Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1292
Research Article
Preparation and characterization of
modified rambutan peels for the removal of chromium(VI) and nickel(II) from
aqueous solution: Environmental impact and optimization
Northaqifah Hasna Mohamed Khir1,2,
Nur Fatien Muhamad Salleh1*, Noraini Abdul Ghafar1,
Nurasmat Mohd Shukri1, and Rohayu Jusoh3
1School of
Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian,
Kelantan, Malaysia
2Faculty of
Applied Sciences, Universiti Teknologi MARA, Terengganu Branch, Bukit Besi
Campus, 23200 Dungun, Terengganu, Malaysia
3Faculty of
Chemical and Process Engineering Technology, Universiti Malaysia Pahang
Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang, Kuantan 26300,
Pahang, Malaysia
*Corresponding
author: nurfatiensalleh@usm.my
Received: 29 August 2024;
Revised: 19 November 2024; Accepted: 3 December 2024; Published: 10 February
2025
Abstract
Recently,
environmental remediation has focused on using cheap biosorbents to get rid of
heavy metals. Agricultural wastes like rambutan peels are gaining more
attention because they contain cellulose and hemicellulose and metal-binding
capabilities. The natural presence of functional groups like hydroxyl (-OH) and
methylene (-CH₂) in these peels facilitates metal biosorption, which can
be further enhanced by acid treatment. This study evaluates the effectiveness
of raw rambutan peels (RRP) and acid-treated rambutan peels (ATRP) in removing
nickel (Ni(II)) and chromium (Cr(VI)) from aqueous solutions under varying
conditions of contact time (30-150 minutes), pH (3-11), adsorbent dosage (0.5-4
g) and initial metal concentration (5-100 mg/L). Fourier-transform infrared
(FTIR) analysis indicated an enhancement of O–H on the surface of ATRP
following acid modification by stronger transmittance peaks at 3333.89
cm⁻¹, respectively. ATRP achieved 88.79% removal of Ni(II) with a
90-minute contact time at pH 7, and Cr(VI) at 70.11% with a 120-minute contact
time at pH 5. Freundlich and Langmuir isotherm models were used to correlate
sorption data. The result demonstrates that the Langmuir adsorption model fits
best when compared to the Freundlich model with a coefficient of determination (R2)=0.9698
and adsorption capacity (qm)
of 33.4448 mg/g for Cr(VI) and R2 = 0.9699 with qm of 416.6667 mg/g for Ni(II). Statistical analysis using the
Mann-Whitney U Test confirmed significant differences in the biosorption
efficiencies between RRP and ATRP in removing Cr(VI) (p = 0.009) and Ni(II) (p
= 0.026), underscoring the superiority of the chemically modified biosorbent ATRP
as a highly effective biosorbent for Cr(VI) and Ni(II) removal, offering a
sustainable solution for environmental remediation.
Keywords: agricultural waste, acid treatment, biosorption,
rambutan peels, chromium and nickel
References
1.
Xia, Y., Li, Y., and Xu, Y. (2022). Adsorption
of Pb(II) and Cr(VI) from aqueous solution by synthetic allophane suspension:
Isotherm, Kinetics, and Mechanisms. Toxics, 10(6): 291.
2.
Dass,
M. V. (2024b, February 27). Sungai Kim Kim, 3 lagi tercemar di Pasir Gudang. Harian Metro. Access from https://www.hmetro.
com.my/mutakhir/ 2024/02/
1064742/sungai-kim-kim-3-lagi-tercemar-di-pasir-gudang
3.
Dass,
M. V. (2023b, October 28). 14 sungai di Johor dikategorikan paling tercemar.
Harian Metro. Access from https://www.hmetro.
com.my/mutakhir/2023/10/1024676/14-sungai-di-johor-dikategorikan-paling-tercemar
4.
