respectively. ATRP achieved 88.79% removal of Ni(II) with a 90-minute contact time at pH 7, and Cr(VI) at 70.11% with a 120-minute contact time at pH 5. Freundlich and Langmuir isotherm models were used to correlate sorption data. The result demonstrates that the Langmuir adsorption model fits best when compared to the Freundlich model with a coefficient of determination (R2)=0.9698 and adsorption capacity (qm) of 33.4448 mg/g for Cr(VI) and R2 = 0.9699 with qm of 416.6667 mg/g for Ni(II). Statistical analysis using the Mann-Whitney U Test confirmed significant differences in the biosorption efficiencies between RRP and ATRP in removing Cr(VI) (p = 0.009) and Ni(II) (p = 0.026), underscoring the superiority of the chemically modified biosorbent ATRP as a highly effective biosorbent for Cr(VI) and Ni(II) removal, offering a sustainable solution for environmental remediation.

 

Keywords: agricultural waste, acid treatment, biosorption, rambutan peels, chromium and nickel

 


References

1.      Xia, Y., Li, Y., and Xu, Y. (2022). Adsorption of Pb(II) and Cr(VI) from aqueous solution by synthetic allophane suspension: Isotherm, Kinetics, and Mechanisms. Toxics, 10(6): 291.

2.      Dass, M. V. (2024b, February 27). Sungai Kim Kim, 3 lagi tercemar di Pasir Gudang. Harian Metro. Access from https://www.hmetro. com.my/mutakhir/ 2024/02/ 1064742/sungai-kim-kim-3-lagi-tercemar-di-pasir-gudang

3.      Dass, M. V. (2023b, October 28). 14 sungai di Johor dikategorikan paling tercemar. Harian Metro. Access from https://www.hmetro. com.my/mutakhir/2023/10/1024676/14-sungai-di-johor-dikategorikan-paling-tercemar

4.      Ibrahim, M. I. (2024b, June 6). 25 sungai di Malaysia tercemar kelas 3 dan 4. Berita Harian. Access from https://www.bharian.com.my/ berita/nasional/2024/06/1255563/25-sungai-di-malaysia-tercemar-kelas-3-dan-4

5.      Selvaraju, A., Abdul Halim, A. N. S., and Abdul Keyon, A. S. (2020). Determination of selected heavy metal concentrations in unregistered face whitening creams sold in Johor Bahru, Johor, Malaysia by using inductively coupled plasma optical emission spectroscopy and their health risk assessment. Malaysian Journal of Analytical Sciences, 24(5): 670-681.

6.      Arzoo, A., and Satapathy, K. B. (2017). A review on sources of heavy metal pollution and its impacts on environment. International Journal of Current Advanced Research, 6(12): 8098-8102.

7.      Balogun, K. J. (2021). Risk Assessment of Trace Metal Intake through Consumption of Four Fish Species from Upper Region of Barrier Lagoon Coast Waters, Southwest, Nigeria. Journal of Environment Pollution and Human Health, 9(1): 16-21.

8.      Mat Ripin, S. N., Hasan, S., Kamal, M. L., and Mohd Hashim, N. (2014). Analysis and pollution assessment of heavy metal in soil, Perlis. Malaysian Journal of Analytical Sciences, 18(1): 155-161.

9.      Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. (2022b, March 21). https://www.who.int/publications/i/item/9789240045064

10.   National Primary Drinking Water Regulations | US EPA. (2024c, August 23). US EPA. Access from https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations

11.   Abegunde, S. M., Idowu, K. S., Adejuwon, O. M., and Adeyemi-Adejolu, T. (2020b). A review on the influence of chemical modification on the performance of adsorbents. Resources Environment and Sustainability, 1: 100001.

12.   Vasić, K., Primožič, M., Knez, Ž., Leitgeb, M. (2023). Efficient removal of Cr(VI) ions from aqueous solutions using arabinogalactan coated magnetic nanoparticles. Chemical Engineering Transactions. 99: 205-210.

13.   Yaashikaa P. R., Palanivelu J., and Hemavathy R.V. (2024). Sustainable approaches for removing toxic heavy metal from contaminated water: a comprehensive review of bioremediation and biosorption techniques. Chemosphere, 357:141933.

14.   Hussain, M. K., Khatoon, S., Nizami, G., Fatma, U. K., Ali, M., Singh, B., Quraishi, A., Assiri, M. A., Ahamad, S., and Saquib, M. (2024). Unleashing the power of bio-adsorbents: efficient heavy metal removal for sustainable water purification. Journal of Water Process Engineering, 64: 105705.

15.   Jena, P. S., Pradhan, A., Nanda, S. P., Dash, A. K., and Naik, B. (2022). Biosorption of heavy metals from wastewater using saccharomyces cerevisiae as a biosorbent: a mini review. Materials Today Proceedings, 67: 1140-1146.

16.   THE 17 GOALS | Sustainable Development. (n.d.-c). https://sdgs.un.org/goals

17.   Zhang, Z., Chen, Y., Wang, D., Yu, D., & Wu, C. (2023b). Lignin-based adsorbents for heavy metals. Industrial Crops and Products, 193: 116119.

18.   Bhatnagar, A., Sillanpää, M., and Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification – a review. Chemical Engineering Journal. 270: 244-271.

19.   Elgarahy, A., Elwakeel, K., Mohammad, S., and Elshoubaky, G. (2021). A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology, 4: 100209.

20.   Aschale, M., Tsegaye, F., and Amde, M. (2021c) Potato peels as promising low-cost adsorbent for the removal of lead, cadmium, chromium and copper from wastewater. Desalination And Water Treatment. 222: 405-415.

21.   Chong, Z. T., Soh, L. S., and Yong, W. F. (2023). Valorization of agriculture wastes as biosorbents for adsorption of emerging pollutants: Modification, remediation and industry application. Results in Engineering. 17: 100960.

22.   Marpongahtun, N., Andriayani, N., Muis, Y., Gea, S., Amaturrahim, S. A., Attaurrazaq, B., Daulay, A., and Salmiati, S. (2024b). Biomass-derived N-doped carbon dots/TiO2 for visible-light-induced degradation of methyl orange in wastewater. Chemistry Africa, 24: 970.

23.   El-Maghraby, L. M. (2019). Removal of copper (II) and ferric (III) ions from aqueous solutions by adsorption using potato peel. Assiut Journal of Agricultural Sciences/Assuit Journal of Agricultural Sciences, 50(3): 98-111.

24.   Hidayah, N., Putri, V. D., Elma, M., Mahmud, N., Syauqiah, I., Amenia, A., Putra, D. G. L., Akbar, H. R., and Rahma, A. (2022). The functionalization of pyrolyzed palm empty fruit bunches-based membranes adsorbent by fourier-transform infrared spectroscopy. IOP Conference Series Materials Science and Engineering, 1212(1): 012026.

25.   Dey, S., Veerendra, G. T. N., Padavala, S. S. A. B., and Manoj, A. V. P. (2023). Evaluate the use of flower waste biosorbents for treatment of contaminated water. Water-Energy Nexus. 6:187-223.

26.   Li, W., Chai, L., Du, B., Chen, X., and Sun, R. C. (2023). Full-lignin-based adsorbent for removal of Cr(VI) from waste water. Separation and Purification Technology. 306: 122644.

27.   Inoue, K., Parajuli, D., Ghimire, K., Biswas, B., Kawakita, H., Oshima, T., and Ohto, K. (2017). Biosorbents for removing hazardous metals and metalloids. Materials, 10(8): 857.

28.   Vishvkarma, T., Sharma, A., and Sharma, S. (2017). Adsorption of chromium ion by using neem bark adsorbent. International Journal of Chemical Studies. 1325-1327.

29.   Rai, R., Aryal, R. L., Paudyal, H., Gautam, S. K., Ghimire, K. N., Pokhrel, M. R., and Poudel, B. R. (2023). Acid-treated pomegranate peel; an efficient biosorbent for the excision of hexavalent chromium from wastewater. Heliyon. 9(5): e15698.

30.   Jabatan Pertanian Malaysia & Department of Agriculture. (2022). Statistik Tanaman Buah – Buahan. In Fruit Crop Statistics Report. Jabatan Pertanian. http://www.doa.gov.my/

31.   Kong, F. C., Adzahan, N. M., Karim, R., Rukayadi, Y., and Ghazali, H. M. (2018). Selected Physicochemical properties of registered clones and wild types rambutan (Nephelium lappaceum L.) fruits and their potentials in food products. Sains Malaysiana, 47(07): 1483-1490.