Ibrahim,
M. I. (2024b, June 6). 25 sungai di Malaysia tercemar kelas 3 dan 4. Berita
Harian. Access from https://www.bharian.com.my/
berita/nasional/2024/06/1255563/25-sungai-di-malaysia-tercemar-kelas-3-dan-4
5.
Selvaraju,
A., Abdul Halim, A. N. S., and Abdul Keyon, A. S. (2020). Determination of
selected heavy metal concentrations in unregistered face whitening creams sold
in Johor Bahru, Johor, Malaysia by using inductively coupled plasma optical
emission spectroscopy and their health risk assessment. Malaysian Journal of
Analytical Sciences, 24(5): 670-681.
6.
Arzoo,
A., and Satapathy, K. B. (2017). A review on sources of heavy metal pollution and
its impacts on environment. International Journal of Current Advanced
Research, 6(12): 8098-8102.
7.
Balogun,
K. J. (2021). Risk Assessment of Trace Metal Intake through Consumption of Four
Fish Species from Upper Region of Barrier Lagoon Coast Waters, Southwest,
Nigeria. Journal of Environment Pollution and Human Health, 9(1): 16-21.
8.
Mat
Ripin, S. N., Hasan, S., Kamal, M. L., and Mohd Hashim, N. (2014). Analysis and
pollution assessment of heavy metal in soil, Perlis. Malaysian Journal of
Analytical Sciences, 18(1): 155-161.
9.
Guidelines
for drinking-water quality: fourth edition incorporating the first and second
addenda. (2022b, March 21). https://www.who.int/publications/i/item/9789240045064
10.
National
Primary Drinking Water Regulations | US EPA. (2024c, August 23). US EPA. Access
from https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations
11.
Abegunde,
S. M., Idowu, K. S., Adejuwon, O. M., and Adeyemi-Adejolu, T. (2020b). A review
on the influence of chemical modification on the performance of adsorbents. Resources
Environment and Sustainability, 1: 100001.
12.
Vasić, K., Primožič, M., Knez, Ž., Leitgeb, M.
(2023). Efficient removal of Cr(VI) ions from aqueous solutions using
arabinogalactan coated magnetic nanoparticles. Chemical Engineering
Transactions. 99: 205-210.
13.
Yaashikaa P. R., Palanivelu J., and Hemavathy R.V. (2024).
Sustainable approaches for removing toxic heavy metal from contaminated water:
a comprehensive review of bioremediation and biosorption techniques. Chemosphere,
357:141933.
14.
Hussain, M. K., Khatoon, S., Nizami, G., Fatma, U. K.,
Ali, M., Singh, B., Quraishi, A., Assiri, M. A., Ahamad, S., and Saquib, M.
(2024). Unleashing the power of bio-adsorbents: efficient heavy metal removal
for sustainable water purification. Journal of Water Process Engineering,
64: 105705.
15.
Jena, P. S., Pradhan, A., Nanda, S. P., Dash, A. K., and
Naik, B. (2022). Biosorption of heavy metals from wastewater using
saccharomyces cerevisiae as a biosorbent: a mini review. Materials Today
Proceedings, 67: 1140-1146.
16.
THE 17 GOALS | Sustainable Development. (n.d.-c). https://sdgs.un.org/goals
17.
Zhang, Z., Chen, Y., Wang, D., Yu, D., & Wu, C.
(2023b). Lignin-based adsorbents for heavy metals. Industrial Crops and
Products, 193: 116119.
18.
Bhatnagar,
A., Sillanpää, M., and Witek-Krowiak, A. (2015). Agricultural waste peels as
versatile biomass for water purification – a review. Chemical Engineering
Journal. 270: 244-271.
19.
Elgarahy, A., Elwakeel, K., Mohammad, S., and Elshoubaky,
G. (2021). A critical review of biosorption of dyes, heavy metals and
metalloids from wastewater as an efficient and green process. Cleaner
Engineering and Technology, 4: 100209.
20.
Aschale, M., Tsegaye, F., and Amde, M. (2021c) Potato
peels as promising low-cost adsorbent for the removal of lead, cadmium,
chromium and copper from wastewater. Desalination And Water Treatment. 222:
405-415.
21.
Chong, Z. T., Soh, L. S., and Yong, W. F. (2023).
Valorization of agriculture wastes as biosorbents for adsorption of emerging pollutants:
Modification, remediation and industry application. Results in Engineering.
17: 100960.
22.
Marpongahtun,
N., Andriayani, N., Muis, Y., Gea, S., Amaturrahim, S. A., Attaurrazaq, B.,
Daulay, A., and Salmiati, S. (2024b). Biomass-derived N-doped carbon dots/TiO2
for visible-light-induced degradation of methyl orange in wastewater. Chemistry
Africa, 24: 970.
23.
El-Maghraby, L. M. (2019). Removal of copper (II) and ferric
(III) ions from aqueous solutions by adsorption using potato peel. Assiut
Journal of Agricultural Sciences/Assuit Journal of Agricultural Sciences, 50(3):
98-111.
24.
Hidayah, N., Putri, V. D., Elma, M., Mahmud, N.,
Syauqiah, I., Amenia, A., Putra, D. G. L., Akbar, H. R., and Rahma, A. (2022).
The functionalization of pyrolyzed palm empty fruit bunches-based membranes
adsorbent by fourier-transform infrared spectroscopy. IOP Conference Series
Materials Science and Engineering, 1212(1): 012026.
25.
Dey, S., Veerendra, G. T. N., Padavala, S. S. A. B., and Manoj, A. V. P. (2023). Evaluate the use of
flower waste biosorbents for treatment of contaminated water. Water-Energy
Nexus. 6:187-223.
26.
Li, W., Chai, L., Du, B., Chen, X., and Sun, R. C.
(2023). Full-lignin-based adsorbent for removal of Cr(VI) from waste
water. Separation and Purification Technology. 306: 122644.
27.
Inoue,
K., Parajuli, D., Ghimire, K., Biswas, B., Kawakita, H., Oshima, T., and Ohto,
K. (2017). Biosorbents for removing hazardous metals and metalloids. Materials,
10(8): 857.
28.
Vishvkarma,
T., Sharma, A., and Sharma, S. (2017). Adsorption of chromium ion by using neem
bark adsorbent. International Journal of Chemical Studies. 1325-1327.
29.
Rai, R., Aryal, R. L., Paudyal, H., Gautam, S. K.,
Ghimire, K. N., Pokhrel, M. R., and Poudel, B. R. (2023). Acid-treated
pomegranate peel; an efficient biosorbent for the excision of hexavalent
chromium from wastewater. Heliyon. 9(5): e15698.
30.
Jabatan
Pertanian Malaysia & Department of Agriculture. (2022). Statistik Tanaman
Buah – Buahan. In Fruit Crop Statistics Report. Jabatan Pertanian. http://www.doa.gov.my/
31.
Kong,
F. C., Adzahan, N. M., Karim, R., Rukayadi, Y., and Ghazali, H. M. (2018).
Selected Physicochemical properties of registered clones and wild types
rambutan (Nephelium lappaceum L.) fruits and their potentials in food
products. Sains Malaysiana, 47(07): 1483-1490.
32.
Phuong,
N. N. M., Le, T. T., Dang, M. Q., Van Camp, J., and Raes, K. (2020). Selection of extraction conditions of
phenolic compounds from rambutan (Nephelium lappaceum L.) peel. Food
and Bioproducts Processing, 122: 222-229.
33.
Rinaldi,
R., Yasdi, Y., and Hutagalung, W. L. C. (2018). Removal of Ni(II) and Cu (II) ions
from aqueous solution using rambutan fruit peels (Nephelium Lappaceum
L.) as adsorbent. AIP Conference Proceedings, 2018: 5065058
34.