32.   Phuong, N. N. M., Le, T. T., Dang, M. Q., Van Camp, J., and Raes, K. (2020). Selection of extraction conditions of phenolic compounds from rambutan (Nephelium lappaceum L.) peel. Food and Bioproducts Processing, 122: 222-229.

33.   Rinaldi, R., Yasdi, Y., and Hutagalung, W. L. C. (2018). Removal of Ni(II) and Cu (II) ions from aqueous solution using rambutan fruit peels (Nephelium Lappaceum L.) as adsorbent. AIP Conference Proceedings, 2018: 5065058

34.   Mohd Sidek, N., Syed Draman, S. F., and Mohd, N. (2017). Removal of copper (II) ions from aqueous solution using Nephelium lappaceum L. as lignocellulosic biosorbent. ARPN Journal of Engineering and Applied Sciences. 10: 3255-3256.

35.   Hasanah, M., Juleanti, N., Priambodo, A., Arsyad, F., Lesbani, A., and Mohadi, R. (2022). Utilization of rambutan peel as s potential adsorbent for the adsorption of malachite green, procion red, and congo red dyes. Ecological Engineering & Environmental Technology, 23(3): 148-157.

36.   Łojewska, J., Miśkowiec, P., Łojewski, T., and Proniewicz, L. (2005). Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polymer Degradation and Stability, 88(3): 512-520.

37.   Fenti, A., Chianese, S., Iovino, P., Musmarra, D., and Salvestrini, S. (2020). Cr(VI) sorption from aqueous solution: a review. Applied Sciences, 10(18): 6477.

38.   Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials, 97(1-3): 49-57.

39.   Islam, M. A., Awual, M. R., and Angove, M. J. (2019). A review on nickel(II) adsorption in single and binary component systems and future path. Journal of Environmental Chemical Engineering, 7(5): 103305.

40.   Chaudhari, V., and Patkar, M. (2021). Removal of nickel from aqueous solution by using corncob as adsorbent. Materials Today Proceedings, 61: 307-314.

41.   Chung, J., Sharma, N., Kim, M., and Yun, K. (2022). Activated carbon derived from sucrose and melamine as low-cost adsorbent with fast adsorption rate for removal of methylene blue in wastewaters. Journal of Water Process Engineering, 47: 102763.

42.   Fawzy, M., Nasr, M., Abdel-Gaber, A., and Fadly, S. (2015). Biosorption of Cr(VI) from aqueous solution using agricultural wastes, with artificial intelligence approach. Separation Science and Technology, 51(3): 416-426.

43.   Akpomie, K. G., and Conradie, J. (2020). Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environmental Chemistry Letters, 18(4): 1085-1112.

44.   Osman, A. I., El-Monaem, E. M. A., Elgarahy, A. M., Aniagor, C. O., Hosny, M., Farghali, M., Rashad, E., Ejimofor, M. I., López-Maldonado, E. A., Ihara, I., Yap, P. S., Rooney, D. W., and Eltaweil, A. S. (2023). Methods to prepare biosorbents and magnetic sorbents for water treatment: a review. Environmental Chemistry Letters, 21(4): 2337-2398.

45.   Yuan, X., Li, J., Luo, L., Zhong, Z., and Xie, X. (2023). Advances in sorptive removal of hexavalent chromium (Cr(VI)) in aqueous solutions using polymeric materials. Polymers. 15(2): 388.

46.   Masuku, M., Nure, J. F., Atagana, H. I., Hlongwa, N., and Nkambule, T. T. (2024b). Advancing the development of nanocomposite adsorbent through zinc-doped nickel ferrite-pinecone biochar for removal of chromium (VI) from wastewater. The Science of the Total Environment. 908: 168136.

47.   Mohan, K. M., and Gajalakshmi, S. (2024). Biosorption for wastewater treatment and post-sorption utilization of treated wastewater and spent biosorbent. Biological and Hybrid Wastewater Treatment Technology. Springer pp. 57–90.

48.   Ajorloo, M., Ghodrat, M., Scott, J., and Strezov, V. (2022). Heavy metals removal/stabilization from municipal solid waste incineration fly ash: a review and recent trends. Journal of Material Cycles and Waste Management, 24(5): 1693-1717.