Mohd
Sidek, N., Syed Draman, S. F., and Mohd, N. (2017). Removal of copper (II) ions
from aqueous solution using Nephelium lappaceum L. as lignocellulosic
biosorbent. ARPN Journal of Engineering and Applied Sciences. 10: 3255-3256.
35.
Hasanah, M., Juleanti, N., Priambodo, A., Arsyad, F.,
Lesbani, A., and Mohadi, R. (2022). Utilization of rambutan peel as s potential
adsorbent for the adsorption of malachite green, procion red, and congo red
dyes. Ecological Engineering & Environmental Technology, 23(3): 148-157.
36.
Łojewska,
J., Miśkowiec, P., Łojewski, T., and Proniewicz, L. (2005). Cellulose
oxidative and hydrolytic degradation: In situ FTIR approach. Polymer
Degradation and Stability, 88(3): 512-520.
37.
Fenti,
A., Chianese, S., Iovino, P., Musmarra, D., and Salvestrini, S. (2020). Cr(VI) sorption
from aqueous solution: a review. Applied Sciences, 10(18): 6477.
38.
Hasar,
H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon
prepared from almond husk. Journal of Hazardous Materials, 97(1-3): 49-57.
39.
Islam,
M. A., Awual, M. R., and Angove, M. J. (2019). A review on nickel(II)
adsorption in single and binary component systems and future path. Journal
of Environmental Chemical Engineering, 7(5): 103305.
40.
Chaudhari,
V., and Patkar, M. (2021). Removal of nickel from aqueous solution by using
corncob as adsorbent. Materials Today Proceedings, 61: 307-314.
41.
Chung, J., Sharma, N., Kim, M., and Yun, K. (2022). Activated carbon
derived from sucrose and melamine as low-cost adsorbent with fast adsorption
rate for removal of methylene blue in wastewaters. Journal of Water Process
Engineering, 47: 102763.
42.
Fawzy,
M., Nasr, M., Abdel-Gaber, A., and Fadly, S. (2015). Biosorption of Cr(VI) from
aqueous solution using agricultural wastes, with artificial intelligence
approach. Separation Science and Technology, 51(3): 416-426.
43.
Akpomie, K. G., and Conradie, J. (2020). Banana peel
as a biosorbent for the decontamination of water pollutants. A review. Environmental
Chemistry Letters, 18(4): 1085-1112.
44.
Osman, A. I., El-Monaem, E. M. A., Elgarahy, A. M.,
Aniagor, C. O., Hosny, M., Farghali, M., Rashad, E., Ejimofor, M. I.,
López-Maldonado, E. A., Ihara, I., Yap, P. S., Rooney, D. W., and Eltaweil, A.
S. (2023). Methods to prepare biosorbents and magnetic sorbents for water
treatment: a review. Environmental Chemistry Letters, 21(4): 2337-2398.
45.
Yuan, X., Li, J., Luo, L., Zhong, Z., and Xie, X.
(2023). Advances in sorptive removal of hexavalent chromium (Cr(VI)) in
aqueous solutions using polymeric materials. Polymers. 15(2): 388.
46.
Masuku, M., Nure, J. F., Atagana, H. I., Hlongwa, N., and
Nkambule, T. T. (2024b). Advancing the development of nanocomposite adsorbent
through zinc-doped nickel ferrite-pinecone biochar for removal of chromium (VI)
from wastewater. The Science of the Total Environment. 908: 168136.
47.
Mohan, K. M., and Gajalakshmi, S. (2024). Biosorption for
wastewater treatment and post-sorption utilization of treated wastewater and
spent biosorbent. Biological and Hybrid Wastewater Treatment Technology.
Springer pp. 57–90.
48.
Ajorloo, M., Ghodrat, M., Scott, J., and Strezov, V.
(2022). Heavy metals removal/stabilization from municipal solid waste
incineration fly ash: a review and recent trends. Journal of Material Cycles
and Waste Management, 24(5): 1693-1717.